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Historical perspective
BCG is an attenuated strain of Mycobacterium bovis derived by 
serial passage. In conducting guinea pig virulence studies with 
Nocard’s strain of M. bovis at the Pasteur Institute of Lille in 1908, 
Albert Calmette and Camille Guérin attempted to emulsify their 
strain by growth on a glycerinated-bile potato medium rather than 
grind clumps of bacilli in oil before animal inoculation (1). They 
noted a colony morphology change after 15 passages on this novel 
growth medium, and subsequently observed that this change cor-
related with reduced virulence in guinea pigs and calves (2). They 
went on to perform serial passage of the strain a total of 230 times 
over the next 13 years from 1908 to 1921 (3, 4). The end result was 
a strain that failed to produce progressive disease in at least six 
animal models and also conferred protection against challenge 
with virulent M. tuberculosis (5, 6). This strain was named Bacillus 
Calmette-Guérin (BCG; originally it was called Bacilli Calmette-
Guérin) and was first administered as a vaccine on July 18, 1921, 
at the Charité Hospital in Paris by mouth to an infant boy whose 
mother had died of tuberculosis (TB) shortly after giving birth 
(7). By 1924, 664 infants had been vaccinated with few adverse 
effects, and protection was reported to be over 90% (8). These 
reports prompted requests from elsewhere around the globe, and 

as early as 1924 BCG was distributed widely (4, 9–11). The orig-
inal BCG strain was distributed across the globe and was propa-
gated on various culture media that led to diversification of the 
parent BCG into a number of genetically distinct BCG substrains. 
Over the decades from 1921 to 1960 (when BCG strains were first 
established as seed lots in long-term cryostorage), more than 14 
substrains of BCG evolved with different mutations beyond those 
of the original strain developed by Calmette and Guérin (12, 13).

At present, BCG is recommended at birth in most countries for 
TB prevention. With about 352 million BCG doses procured annu-
ally (14, 15), it is possibly the most widely used vaccine in human 
history (5, 16). While its roles for TB prevention (17, 18) and bladder 
cancer immunotherapy (19) have been extensively described, here 
we present a non-systematic overview of nontraditional uses of BCG 
(Figure 1), a topic that has received only modest attention (20, 21).

Trained immunity: a mechanism for BCG-mediated 
heterologous protection
BCG is the only licensed vaccine for the prevention of TB, and per 
WHO recommendations it is routinely administered to infants 
after birth in TB-endemic regions (22). Numerous studies reveal 
that when given to neonates or school-age children, BCG con-
fers significant protection against tuberculous meningitis and 
miliary TB in childhood (relative risk 0.04–0.12) and, to a lesser 
degree, pulmonary TB in childhood (relative risk 0.26–0.41) (see 
meta-analysis reported in ref. 23). It also offers more limited pro-
tection against TB in adulthood, especially adult pulmonary TB 
(23, 24). Observational and prospective cohort studies of neonatal 
BCG vaccination in West African countries show clear evidence 
that BCG reduces infant mortality risk by up to 30%–50% for up to 
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trained immunity is mediated by an epigenetic, transcriptional, 
and functional reprogramming of innate immune cells such as 
monocytes, macrophages, or NK cells (36, 43, 44). These initial 
events produce heterologous lymphocyte activation, resulting in 
enhanced proinflammatory cytokine production, macrophage 
activity, T cell responses, and antibody titers (41).

Early mechanistic studies of trained immunity of BCG- 
induced heterologous protection emerged from studies in the 
1970s showing that BCG vaccination protected mice against L. 
monocytogenes (45, 46). Later, macrophages from BCG-primed 
animals were shown to be capable of increased killing of phago-
cytosed Candida albicans (47). Experimental validation of trained 
immunity in humans was done when monocytes from BCG-vacci-
nated adults showed elevated expression of cell surface markers 
of activation (CD11b and TLR4) and released more IL-1β, IL-6, 
IFN-γ, and TNF-α in response to ex vivo Staphylococcus aureus 
or C. albicans infection for up to 3 months after vaccination as 
compared with monocytes that were isolated before vaccination 
from the same individuals (48). Durability of trained immunity 
responses was investigated in follow-up studies when monocytes 
from BCG-vaccinated individuals showed increased expression of 
CD14, TLR4, and mannose receptors as well as increased produc-
tion of IFN-γ, IL-17, and IL-22 in response to heterologous stimula-
tion for up to 1 year (41).

Epigenetic reprogramming in trained immunity. An important 
advance in understanding trained immunity was the demonstration 
that BCG training led to epigenetic modifications that alter gene 
expression patterns in innate immune cells. A study in 2012 revealed 
that BCG training is associated with NOD2-dependent epigenetic 
H3K4 trimethylation at gene promoters of surface activation mark-
ers and inflammatory cytokines (48). BCG training is also known to 
suppress H3K9 trimethylation, thus depressing the gene expression 
phenotypes in trained monocytes (ref. 49 and Figure 2).

Metabolic rewiring in trained immunity. Innate immune cells 
(monocytes and macrophages) show remarkable plasticity follow-
ing immune stimulation by inducing metabolic pathways accord-
ing to the need of an immune microenvironment. For example, 
inflammatory M1 macrophages depend largely on glycolysis and 
show impaired oxidative phosphorylation (OxPhos) and TCA 
cycle activity. In contrast, immunosuppressive M2 macrophages 
rely more on OxPhos, have increased β-oxidation as a result of fat-
ty acid uptake, and their TCA cycle is active (50, 51). BCG-trained 
monocytes show a distinct pattern in the metabolic programming 
of the cell in which both glycolysis and OxPhos are increased (49, 
52). A key outcome of this metabolic reprogramming is genera-
tion of metabolites that may act as cofactors for chromatin mod-
ifier enzymes. Indeed, pharmacologic and genetic modulations 
of rate-limiting glycolytic enzymes have been shown to inhibit 
BCG-induced epigenetic changes (H3K4me3 and H3K9me3), sug-
gesting that increased glycolysis is an integral part of the immune 
training (49). Besides induction of glycolysis and increased lactate 
production, BCG-trained monocytes also show upregulation of 
the TCA cycle metabolites citrate, succinate, malate, fumarate, 
and 2-hydoxyglutarate as compared with naive macrophages, sug-
gesting a possible role of glutaminolysis to supplement these spe-
cific metabolites (53, 54). In fact, the glutaminase inhibitor BPTES 
has been shown to reduce the efficiency of BCG-mediated trained 

2 years of age, an effect so large that it suggested benefits of BCG 
beyond prevention of TB alone (25–27). Indeed, in observational 
and randomized prospective trials, neonatal BCG immunization 
of low-birth-weight infants was found to significantly improve sur-
vival for the first few months of life, mainly owing to prevention of 
non–TB-related lower respiratory tract infections (28, 29). Obser-
vations made in Malawi and Guinea-Bissau show clear evidence 
that BCG-mediated reduction of infant mortality is attributable 
to heterologous protective immunity against pediatric infections 
other than TB (30, 31). Similarly, a cluster sampling study of BCG 
immunization in infants in 33 countries revealed a reduction in the 
incidence of acute lower respiratory infection by 17%–37% (32). 
Further retrospective studies have revealed that BCG vaccination 
is associated with reductions in herpes simplex virus, respiratory 
syncytial virus, and influenza A (33, 34).

Importantly, not all studies have demonstrated heterologous 
protection against infections; a recent large prospective study of 
over 16,000 infants in Denmark is an example (35). While the 
exact reasons for such discrepancies are not known, heterologous 
protection by BCG appears to be more readily demonstrable in 
low-income countries, suggesting that disease prevalence, envi-
ronmental antigenic exposures, and income discrepancy may be 
contributing factors.

The heterologous protection conferred by BCG is likely the 
result of two mechanisms that synergize to induce protection: 
heterologous T cell immunity, and “trained immunity,” a term 
proposed to describe the ability of a first infection or antigenic 
exposure to develop an enhanced, nonspecific innate immune 
response that protects against a second infection independent 
of the adaptive immunity provided by B and T cells (36, 37). On 
the one hand, heterologous immunity that results in an improved 
response against pathogens other than the target microorganism 
was first reported by seminal studies by Mackaness (who called 
it “non-specific immunity”) in the 1960s, showing that BCG can 
induce heterologous protection against other infections such 
as Listeria monocytogenes (38, 39). The role of T cells in this pro-
cess has recently been underscored (40–42). On the other hand, 

Figure 1. Schematic diagram depicting the traditional uses of BCG for pro-
tection against tuberculosis and immunotherapy for bladder cancer versus 
its nontraditional uses described in this Review for viral infections, cancer 
immunotherapy aside from bladder cancer, and immunologic diseases.
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Heterologous protection mechanisms: role of BCG antigens. While 
the precise pathogen-associated molecular patterns (PAMPs) 
involved in triggering BCG-mediated trained immunity remain 
unknown, it has been shown that BCG exposure leads to NOD2-de-
pendent epigenetic changes and heterologous protection (48). In 
addition, it is known that the innate antigen for NOD2, muramyl 
dipeptide (MDP; a component of peptidoglycan in bacteria cell 
walls), is unique in mycobacteria (N-glycolyl MDP) compared with 
other bacteria (N-acetyl MDP) (58). Moreover, N-glycolyl MDP 
has been shown to be a more potent NOD2 stimulus than N-acetyl 
MDP (59). Thus, a unique N-glycolyl MDP may be implicated as a 
key antigenic trigger in BCG-mediated trained immunity.

Recent mechanistic work regarding the basis of trained immu-
nity has implicated a BCG-mediated expansion of hematopoietic 
stem cells (HSCs) and multipotent progenitors in the bone mar-
row (60). These BCG-exposed marrow HSCs in turn generate 
epigenetically modified macrophages that demonstrate improved 
protection against M. tuberculosis challenge. A related study by the 
same group has addressed the question of whether mycobacteria 
all imprint trained immunity to the same degree and by similar 
mechanisms (61). Surprisingly, it was found that while the afore-

immunity in vitro and in experimental models. Importantly, 
metabolites such as NAD+ and acetyl-CoA in trained monocytes 
serve as cofactors for histone deacetylases (HDACs) and histone 
acetyltransferases (HATs), respectively (55). Also, α-ketoglutarate 
is an essential cofactor for several lysine- and cytosine-demethyl-
ating enzymes. Thus, shifts in metabolite levels in BCG-trained 
monocytes may be a plausible mechanism behind the integration 
of immunometabolic and epigenetic programs during trained 
immunity (refs. 53, 54, and Figure 3).

Heterologous protection mechanisms: unconventional T cells. In 
addition to the previously mentioned role of NK cells in BCG-medi-
ated heterologous protection, unconventional T cells such as innate 
lymphoid cells (ILCs) and mucosa-associated invariant T cells may 
also contribute to trained immune responses. In a recent murine 
study in which BCG was administered by the intradermal, subcuta-
neous, or intranasal route, ILCs were found in elevated numbers in 
lungs and lymph nodes and were found to be a significant source of 
IFN-γ (56). Similarly, murine mucosa- associated invariant T cells 
demonstrated profound antimycobacterial responses and IFN-γ 
production upon coculture with MR1- expressing macrophages that 
had been infected with BCG (57).

Figure 2. Epigenetic modifications and trained immunity. Schematic diagram depicting BCG-mediated trained immunity via epigenetic changes in myeloid cells 
that have encountered BCG. As shown, the primary challenge leads to “training” or reprogramming that includes durable, epigenetic modifications to chroma-
tin, such as histone methylation (e.g., H3K4me3), that alter immune readiness. Following an encounter with a second immunologic challenge unrelated to BCG 
(secondary challenge), trained myeloid cells are capable of secondary immune responses of greater magnitude than those of untrained cells.
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es in some and immunotolerizing effects in others remains largely 
unexplained. Hypotheses to account for such dichotomous responses 
include host factors such as (a) geographical factors (endemic myco-
bacterial exposure), (b) the presence of helminth infections, or (c) 
immunogenetic differences among human BCG recipients. Alterna-
tively, microbial factors such as differences among BCG strains have 
also been proposed to explain dichotomous responses.

One potential answer to this conundrum comes from the 
consistent observation that BCG vaccination induces regulatory 
T cells (Tregs), a well-known cell population that induces immu-
nologic tolerance (62, 63). Treg responses have been documented 
in both in children and adults receiving BCG for TB prevention 
(64–66) and in bladder cancer patients receiving BCG for cancer 
immunotherapy (67, 68). Indeed, this Treg response has been pos-
tulated as one of the limitations of BCG efficacy (66, 67).

mentioned BCG-mediated marrow HSC expansion was associated 
with type II IFN release and improved macrophage immune train-
ing, M. tuberculosis in contrast impaired training and immunity by 
eliciting necroptosis of myeloid cell precursors in an environment 
of elevated type I IFN release. These findings suggest that not all 
mycobacteria elicit protective trained immune responses and that 
virulent mycobacteria seem to have evolved specific mechanisms 
to neutralize trained immunity as a means of escaping enhanced 
macrophage immune set points.

How can BCG be both immunostimulatory and immunotoleriz-
ing? As shown in Figure 1, BCG vaccination elicits proinflammatory, 
immunostimulatory responses against TB and bladder cancer but also 
appears to have immunotolerizing effects that play a role in its exper-
imental uses against multiple sclerosis, type 1 diabetes, asthma, and 
atopic dermatitis. How BCG can elicit immunostimulatory respons-

Figure 3. Metabolomic modifications and trained immunity. Schematic diagram depicting metabolomic changes associated with BCG-mediated trained 
immunity. Untrained innate immune cells (left) have relatively low levels of glycolysis and oxidative phosphorylation, and they express basal levels of 
proinflammatory cytokines. Following BCG training (right), metabolic activity in the glycolysis and oxidative phosphorylation pathways is increased, and 
upon immune restimulation (secondary challenge), immune responsiveness is elevated above levels seen with a primary challenge.
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those of probable viral origin (hazard ratio 0.21, P = 0.013). This 
trial suggested that BCG vaccinations in elderly people are safe 
and can protect this population against respiratory infections (79). 
Importantly, however, no effects on gastrointestinal or urinary 
tract infections were observed, which warrants further investiga-
tion of the differential mechanisms involved in these infections.

BCG vaccination for COVID-19. During the past year, BCG 
emerged as a candidate vaccine for the prevention of infection 
with SARS-CoV-2 (80–82). Initial studies found that countries 
currently using BCG vaccination have lower SARS-CoV-2 inci-
dence and death rates (83–87). One study, which sought to miti-
gate multiple confounding factors among countries (e.g., level of 
urbanization, population density, age structure, access to health, 
income, education, and stage of the COVID-19 epidemic) while 
assessing correlation between vaccination and COVID-19 mor-
tality, found a significant correlation between the degree of BCG 
vaccination in a country and COVID-19 mortality (88). Another 
study using similar methods showed a correlation between BCG 
vaccination and daily rates of COVID-19 cases and deaths in the 
first 30-day period of a country’s outbreak (83). Importantly, not 
all such correlation studies indicate a benefit of BCG in COVID-19 
prevention; for example, a study that compared COVID-19 mor-
tality by national BCG use patterns in early versus late 2020 did 
not find evidence of protection by BCG (89). A study performed 
in Israeli population cohorts before and after the discontinuation 
of BCG vaccination in the 1980s also failed to identify differences 
in COVID-19 incidence, arguing that BCG-induced protection is 
unlikely to be durable (90).

In contrast, in addition to these correlative studies, a retro-
spective observational study of a diverse cohort of 6679 health 
care workers in Los Angeles, California, demonstrated that a his-
tory of BCG vaccination was associated with reduced COVID-19–
related clinical symptoms (P = 0.017), as well as decreased sero-
prevalence of anti–SARS-CoV-2 IgG with an odds ratio (OR) of 
0.76 (95% CI 0.57–0.99; P = 0.048) (91). Importantly, no associ-
ation was found with meningococcal, pneumococcal, or influen-
za vaccination. While preliminary, these findings strengthen the 
argument that BCG may exert preventive efficacy and reduction 
in morbidity/mortality against SARS-CoV-2.

Importantly, prospective randomized clinical trials are neces-
sary to make definitive conclusions regarding a potential effect of 
BCG vaccination against COVID-19. As of this writing, 22 clinical 
trials to test the efficacy of BCG are under way around the world 
and should produce more definitive answers on the role of BCG 
against COVID-19 (78–82, 92, 93).

BCG for nontuberculous mycobacterial infections. In contrast to 
the other diseases described in this Review, nontuberculous myco-
bacterial (NTM) clearly share many common antigens with BCG, 
and hence BCG-mediated cross-immunity against NTM infections 
may not be based on heterologous or trained immunity, but rather 
upon broad antimycobacterial immunity conferred by BCG. We 
present this topic here because the use of BCG for prevention of 
NTM diseases remains nontraditional and experimental.

In developed regions such as the United States, Canada, and 
Western Europe where BCG is not used, rates of pulmonary NTM 
infections due to Mycobacterium avium, Mycobacterium abscessus, 
and related species have steadily increased in the past decades 

A recent small prospective study, in which 12 healthy, BCG- 
naive volunteers of European background were experimentally 
vaccinated with BCG, provided clear evidence of human dichot-
omous responses to BCG. While all vaccinees showed evidence 
of BCG uptake at 1 year, half of the subjects demonstrated proin-
flammatory polyfunctional CD4+ T cell responses and strong local 
skin inflammation at the BCG site. In contrast, the other half failed 
to mount polyfunctional T cells but rather showed a significant 
increase in CD8+ Tregs with minimal skin inflammation at the 
BCG site (69). Although the basis of these dichotomous responses 
remains unknown, the fact that they occurred in subjects from a 
non–mycobacteria-endemic area with few if any endogenous hel-
minth infections with a single strain of BCG suggests that the basis 
for dichotomous responses to BCG may lie in the immunogenetic 
background of the recipient.

BCG’s impact on viral and nontuberculous 
mycobacterial infections
Viral infections. In addition to the retrospective studies described in 
the previous section, BCG has also been studied prospectively for 
its protection against viral diseases and respiratory tract infections. 
For example, a randomized, placebo-controlled trial of 20 healthy 
adults who received BCG vaccination before H1N1 influenza vac-
cine, versus 20 who did not, found that prior BCG vaccination 
increased and accelerated the acquisition of functional anti-H1N1 
antibody responses (70). In another randomized controlled trial, 
a prospective BCG vaccination study in adult volunteers was per-
formed in which both placebo and BCG recipients were challenged 
28 days later with the live attenuated yellow fever virus (YFV) vac-
cine and monitored for 90 days. BCG recipients had significantly 
lower YFV viremia 5 days after challenge and also displayed higher 
levels of IL-1β release, which correlated with epigenetic modifica-
tions. Despite the viremia reduction, BCG recipients showed no 
difference in YFV antibody titers at 90 days after challenge (71). 
This prospective virus challenge study clearly revealed the antivi-
ral role of BCG-induced trained immunity and documented an epi-
genetic and cytokine release mechanistic basis for the effect. For 
efficacy against viral infections, BCG has been tested in three ran-
domized controlled clinical trials (YFV, HPV, influenza A; refs. 70–
72), one case-control study (respiratory syncytial virus; ref. 73), and 
four case series (HPV and herpes simplex virus; refs. 74–77). Each 
showed a beneficial effect, and the preventive observations from 
the three randomized controlled trials strongly suggest causality 
for BCG against those viral infections. Comprehensive reviews of 
these studies have been published (34, 78).

BCG vaccination for all-cause infections in elderly people. In 
another double-blind, randomized clinical trial (the phase III 
ACTIVATE trial; ClinicalTrials.gov NCT03296423) in patients 65 
years of age or older, BCG versus placebo vaccination was admin-
istered at the time of hospital discharge, and patients were fol-
lowed for 12 months for new infections. Compared with placebo, 
BCG vaccination significantly delayed the time to first infection 
(median 16 weeks compared with 11 weeks after placebo). Inter-
estingly, the incidence of all-cause new infections was 42.3% 
(95% CI 31.9%–53.4%) after placebo vaccination and 25.0% (95% 
CI 16.4%–36.1%) after BCG vaccination. The impact of BCG 
was most profound against respiratory tract infections, including 
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and are of particular concern for patients with cystic fibrosis 
(CF) or non-CF bronchiectasis (94, 95). While murine studies 
have clearly shown that BCG vaccination can protect against 
NTM infection (96), there is now renewed interest in whether 
BCG should be considered for the prevention of NTM infections, 
particularly in these high-risk subgroups. Human evidence for 
BCG-mediated protection against NTM infections comes from 
European nations with strong surveillance programs where BCG 
vaccination was suspended or terminated. In France, the mean 
incidence of culture-confirmed NTM cervical lymphadenitis 
sharply increased from 0.57 to 3.7 per 100,000 children per year 
after mandatory BCG vaccination was discontinued in 2007 
(97). Similarly, in a large retrospective population-based study 
in Finland, where BCG policy changed from universal to selec-
tive vaccination strategy in 2006, childhood NTM infections 
increased drastically, with an incident rate ratio of 19.03 (95% 
CI 8.8–41.07; P < 0.001) (98). These population-based studies 
support the hypothesis that BCG offers cross-protection against 
NTM disease in humans. Recently, a prospective clinical trial 
in which five healthy people in St. Louis, Missouri, were given 
intramuscular BCG observed postvaccination increases among 
in vitro markers of immunity against NTM infections, including 
the induction of NTM–cross-reactive T cells (99).

Beyond pulmonary NTM infections caused by M. avium and 
related mycobacteria, BCG appears to confer a degree of pro-
tection against leprosy (Mycobacterium leprae) and Buruli ulcer 
(Mycobacterium ulcerans). At least three large cohort or case-con-
trol trials in Africa showed that BCG vaccination is associated with 
a 50%–80% reduction in the incidence of leprosy (100–102), and 
later, a randomized, controlled trial observed that a second BCG 
vaccination further improved leprosy prevention (103). Similarly, 
BCG vaccination was found to protect against Buruli ulcer in two 
large studies in Uganda (one a prospective observational study and 
the other a randomized controlled trial), although the duration of 
protection appears to be limited to only 6 to 12 months (104, 105).

BCG immunotherapy for malignancies other than 
bladder
History of BCG as immunotherapy for cancer. Microbe-based cancer 
immunotherapy dates back to the 19th century with the work of 
Busch and Fehleisen and of Coley using live or killed bacteria (106–
109). The role of mycobacteria in cancer interference was noted in 
1928 by Pearl, who reported lower incidence of bladder cancer in 
patients with TB (110). Holmgren in Sweden was the first to use 
BCG for human cancer treatment in 1935 (9), and his studies were 
followed up in the 1960s by Vilasor and Mathé, who reported par-
tial antitumor success (111, 112). In the 1950s, Lloyd Old demon-
strated that mice infected with BCG had increased resistance to 
transplanted tumors (113). Later studies demonstrated antitumor 
effects of BCG against tumors in additional animal models (114, 
115). Extensive reviews on the uses of BCG as an immunotherapy 
for a variety of human malignancies are available (116–118). These 
studies led to testing of intravesical BCG for bladder cancer and 
the seminal report by Morales et al. showing favorable results in 
nine bladder cancer patients treated with intravesical BCG (119). 
BCG is now standard therapy for non–muscle-invasive bladder 
cancer (reviewed in refs. 19, 120–122).

BCG to prevent cancer. BCG has also been studied for its pre-
ventive effects against cancer. Retrospective studies in the early 
1970s by Davignon and later by Rosenthal revealed that neonatal 
BCG vaccination reduced incidence of acute leukemia (123–125), 
and a recent meta-analysis of BCG for childhood leukemia (12 
studies) found protection with an OR of 0.73 (95% CI 0.50–1.08) 
(126). BCG has also been studied for prevention against all-cause 
malignancies in large, long-term cohorts originally developed to 
study BCG against TB. A 1978 study in Puerto Rico of 50,634 vac-
cinated children and 31,586 controls did not observe fewer gen-
eralized malignancies at 18.8 years of follow-up (127). Similarly, 
a 1981 study of 16,913 BCG vaccinees and 17,854 controls from 
Georgia and Alabama who were 5 years old or greater found no 
generalized protective effect after 28 years (128). These long-term 
preventive studies were reviewed in 1990 (129). Recently, how-
ever, in contrast to the negative studies from four decades earlier, 
a 2019 paper reporting a 60-year retrospective analysis of 2963 
BCG vaccinees in the United States showed a statistically signifi-
cant reduction in lung cancer incidence (130).

BCG for melanoma. From the mid-20th century until today, 
BCG has been used as an experimental intratumoral and systemic 
immunotherapy for a variety of solid tumors, including melano-
ma (107, 131). Indeed, the use of intralesional BCG remains listed 
in the National Comprehensive Cancer Network guidelines as an 
option for inoperable stage III melanoma (132).

Intralesional BCG was introduced in the early 1970s with a 
series of studies that showed complete regression in 15%–20% of 
recipients (133–135). In 1974, a larger study of intralesional thera-
py involving 36 patients with over 750 melanoma nodules found 
that 90% of the directly injected lesions regressed, as did 17% 
of the noninjected lesions (137). In 1993, an analysis of results 
pooled from 15 separate studies found that intralesional BCG in 
stage III melanoma resulted in complete responses in 19% and 
extended survival in 13% (138). More recent studies of intrale-
sional BCG have addressed its use in combination with topical 
immunotherapies such as imiquimod (a topical TLR7 agonist) 
and the experimental agent velimogene aliplasmid (a plas-
mid-lipid complex encoding HLA-B7 and β2-microglobulin) (139, 
140). Indeed, the use of imiquimod together with intralesional 
BCG was reported to yield high rates of complete regression in 
two small series (141, 142).

Systemic BCG — administered by skin scarification or by intra-
dermal injection — has also been evaluated as an immune adjuvant 
for melanoma, although the results have been less compelling than 
for intralesional therapy. At least 19 trials in which BCG was given 
with either cytotoxic chemotherapeutics, cancer vaccines, or cyto-
kine therapies have been reported, most with little difference con-
ferred by the addition of BCG (143, 144). Nevertheless, certain large 
studies have suggested a benefit from systemic BCG. For example, 
one large study evaluating BCG and placebo versus BCG and the 
polyvalent melanoma cancer vaccine Canvaxin in 1160 stage III 
and 496 stage IV melanoma patients was stopped when the interim 
analysis showed no difference between groups (145). As all groups 
received intradermal BCG, the study was notable in that across 
study arms the overall projected 5-year survival was 63% in stage 
III patients and 42% in stage IV patients, values significantly higher 
than those typically seen in melanoma. Long-term follow-up of the 
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stage IV patients in the cohort, who all underwent surgical resec-
tion, failed to reveal a difference between groups but continued to 
show higher-than-expected survival rates in both arms (146).

More recently, intralesional BCG has been tested in combina-
tion with immune checkpoint inhibition. A dose escalation phase I 
study of intralesional BCG together with the anti-CTLA4 agent ipili-
mumab found that two of five patients developed immune-related 
adverse events, which included systemic toxicity, in conjunction 
with receiving the escalation doses of BCG (147). Prior to the onset 
of systemic toxicity, the study found increases in the repertoire of 
autoantibodies directed against both self- and cancer antigens.

BCG for prostate cancer. Intradermal or intraprostatic BCG 
alone or in combination with chemotherapy was evaluated in pros-
tate cancer in relatively small clinical trials primarily in the 1970s 
and 1980s (148–151). In one of the largest series, involving 46 BCG 
recipients and 46 stage- and therapy-matched controls, reported 
in 1979, intradermal BCG recipients had prolonged survival com-
pared with controls (37 vs. 21 months), and BCG-treated patients 
showed significant changes in complement levels and cutaneous 
hypersensitivity, suggesting an immune-mediated effect (152). In 
a similar study in 1982, 42 patients with advanced prostate cancer 
were randomized for either BCG adjuvant immunotherapy plus 
conventional therapy or conventional estrogen therapy; BCG recip-
ients also showed prolonged survival compared with the control 
group (38 vs. 28 weeks, P < 0.05) (151). Interestingly, quality-of-life 
indicators were significantly poorer in the BCG recipients. Despite 
these results showing a modest benefit of BCG in prostate cancer, 
there have been few subsequent studies in recent decades.

BCG for lung cancer. Lung cancer immunotherapy before 
the 1990s remained focused on nonspecific immune stimulants 
including BCG (153). Lung cancer investigations were mainly 
focused on small cell lung cancer (SCLC) because of ease of treat-
ment with minimal residual disease after curative chemotherapy 
and radiation (154). Some studies reported improved outcomes 
following intrapleural or intradermal BCG immunotherapy in 
patients receiving BCG and other modalities (155, 156), although 
this was not uniformly true. However, a 353-patient randomized 
phase III study in 1985 using a methanol extract of BCG as adju-
vant therapy for SCLC failed to show an impact on overall surviv-
al (155), and in subsequent years few additional BCG studies in 
SCLC have been reported. However, very recently, a remarkable 
60-year follow-up study assessing the effect of BCG vaccination 
on cancer development suggested that childhood vaccination (sin-
gle intradermal BCG vs. saline placebo) was associated with low-
er risk of lung cancer development (all types) in American Indian 
and Alaska Native populations (130).

BCG for multiple sclerosis and other 
autoimmune diseases
BCG for multiple sclerosis. Multiple sclerosis (MS) is a chronic neu-
roinflammatory and neurodegenerative disease associated with 
immune-mediated demyelination of the central nervous system in 
which BCG has been tested as a disease modifier (157). Early ani-
mal studies showed that killed M. tuberculosis injections suppress 
demyelination in experimental autoimmune encephalomyelitis, 
an animal model of MS (158), prompting human studies. In a 1999 
crossover study of 12 patients with relapsing-remitting MS who 

were followed with monthly MRI scans for 6 months, intracutane-
ous BCG administration revealed a 57% reduction in MRI-active 
lesions and no adverse effects (159). In 2014, a double-blind, pla-
cebo-controlled study of 73 patients who had experienced a soli-
tary first demyelinating event (clinically isolated syndrome) and 
were followed with monthly MRI scans for 6 months found that 
BCG recipients had significantly lower risk of developing new MRI 
lesions (relative risk 0.54, P = 0.03). During a 5-year follow-up peri-
od in which both arms received other disease-modifying therapies, 
19 of 33 (57.6%) of the BCG recipients remained MS free, while only 
12 of 40 (30%) were disease free in the control arm (P = 0.018); no 
major adverse events were observed with BCG treatment (160). 
One potential mechanistic explanation for the potential benefit of 
BCG is the glycolysis-inducing effect of BCG and the recent obser-
vation that patients with relapsing-remitting MS have impairments 
in glycolysis and mitochondrial respiration (161).

BCG for type I diabetes. Type 1 diabetes (T1D) is a chronic auto-
immune disease wherein autoreactive CD8+ T cells destroy pancre-
atic β cells as a result of increased targeting of islet cell autoantigens 
(162). The primary risk factor for β cell autoimmunity is genetic, but 
environmental triggers are also implicated (163). BCG has been pro-
posed as a beneficial environmental modifier of the immune system 
that can reduce the incidence of autoimmune diseases including 
T1D. In the autoimmune NOD (nonobese diabetic) murine mod-
el, either complete Freund’s adjuvant (which contains heat-killed 
BCG) or BCG vaccination itself was observed to reduce diabetes 
development (164). In humans, neonatal BCG vaccination has been 
associated with reduction of autoantibodies associated with T1D 
such as GAD65 and I-A2 (165), and there are reports of preserva-
tion of β cell function when BCG vaccination is administered soon 
after diabetes onset (166). Nevertheless, subsequent larger-scale 
studies in humans have failed to confirm that neonatal BCG vac-
cination (167) or BCG administered in newly diagnosed T1D (168, 
169) reduces progression of diabetes or insulin requirements. Nev-
ertheless, more recent studies have pointed out promising antidia-
betic effects of BCG vaccination in patients with long-standing T1D, 
including a reduction of C-peptide (insulin fragment) (170) and 
TNF-α–mediated selective death of autoreactive T cells and expan-
sion of beneficial Tregs to restore immune balance (171).

Most recently, following the demonstration that BCG boosts 
glycolysis in BCG-trained human monocytes (49), the effects of 
BCG vaccination on reprogramming of immune metabolic state 
of T1D patients have garnered attention (172). In an 8-year human 
study involving 282 subjects with T1D, BCG vaccination was found 
to reduce hemoglobin A1c levels to near normal levels, and, at least 
in immune cells, this correlated with a shift in glucose metabolism 
from OxPhos to aerobic glycolysis, a state of high glucose utilization, 
and reversal of ketosis (173). In the same study, CD4+ T cells from 
BCG-vaccinated adults with T1D showed a demethylation epigene-
tic mark in several Treg signature genes (FOXP3, TNFRSF18, IL2RA, 
IKZF2, IKZF4, and CTLA4) and a change in mRNA expression pat-
terns likely to contribute to enhanced Treg generation and function. 
This induction of Tregs may be linked to the recently identified 
requirement of glycolysis for the generation of inducible Tregs (174). 
In contrast to much of the BCG literature, which shows proinflam-
matory effects, these observations suggest that BCG may also confer 
an immunotolerizing effect wherein Treg function is improved.
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in TB prevention and bladder cancer immunotherapy. In recent 
decades it has become clear that BCG modifies human immune 
cells both epigenetically and metabolically, and that these chang-
es impart heterologous immune responsiveness to immunologic 
challenges unrelated to those of mycobacteria, a phenomenon 
that in innate immune cells has been termed “trained immunity.” 
Of particular note is the observation that BCG-vaccinated indi-
viduals appear to have higher resistance to respiratory tract infec-
tions, and this has prompted a flurry of studies to determine if it 
may be useful against viral pandemics such as COVID-19 and for 
special populations at high risk of respiratory tract infection such 
as elderly people and CF patients.

While BCG clearly elicits proinflammatory responses, which 
contribute to its value as a bladder cancer immunotherapy, 
recent studies have demonstrated that its role in stimulating 
glycolysis may lead to an expansion of immunotolerizing Tregs; 
this may account for studies that reveal some efficacy of BCG in 
autoimmune diseases such as T1D and MS. In summary, beyond 
its wide use as a vaccine and immunotherapy during the past 
century, BCG continues to serve as a valuable biological probe 
that has helped elucidate fundamental properties of the human 
immune system.
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BCG for asthma and other atopic diseases. Dozens of human stud-
ies have evaluated whether BCG plays a protective role in asthma and 
other atopic diseases, such as eczema/atopic dermatitis and allergic 
rhinoconjunctivitis. For example, a large case-control study of 751 
Australian children 7 to 14 years of age observed a lower prevalence 
of current asthma among BCG recipients with a family history of 
rhinitis or eczema, again suggesting that BCG vaccination may pro-
vide Th1 stimulation and reduce IgE-responsiveness illness associ-
ated with allergic responses (175). For dermatologic skin diseases, a 
randomized, placebo-controlled trial with 121 predominantly White 
newborns with familial risk found a trend toward less eczema with a 
P value of 0.07 (176). Similarly, in a large observational study of 400 
children from Guinea-Bissau, early BCG vaccination was associated 
with a statistically significant decrease in atopic skin reactions to three 
dermatologic antigens, suggesting a BCG-mediated shift toward Th1 
responsiveness (177). However, some studies have failed to show an 
impact of BCG vaccination on atopic responses (178).

To better understand BCG’s effects in this arena, two systemat-
ic reviews have been conducted. The broader meta-analysis, which 
included 17 studies evaluating asthma as well as eczema/atopic 
dermatitis, allergic rhinoconjunctivitis, food allergies, and anaphy-
laxis, failed to find a protective effect of BCG for prevention of skin 
prick sensitization, eczema, or allergic rhinoconjunctivitis, but did 
observe protection against asthma with an OR of 0.73 (CI 0.89–1.28) 
(179). The second, which was restricted to asthma and included 23 
studies, also found BCG to have a protective effect against asthma 
with an OR of 0.86 (CI 0.79–0.93) (180). Thus, there appears to be 
a consistent beneficial effect of BCG against asthma, while the evi-
dence is less convincing for atopic skin diseases.

Conclusions
After 100 years of human use, BCG continues to be investigated 
against a variety of human diseases beyond its well-known roles 
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