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adverse health outcomes. Additionally, modern technology (such as electric lights and computer, tablet, and phone screens that emit blue
light) and lifestyles (such as shift or irregular work schedules) are disrupting circadian consistency in an increasing number of people.
Though medical and lifestyle interventions can alleviate some of these issues, growing research on endogenous circadian variability and
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Introduction
Measurement of rest and activity in flies by Konopka and Benzer 
in 1971 (1) marked the beginning of behavioral genetics as a field, 
and in 2017, the Nobel Prize in Medicine was awarded to Hall, 
Young, and Rosbash for their “discoveries of molecular mecha-
nisms controlling the circadian rhythm.” Work from many labo-
ratories in model systems and in humans has advanced our under-
standing of the molecular basis of circadian regulation. It has long 
been evident that circadian (meaning “around a day”) behaviors 
play a role in much of life. Animals, plants, and even bacteria (2) 
have demonstrated behavioral patterns that follow a near-24-hour 
rhythm. We now understand that a molecular system genetically 
coded into each cell guides these patterns through a tightly con-
trolled network of genes and proteins that oscillate in concentra-
tion on a daily cycle. Many, though not all, elements of this system 
are conserved across phyla; though the first biological clock genes 
were found in flies (3, 4), and elucidated further in other model 
organisms, many of the core components or their analogs are pres-
ent and operate following similar principles in humans.

In mammals, the central pacemaker of the circadian system 
is the suprachiasmatic nucleus (SCN) within the hypothalamus, 
which synchronizes many features of the sleep-wake cycle. It is 
here that metabolic, environmental, and genetic inputs are inte-
grated to generate the period (also called τ), or the length of the 
circadian cycle for the entire organism, manifested in numerous 
behavioral and physiological patterns. Related to the period is 
phase, or the timing of such expressed rhythms (5). In humans, 
the phase is often measured using the nadir of body temperature 
or the onset of evening melatonin in the evening in dim light con-

ditions (dim-light melatonin onset [DLMO]) as reliable reference 
points for circadian timing (6).

These features of the internal cyclic clock are entrained, or syn-
chronized to the environment, by external cues, known as “zeitge-
bers” (from German, “time givers”), without which “drift” may 
occur, leading to gradual desynchronization with solar rhythms. 
Entrainment to zeitgebers is what helps reestablish circadian time 
when the biological clock machinery is desynchronized from solar 
time, such as the jet lag that arises as a result of transmeridian air 
travel. By far the strongest zeitgeber in mammals is light, though 
social cues, food intake (7), and exercise (8) play a minor role. 
Light cues transmit signals to the SCN in the brain that entrain 
the circadian phase to match the input from the environment. The 
relationship between exposure to extrinsic drivers such as light 
and the circadian phase is called the phase angle of entrainment.

An organism’s endogenous circadian length is best measured 
in contexts free of strong zeitgebers such as light. In the absence of 
time cues, the average human circadian rhythm cycles about once 
every 24.2 hours (9, 10) and can slowly desynchronize from the 
24-hour solar day (11). Evidence for this desynchronization comes 
from desynchronization experiments (12) and individuals with the 
rare non-24-hour sleep-wake rhythm disorder (13).

Genetic underpinnings of the circadian system
Investigation in animal models (14, 15) and humans (16) has found 
that circadian rhythms are influenced by genetic variation. An 
individual human’s circadian period length can be significantly 
shorter or longer than the 24.2-hour average (16–19). The extremes 
of this normal variation appear to be strongly driven by genetics, 
along with other features of circadian periodicity in humans; even 
sensitivity to zeitgebers has been shown to be genetically variable 
(20). Individual variations in phase, phase angle of entrainment, 
and period, along with environmental factors and age, help gen-
erate what is known as “chronotype,” the unique daily activity 
patterns of each person. In the general population, these strong 

Circadian rhythms, present in most phyla across life, are biological oscillations occurring on a daily cycle. Since the discovery 
of their molecular foundations in model organisms, many inputs that modify this tightly controlled system in humans have 
been identified. Polygenic variations and environmental factors influence each person’s circadian rhythm, contributing to 
the trait known as chronotype, which manifests as the degree of morning or evening preference  in an individual. Despite 
normal variation in chronotype, much of society operates on a “one size fits all” schedule that can be difficult to adjust to, 
especially for certain individuals whose endogenous circadian phase is extremely advanced or delayed. This is a public health 
concern, as phase misalignment in humans is associated with a number of adverse health outcomes. Additionally, modern 
technology (such as electric lights and computer, tablet, and phone screens that emit blue light) and lifestyles (such as shift 
or irregular work schedules) are disrupting circadian consistency in an increasing number of people. Though medical and 
lifestyle interventions can alleviate some of these issues, growing research on endogenous circadian variability and sensitivity 
suggests that broader social changes may be necessary to minimize the impact of circadian misalignment on health.

Human circadian variations
Nicholas W. Gentry,1 Liza H. Ashbrook,1,3 Ying-Hui Fu,1,2,3,4 and Louis J. Ptáček1,2,3,4

1Department of Neurology, 2Institute for Human Genetics, 3Weill Institute for Neurosciences, and 4Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, California, USA.

Authorship note: NWG and LHA contributed equally to this work.
Conflict of interest: The authors have declared that no conflict of interest exists.
Copyright: © 2021, American Society for Clinical Investigation.
Reference information: J Clin Invest. 2021;131(16):e148282. 
https://doi.org/10.1172/JCI148282.

https://www.jci.org
https://doi.org/10.1172/JCI148282


The Journal of Clinical Investigation   R E V I E W  S E R I E S :  C I R C A D I A N  R H Y T H M

2 J Clin Invest. 2021;131(16):e148282  https://doi.org/10.1172/JCI148282

Extreme circadian traits can arise when one or more com-
ponents of the biological clock are mutated in such a way as to 
drastically change phase, phase angle of entrainment, or peri-
od length. Even in the presence of zeitgebers, individuals with 
these traits may experience difficulties staying on a convention-
al schedule. Depending on the timing, light can either advance 
or delay the phase of an individual’s circadian period, resulting 
in what is known as the phase-response curve (PRC) of human 
responsiveness to this zeitgeber (40). Early morning light tends 
to advance phase, while evening light delays it (41). As light 
exposure modifies circadian clock phase, in our light-inundated 
modern world, the dearth of consistency in external light cues 
may exacerbate any circadian disorder phenotypes (42–44), and 
possibly increase their prevalence.

Chronotype across the population
Chronotype varies across the population in a near-Gaussian dis-
tribution (45). Sleep timing is known to shift later during puberty, 
with the most delayed timing around age 20, then slowly shifts 
earlier over subsequent decades (46). It is hypothesized that 
throughout life people typically maintain their relative chronotype 
when compared with others of the same age and in the same loca-
tion (46). The effect of age on chronotype also appears to affect 
women less than men, leading to increased prevalence of earlier 
chronotypes in women at younger ages, but the reverse over the 
age of 40 (21). Additionally, the amplitude of the circadian rhythm 
as measured by temperature and transcriptional oscillations is 
reduced with age in mammals (47–49). The biological mechanism 
for these phenomena is not understood. Amplitude dampening is 
correlated with the development of neurodegenerative disorders, 
such as Alzheimer’s disease (50) and Parkinson’s disease (51), and 
is exacerbated by these disorders, indicating that the dampening 
may be at least partially driven by a decoupling of the SCN’s con-
nectivity with other parts of the brain or body (52–54).

Extremes of chronotype and genetics
At one extreme, those with a preference to go to sleep much earlier 
and awaken much earlier than others relative to local solar time, 
called advanced sleep phase (ASP), are known as extreme morn-
ing larks or early birds (Figure 1). People with ASP often report 
being lifelong morning larks. When most extreme, this trait is 
commonly familial and is termed FASP (55). For example, individ-
uals with FASP can consistently fall asleep by 8:30 pm and awaken 
spontaneously before 5:30 am, though norms vary by age, longi-
tude, and location. The prevalence of FASP and of ASP in a sleep 
clinic population is estimated to be at least 0.21% and 0.33%, 
respectively (55). Several genes have been identified conferring 
this trait in an autosomal dominant manner, including PER2, 
CRY2, CSNK1D (encoding CK1δ), PER3, and TIMELESS (25, 27, 
56–58), and carriers of these variants report an extreme early-bird 
preference. Those at the far late extreme of chronotype distribu-
tion, who prefer a much later bedtime and later wake time, are said 
to have delayed sleep phase (DSP) or to be extreme night owls. For 
example, sleep onset may be at 3 am and awakening at 11 am. As 
with FASP, those with a strong DSP phenotype and family histo-
ry have familial DSP (FDSP). Only one gene has been identified, 
CRY1, that confers an FDSP phenotype in an autosomal dominant 

genetic determinants are presumably the sum of many genetic vari-
ations of small effect. Early chronotypes have sleep-wake cycles 
phase-shifted earlier in the day, resulting in a morning preference, 
while late chronotypes have an evening preference (21). Environ-
mental factors such as artificial lighting can play a major role in 
sleep timing as demonstrated by research showing that camping, 
with a large amount of natural light and absent artificial light expo-
sure, can lead to a marked advance of sleep timing and melatonin 
offset (22, 23). Chronotype can be somewhat reliably and simply 
determined using validated tools (17, 24), but our understanding of 
the drivers of period and phase is still in nascent stages, as each per-
son’s preferred sleep-wake timing and associated circadian period 
are determined by the complex interplay of an unknown number of 
genetic and environmental variables (16). As a result, much of our 
knowledge of how genetics can influence circadian rhythms comes 
from reverse genetics using animal models or the study of individ-
uals at the most extreme ends of human variation in phase. Single 
mutations in core circadian clock genes can lead to variations with 
strong effects on the molecular timekeeping system (25–27).

The core human molecular clock consists of a network of time-
keeping genes and their associated proteins, including CLOCK/
BMAL1, CRY, and PER (28, 29), in addition to numerous secondary 
inputs and interacting modulators. Each of these circadian genes is 
transcribed, translated, and degraded on a consistent daily cycle, and 
together they constitute a tightly regulated negative-feedback loop: 
the heterodimeric CLOCK/BMAL1 complex activates transcription 
of PER and CRY; after translation, these proteins repress the activi-
ty of CLOCK/BMAL1 (28). Other molecular inputs, such as retinoic 
acid receptor–related orphan receptors (RORs) and the REV-ERB 
proteins NR1D1 and NR1D2 (among others), further modulate circa-
dian phase in response to various signals (30, 31). Downstream, the 
phase of this molecular cycle dictates the transcription of many genes 
(32, 33) — perhaps as many as 43% of all protein-coding genes (33) 
— which oscillate in a circadian manner along with their numerous 
physiological and behavioral consequences. Other forms of regula-
tion, such as posttranslational modifications, found in the case of the 
casein kinase CK1δ, further modulate cellular activity as a function of 
circadian period (25, 34). The clock is tightly integrated with metab-
olism (35), and together these processes influence much of human 
biology, including hormone balance (36), feeding habits (37) and 
digestion (38), body temperature, cognition, and many more (35, 39).

Figure 1. Conventional sleep period timing compared with delayed 
sleep phase, advanced sleep phase, and natural short sleep. Note 
that the “conventional sleep period” can be very variable. The timing of 
“conventional sleep” in this figure (10 pm to 7 am) is simply one example 
close to the population average. Adapted with permission from Neuro-
psychopharmacology (127).
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69). The expanded availability of population-level sequencing data 
should continue to help researchers explore the diversity of human 
chronotypes and their relationship to overall human health.

It is important to note that genetics also influences sleep 
duration. Variation in this behavior can complicate identification 
of endogenous chronotype. Though not a circadian phenotype, 
sleep-related genes inherently affect an individual’s sleep-wake 
timing, and therefore share some characteristics with circadian 
phenotypes. For example, a DEC2 mutation was the first to be 
identified in the familial natural short sleep (FNSS) phenotype 
(70), which manifests as an extremely early wake time in carriers, 
a behavior that is also apparent in extreme morning larks. Howev-
er, these individuals stay up later than those with FASP and do not 
desire more sleep. Numerous other mutations have subsequently 
been described that lead to FNSS (71–73). The factors contributing 
to short duration of ad libitum sleep without detrimental effects, 
as is seen in FNSS, can be termed “behavioral drive.” This drive, 
together with circadian clock genes, sleep homeostasis genes, and 
environmental factors, determines the timing and duration of 
sleep (Figure 2) — quantitative traits that are determined in part by 
the cumulative effects of numerous genetic variants. The degree 
to which each variant contributes likely varies considerably.

Circadian rhythm sleep-wake disorders
Circadian disorders arise when sleep-wake patterns, influenced 
by the circadian clock, are not in sync with desired sleep time, 
leading to a sleep or wake complaint. They include intrinsic cir-
cadian disorders, such as advanced sleep-wake phase disorder, 
delayed sleep-wake phase disorder, non-24 sleep-wake rhythm 
disorder, and irregular sleep-wake rhythm disorder; and extrinsic 
circadian disorders, such as shift work and jet lag disorder. Diag-
nosis is based on clinical history as well as sleep diary, actigraphy 
(a movement sensor that provides an objective estimate of sleep 
timing based on rest-activity rhythms), and dim-light melatonin 
onset (DLMO). Principles of treatment focus on resetting the cir-
cadian clock with zeitgebers, primarily light and melatonin, with 
timing based on the respective PRC. Under controlled laborato-
ry conditions, 1 hour of bright light of approximately 8000 lux 
causes phase delay when delivered between about 3 hours before 
DLMO and about 9 hours after DLMO, and causes phase advance 
for the remaining portion of the curve (41, 74). This delay is max-
imal 1 to 3 hours after DLMO, leading to the recommendation of 
light at this time when attempting to delay. Advance is maximal 
approximately 10 hours after DLMO to 6 hours before, leading to 
the recommendation of morning light to achieve phase advance. 
Melatonin can also produce a phase response with a PRC about 12 
hours out of sync with light and less potent than the PRC for light. 
This produces maximal delay around 2 hours before DLMO for 
melatonin doses of 0.5 mg (75). Higher doses requiring a longer 
time for metabolism are thus given earlier. A 3 mg dose has max-
imal phase-shifting impact approximately 5 hours before DLMO, 
and 10 mg has lower phase-shifting ability, likely due to morning 
“spillover” causing competing impact on the PRC (76).

Advanced sleep-wake phase disorder
Those with ASP who have a sleep or wake complaint associated 
with the sleep pattern, such as early morning awakening, evening 

manner as a single gene mutation (58). Notably, if people with ASP 
or DSP are able to maintain their preferred schedule and do not 
have a complaint about it, the trait is not a disorder.

In addition to these monogenic phenotypes, genome-wide 
association studies using large data sets have identified a number of 
unvalidated variants associated with sleep length and timing. Jones 
et al., using large data sets from private sequencing companies, found 
significant genetic associations between certain loci and “morning-
ness” (59). Some of these loci are in close proximity to known circa-
dian genes, while others are only tangentially related to the circadian 
system, such as INADL, encoding a protein involved with photosen-
sitive retinal cells (60). Understanding which genetic variants affect 
which particular genes will require biological studies to validate. 
Other studies have subsequently identified additional variants asso-
ciated with chronotype (61). Though these variants individually have 
only a small influence on an individual’s overall chronotype, their 
discovery reflects the system’s complexity. For most individuals, the 
genetic contribution to chronotype is the cumulative effect of many 
genes that each make a small contribution (62).

Other inputs to the molecular clock may also affect chrono-
type or mask it, depending on environmental or biological con-
text, further driving complexity (63). Indeed, genes associated 
with metabolic regulation and the immune system have also been 
implicated in circadian behaviors, indicating that research has only 
uncovered the tip of the iceberg (16, 61). Likewise, there is growing 
genetic evidence that clock-related genes — and, concomitantly, 
circadian regulation — affect other important biological processes 
in humans, including immune function and metabolism (16, 64, 
65). CLOCK and the PER proteins have been implicated in risk for 
addiction (66), BMAL1 is associated with diabetes (67), and PER3 
variants have been linked to depression, among others (56, 68, 

Figure 2. Contributors to timing and duration of sleep. Shown is a concep-
tual framework to demonstrate the multiple factors impacting the timing 
and duration of sleep. Genetic factors interact with environment, including 
light, social schedules, work and school obligations, and substances (alco-
hol, caffeine, medications). The result may be sleep duration and timing 
that differ from those suggested by genetics.
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Non-24-hour sleep-wake rhythm disorder
Individuals with non-24-hour sleep-wake rhythm disorder (non-24; 
previously called free-running) have periods during which they are 
not able to stay on a 24-hour rhythm. Commonly these individuals 
drift progressively later. However, for those with a period of less 
than 24 hours, the drift can lead to progressively earlier sleep tim-
ing; this can manifest as daytime napping (87) and is typically mixed 
with periods of relative entrainment (88). Non-24 is most com-
monly diagnosed in blind individuals and occurs in the majority of 
those who lack light perception (89), as they do not have the input 
of light into the SCN, though it is possible to entrain to non-photic 
cues (90). Non-24 can occur in sighted individuals as well. Typi-
cally it occurs in those with DSWPD who shift into this less stable 
rhythm possibly as a result of weakened zeitgebers, and individuals 
can shift back and forth between DSWPD and non-24 (91). Symp-
toms of non-24 include alternating hypersomnia and insomnia with 
periods of relatively intact sleep. Non-24 is diagnosed with clinical 
history followed by sleep diary and actigraphy, demonstrating a pro-
gressively later or earlier sleep onset and awakening. DLMO at two 
time points several weeks apart can further support the diagnosis. 
Treatment focuses on timed melatonin administration. Melatonin 
must be initiated close to the onset of endogenous melatonin (92). 
A melatonin agonist, tasimelteon, has been approved for the treat-
ment of non-24 in blind patients (93). Treatment for those who are 
sighted relies on timed sunlight or a light box, avoidance of evening 
light, and timed melatonin, though focus on weaker circadian cues 
such as meals, activity, and social interactions may help too. More 
research is needed into this condition.

Irregular sleep-wake rhythm disorder
Irregular sleep-wake rhythm disorder (ISWRD) is characterized by 
sleep spread out over the 24-hour day, during both day and night. 
This fractured sleep pattern causes insomnia at night and excessive 
sleepiness in the daytime. ISWRD typically occurs in individuals 
with developmental disorders, traumatic brain injury, or neuro-
degenerative disease. Reduced exposure to zeitgebers, reduced 
responsivity to circadian cues, and impaired SCN function are all 
thought to play a role in ISWRD pathophysiology (94). The diagno-
sis is confirmed with sleep diary and actigraphy that does not show 
a dominant sleep period (95). Treatment focuses on avoiding over-
night light and improving exposure to bright light in the daytime 
to consolidate sleep overnight. Light therapy via a light box for at 
least 2 hours in the daytime has been shown to be beneficial (96). 
Melatonin administration likely benefits children with ISWRD, but 
its benefit in older adults with dementia is not clear (94, 97).

Jet lag
Jet lag is a temporary mismatch between local time and the inter-
nal clock resulting in sleep symptoms as well as malaise and gas-
trointestinal disturbance. When travel across at least two time 
zones results in insomnia, excessive daytime sleepiness, reduced 
total sleep time, and impaired daytime function or somatic symp-
toms 1 to 2 weeks after travel, this is characterized as jet lag dis-
order (98). Most individuals find westward travel easier than 
eastward travel (99). However, those with ASP typically find 
westward travel more difficult. Treatment focuses on timing of 
light exposure and melatonin administration.

drowsiness, or insufficient sleep, have advanced sleep-wake phase 
disorder (ASWPD). For example, if someone with an extreme ear-
ly chronotype tries to stay up late for social or family obligations 
but is not able to sleep correspondingly later given the strong 
biological drive to awaken early, the sleep duration is shortened 
(perhaps 11 pm to 4:30 am) and can result in excessive daytime 
sleepiness and other potential negative consequences of sleep cur-
tailment. Diagnosis is based on clinical history with special atten-
tion paid to the patient’s report of sleep timing during vacations or 
long weekends. Sleep diary and actigraphy are recommended for 
diagnosis. DLMO can also assist but is less clinically available and 
harder to perform. Prevalence of ASWPD in a sleep clinic popula-
tion is estimated to be 0.04% (55). Treatment focuses on evening 
light such as sunlight or via a light box mimicking sunlight. How-
ever, the shifting predicted by the PRC contrived in experimental 
conditions may not directly translate into clinical practice, as data 
are limited and mixed regarding the benefit of evening light (77). 
Timed exercise, food, and melatonin may also help shift the clock, 
though there is limited experimental evidence to support their use 
in ASWPD. Improving timing of these non-photic zeitgebers may 
also help improve timing of light exposure. Given the paucity of 
good evidence and the difficulty of phase-shifting some individu-
als, accommodating the timing of social, familial, and work obliga-
tions to their rhythm may also be part of the treatment approach.

Delayed sleep-wake phase disorder
People with DSP and complaint regarding consequences of the 
trait, such as trouble falling asleep at the desired time and/or dif-
ficulty awakening for morning school or work obligations, have 
delayed sleep-wake phase disorder (DSWPD). DSWPD can be 
mistaken for sleep initiation insomnia, and differentiating these 
is essential to initiate optimal treatment. Thus, the clinical his-
tory should include sleep timing when an individual is allowed 
to sleep ad libitum. DSWPD is more common than ASWPD (78), 
most notably during adolescence, when sleep timing shifts later. 
Prevalence estimates for DSWPD range by definition and age but 
are 7%–16% in adolescents and young adults (79). Artificial light 
in the evening, lack of natural light, an intrinsic period longer than 
24 hours, altered phase angle of entrainment, and possibly dif-
ferential phototransduction to the SCN contribute to this higher 
prevalence of delayed sleep phase (80). Additional factors include 
school and work schedules that make sleeping later challenging.

Treatment for DSWPD is directed at modifying zeitgebers. 
Morning light (81–83) is routinely recommended, though optimal 
timing, dose, and duration are not yet understood. Afternoon or eve-
ning melatonin can also cause phase advance and is commonly com-
bined with morning light in clinical practice despite limited data (77). 
Avoidance of evening light in the final 3 hours before sleep, when it 
is expected to lead to phase delay, may also be useful. Meals contrib-
ute to entrainment of peripheral oscillators and should be regulated 
as well (84, 85), as misalignment between the SCN and peripheral 
clocks in the gut may contribute to insulin resistance (86), though 
there are not yet sufficient data surrounding the impact of meal tim-
ing for standardized recommendations in treatment of DSWPD. As 
with ASWPD, and depending on the individual, these tools may not 
be adequate to fully shift to conventional sleep timing.
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health outcomes, possibly owing to a social/biological clock mis-
alignment or substantial social jet lag (109, 121).

Next steps
Measures aimed at improving social flexibility for a diversity of 
chronotypes or wiser shift scheduling may work to improve cir-
cadian misalignment (122–124). To start, the evidence suggests 
that we should make efforts to reduce social stigmatization of late 
chronotypes, as traditionally those who habitually sleep late into 
the day may be viewed as merely lazy. An important example pop-
ulation to which this suggestion could immediately be applied is 
adolescents. Adolescents typically have a later chronotype than 
adults (49, 125), and studies have indicated that cognitive perfor-
mance — and, correspondingly, overall education — improves in 
adolescents allowed a later school start time (126).

Conclusion
Genetics drive human circadian phase and period length and 
guides the rhythmicity of numerous circadian physiological pro-
cesses. Genetic variations, along with environmental influences, 
result in varying chronotypes and phenotypic extremes. Some 
affected people adapt to and function well with extreme chro-
notypes and lead healthy lives, while others may find the same 
chronotype leads to troublesome circadian disorders, desynchro-
nization, social jet lag, and sleep deficits. Any quantitative defini-
tional cutoff for the timing of a circadian “disorder” (e.g., biologi-
cal wake time of 0400 hours) is therefore arbitrary and dependent 
on the individual’s context. These extremes of chronotype need 
not be viewed inherently as disorders, but can be seen as a natu-
ral behavioral trait to be managed on a case-by-case basis through 
interventions such as timed exposure to sunlight in order to shift 
phase. What is clear, however, is that desynchrony due to differ-
ences between endogenous clock timing and lifestyle and societal 
factors — as can exist in people with extreme chronotypes, shift 
workers, and adolescents — leads to sleep deprivation and associ-
ated adverse health outcomes. Framing some degree of circadian 
variation as natural and not merely due to preference should allow 
and encourage social interventions that improve the health of all 
individuals, regardless of morningness or eveningness.
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Shift work disorder
Many workers have a schedule that overlaps with their typical 
sleep time. If this results in insomnia, sleepiness, and reduced 
sleep duration, it is characterized as shift work disorder (SWD). 
People with SWD typically have sleep reduced by 1 to 4 hours 
owing to shift work and experience more health complaints than 
shift workers without SWD. There is great variation in ability to 
adapt to shift work, and there are not adequate data to predict who 
will experience SWD. Ten to thirty-eight percent of shift workers 
experience SWD (79). Symptoms typically resolve with resump-
tion of a more traditional schedule, though chronic sleep trouble 
has been described.

Burden of circadian misalignment
The disorders described above lead to circadian misalignment, as 
does social jet lag, whereby an individual’s social habits and cir-
cadian rhythms are misaligned, most often because of large dif-
ferences in sleep timing on weekends and workdays (100). There 
is concern that all circadian disorders can lead to negative health 
outcomes, though this has been most clearly demonstrated with 
chronic shift work. Such disruptions can have far-reaching rami-
fications for nearly every tissue type of the body (101, 102). Both 
late chronotypes and shift workers have reported higher rates of 
psychiatric disorders such as depression (103, 104). Long-term, 
persistent shift work increases risk for dementia (105), type 2 dia-
betes (36, 106), cardiovascular disease (106), and cancer (107). 
Insulin sensitivity (106) and metabolic profiles (101, 108–110) also 
appear to suffer. The development of these diseases can also exac-
erbate circadian disruption by compromising sleep and healthy 
routines, as is observed during neurodegenerative decline (52). 
These negative health outcomes have been found quite consis-
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