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To adapt to daily environmental changes caused by our Earth’s rota-
tion, most organisms on the planet evolved near-24-hour cycles of 
behavioral, physiological, and metabolic rhythms (1). In addition to 
the entrained environmental stimuli, the internal timekeeping sys-
tem of the circadian clock has evolved to anticipate external changes 
(2, 3). These conserved rhythms synchronize internal biological and 
behavioral processes to the external temporal environment, pre-
sumably providing organisms with selective advantages for survival. 
However, over the past century, modern industrialized society has 
profoundly changed our external environment (4). For example, the 
boundaries between day and night have been blurred by electric light 
and travel across different time zones. Disrupted circadian rhythms 
are highly associated with metabolic disorders (5). Conversely, obe-
sity induced by overeating or overnutritional environment leads to 
circadian remodeling (6, 7). Understanding the reciprocal regula-
tion of circadian rhythm and metabolism may provide mechanistic 
insights into circadian physiology and advance new chronotherapy 
approaches and therapeutic targets for metabolic disorders.

Intrinsic circadian clock machinery  
and metabolism
“Circadian rhythm” refers to an innate, endogenous, and entrain-
able rhythm whose cycle is approximately 24 hours. This rhythm is 
retained under constant conditions, in the absence of any external 
or environmental cue that entrains the circadian clock (referred to 
as zeitgebers), including light, temperature, eating patterns, exer-
cise, and social interactions. More generally, a biological rhythm 
synchronized by light/dark cycles is known as a diurnal rhythm, 

which may or may not be a circadian rhythm (depending on 
whether it is independent of light/dark cycles). Organisms most 
active in the daytime (such as humans) are referred to as diurnal, 
whereas nocturnal organisms (such as mice and rats) sleep primar-
ily during the light phase. Owing to the power of genetic manipula-
tion and the ability to carefully and (relatively) inexpensively con-
trol housing conditions, mechanistic studies of circadian rhythms 
in mammals have largely used mice as models, which presents 
translational challenges to human chronomedicine since people 
are diurnal. Moreover, metabolic differences between rodents and 
humans need to be taken into account. For example, rodents feed 
frequently and have fast metabolic rates, such that 24 hours of 
fasting could result in a profound loss of body weight (up to 20%) 
and an even greater percentage loss of body fat (8).

Molecular circadian clock machinery. The notion of intrinsic 
clock machinery was first posited in 1729 by the discovery that, in 
constant darkness, the leaves of the mimosa plant retained their 
daily pattern of opening and closing, indicating that this rhythm 
was programmed and not just a response to natural light (9). 
Two centuries later, in 1971, the genetic foundation of circadian 
rhythms was pioneered by Ron Konopka and Seymour Benzer 
(10). They reported that mutations at a single genetic locus pro-
duced abnormal circadian rhythms in the behavior of Drosophila 
melanogaster (10). In 1984, the laboratories of Hall, Rosbash, and 
Young cloned the first circadian rhythm gene, period (Per), in the 
fruit fly (11–15), and 10 years later Takahashi and colleagues dis-
covered circadian locomotor output cycles kaput (Clock), the first 
mammalian circadian clock gene, in mice (16).

Interestingly, Per encodes a protein that represses its own 
transcription, resulting in daily Per rhythm, while CLOCK acti-
vates the transcription of Per, forming a negative-feedback loop 
that is highly conserved from flies to humans (17). In mammals, 
two basic helix-loop-helix (bHLH) transcriptional activators, 
CLOCK and brain and muscle ARNT-like 1 (ARNTL1; also 
known as BMAL1 and MOP3), form a heterodimer and bind to 
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whole-body Bmal1-knockout mice restored the circadian rhythms 
of wheel-running activity, but activity levels and body weight were 
still lower than in WT mice (29). By contrast, re-expression of 
Bmal1 in the skeletal muscle of Bmal1-null mice normalized activi-
ty levels and body weight but not the circadian rhythm of behavior 
(29), suggesting distinct tissue-specific functions of BMAL1.

Tissue-specific knockout of Bmal1 has provided insight into 
its specific functions. Pancreatic β cell–specific Bmal1-knockout 
mice have impaired glucose tolerance and decreased insulin 
secretion, resulting in hyperglycemia without affecting the cir-
cadian rhythms of activity and feeding/fasting cycles (30). Liver- 
specific Bmal1-knockout mice have higher triglyceride and cho-
lesterol accumulation in the liver and plasma, which is rescued 
by liver-specific Bmal1 re-expression (31, 32). Adipocyte-specific 
deletion of Bmal1 increases adipose tissue mass and body weight 
gain as a result of reduced energy expenditure and increased day-
time food intake (33). In cardiomyocyte-specific Bmal1-knockout 
mice, hearts decrease glucose utilization, and the mice exhibit 
early-onset development of dilated cardiomyopathy and early 
mortality (34, 35). Skeletal muscle–specific Bmal1-knockout mice 
show impaired insulin-stimulated glucose uptake and decreased 
glucose oxidation, but circadian rhythms of locomotor activity 
are normal (36, 37). Bmal1 also modulates immunometabolism, 
as macrophage-specific Bmal1 knockout impairs mitochondri-
al function and exacerbates succinate dehydrogenase–mediat-
ed mitochondrial production of reactive oxygen species (38). In 
summary, these studies indicate that BMAL1 is not only a key 
regulatory signal in the suprachiasmatic nucleus (SCN) regulat-
ing overall rhythmic behavior, but also drives local tissue-specific 
metabolic functions.

Clock and Npas2. The Clock gene was the first gene identified 
to have a critical role in mammalian circadian rhythms (16, 39). 

E-box element to activate the expression of the transcriptional 
repressors cryptochromes 1 and 2 (CRY1/2), periods 1, 2, and 3 
(PER1/2/3), and REV-ERBα/β (also known as nuclear receptor 
subfamily 1 group D members 1 and 2 [NR1D1/2]) (17–19). CRY 
and PER repress CLOCK-BMAL1–dependent transcription (20-
22). REV-ERBα and REV-ERBβ repress Bmal1 transcription via 
recruitment of nuclear receptor corepressor (NCoR) and his-
tone deacetylase 3 (HDAC3) (23–25). Additionally, retinoic acid 
receptor–related orphan receptors α and γ (RORα/γ) are induced 
by CLOCK-BMAL1 and function as transcriptional activators to 
positively on Bmal1 expression in competition with REV-ERBα/β 
on ROR response elements (ROREs) (1, 19). Overall, the circadi-
an clock oscillator uses multiple mechanisms to drive the tempo-
rally restricted gene expression pattern.

Core circadian clock genes and metabolism. To understand the 
connection between circadian rhythm and metabolism, geneti-
cally modified mouse strains targeting circadian clock genes have 
been generated and phenotypically characterized. It is important 
to recognize that these targeted genes are transcription factors, 
and as such, their genetic loss affects both their role in the circa-
dian clock and their more general function as direct regulators 
of gene expression. Figure 1 and Table 1 summarize the effects, 
described below, of knockout of these clock components on bio-
logical rhythms and metabolic function.

Bmal1. BMAL1 is the core clock component whose single 
knockout in a mouse model results in complete loss of rhythmicity 
(26). Bmal1-null mice have altered activity, reduced total activity 
levels on light/dark cycles, and complete abolition of behavior-
al circadian rhythms in constant darkness (26). Bmal1-knockout 
mice also show impaired gluconeogenesis, display various symp-
toms of early aging, and have reduced lifespan and body weight 
(27, 28). Intriguingly, constitutive expression of Bmal1 in brains of 

Figure 1. Intrinsic circadian clock machinery and 
metabolism. Core circadian clock genes, includ-
ing transcription activators and repressors, form 
an autoregulatory feedback loop present in most 
cells to regulate their circadian physiology. The 
figure summarizes the major metabolic functions 
regulated by core circadian clock genes in indicat-
ed tissues based on loss- and gain-of-function 
studies from genetically modified animal models.
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lack AF2 at the C-terminal end of the 
ligand-binding domain. As a result, 
REV-ERBs are thought to be unable to 
activate transcription and act as con-
stitutive repressors of transcription 
(57). Recent studies have indicated that 
REV-ERBs repress gene expression in 
two ways: First, they compete with the 
transcriptional activators RORs at sites 
known as ROREs (58, 59), passively 
blocking activation. Second, REV-ERBs 
actively repress gene expression from 
these sites by recruiting the NCoR-
HDAC3 corepressor complex (25, 60, 
61). This active repression function 
requires two REV-ERB moieties, bind-
ing as closely spaced monomers or 
cooperatively as a homodimer (62). In 
addition to direct DNA binding, some 
REV-ERBα binding activity occurs via 
tethering. One example of such indirect 
binding was revealed through the func-
tion of a REV-ERBα mutant that lacks 
the DNA-binding domain (60). In this 
case, REV-ERBα was tethered to DNA 
through hepatocyte nuclear factors 

(HNFs). Since HNFs, particularly HNF4 and HNF6 (63–65), are 
specific to the liver, this example demonstrates how lineage-spe-
cific factors can facilitate tissue-specific genomic binding of tran-
scriptional modifiers like REV-ERBα.

REV-ERBα is an important metabolic regulator and modu-
lates lipid, glucose, cholesterol, and bile acid metabolism, as well 
as adipogenesis and inflammation (66–69). Heme, a substance 
precursive to hemoglobin, has been identified as a direct ligand 
for REV-ERBα and REV-ERBβ (70). Although the physiologi-
cal role of this interaction remains to be fully understood, heme 
suppresses hepatic gluconeogenic gene expression and glucose 
output through REV-ERBα–mediated gene expression (70, 71). 
Deficiency of both Rev-erb genes led marked hepatic steatosis and 
profoundly altered circadian wheel-running behavior and lipid 
homeostasis (23, 24). Although REV-ERBα is required for adipo-
cyte differentiation in cell culture (72–74), adipose tissue mass 
is increased via fibroblast growth factor 21 (FGF-21) signaling in 
mice lacking REV-ERBα (75, 76). Rev-erbα–null mice were also 
shown to lose normal rhythms of body temperature, brown adi-
pose tissue (BAT) activity, and improved cold tolerance at 5 pm, 
suggesting that REV-ERBα contributes to thermogenic oscillation 
(77). In skeletal muscle, Rev-erbα deficiency led to reduced mito-
chondrial content and oxidative function, upregulated autophagy, 
and compromised exercise capacity (78). Rev-erbα mutation (DBD 
domain deletion) and Rev-erbβ deletion in SCN GABAergic neu-
rons disrupted the rhythms of hepatic glucose production in mice 
(79). Collectively, these studies using tissue-specific genetic mod-
els suggest tissue-specific functions of REV-ERBs in mice. Emerg-
ing studies are actively dissecting whether the metabolic effects of 
tissue-specific functions of REV-ERBs are mediated cell-autono-
mously or by modulation of systemic signals (80–82).

Positional cloning and transgenic rescue studies identified a Clock 
point mutation (ClockΔ19) leading to altered circadian behavior (39, 
40). This single point mutation within the intron between exons 
18 and 19 caused aberrant mRNA splicing with resultant loss of 
51 amino acids that comprise a putative transcriptional regulato-
ry domain (41). This mutant CLOCKΔ19 protein could form het-
erodimers with BMAL1 but failed to activate transcription (42). 
Compared with WT mice, ClockΔ19/Δ19 double-mutant mice display 
metabolic disorders, including hepatic steatosis, obesity, hyper-
triglyceridemia and hyperglycemia, and increased absorption of 
lipids throughout the day (28, 30, 43–45).

Interestingly, although ClockΔ19/Δ19 double-mutant mice dis-
play abnormal circadian behavior in constant darkness (16, 39), 
mice with whole-body knockout of Clock (Clock−/−) display robust 
behavioral rhythmicity, although they do have altered respons-
es to light (46). Neuronal PAS domain–containing protein 2 
(NPAS2) is a paralog of CLOCK that can form a heterodimer with 
BMAL1 (47, 48). Like Clock-null mice, Npas2-null mice retain 
robust circadian rhythms, suggesting a potential complementa-
ry effect between CLOCK and NPAS2 (49). Indeed, mice with 
double knockout of CLOCK and NPAS2 (Clock–/– Npas2–/–) exhibit 
arrhythmic locomotor behavior in constant darkness (50). How-
ever, Npas2 and Clock do not equally contribute to circadian regu-
lation. Npas2 is mainly expressed in the brain, and Clock is highly 
expressed in the peripheral tissues (51). Npas2-null mice adapt 
slowly to restricted feeding (52), while peripheral oscillators are 
arrhythmic without Clock (53).

Rev-erbs. REV-ERBα (54) and REV-ERBβ (55) are closely relat-
ed members of the nuclear receptor superfamily. In most nuclear 
receptors, activation function 2 (AF2) is required to interact with 
coactivators and activate gene transcription (56), but REV-ERBs 

Table 1. Whole-body genetically modified mouse models and related metabolic phenotypes

Genetic modification Circadian impact Major metabolic impact Refs.
Bmal1 KO Impaired in LD,  

completely lost in DD
Impaired gluconeogenesis, early aging,  

reduced lifespans, and less fat and muscle mass
26–28

ClockΔ19/Δ19 Impaired in DD Hepatic steatosis, obesity, hypertriglyceridemia  
and hyperglycemia

28, 30,  
43–45

Clock KO Retain rhythmic 46

Clock/Npas2 KO Impaired in DD 50

Rev-erbα KO Retain rhythmic Abnormal lipid, glucose, cholesterol, and bile acid 
metabolism, lost normal rhythms of body temperature

66–69

Rev-erbα/β KO Impaired in DD Abnormal lipid, glucose, cholesterol, and bile acid 
metabolism, hepatic steatosis

23, 24

Rora KO Retain rhythmic Reduced levels of adiposity and hepatic triglyceride, 
inflammation, and insulin resistance under HFD

87–89

Rorc KO Retain rhythmic Reduced levels of lipid in liver and blood, cholesterol,  
and bile acid pool size

57, 58

Per2 KO Retain rhythmic Impaired ability to use carbohydrates,  
decreased body weight

108, 111

Per1/Per2 KO Impaired in DD 106

Cry1 KO Retain rhythmic Resistance to HFD-induced obesity 116

Cry1/2 KO Impaired in DD Glucose intolerance and constitutively high levels  
of circulating corticosterone

114, 118
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Like RORα, RORγ plays important roles in the metabolic regu-
lation of multiple organs. Rorc-deficient mice show decreased adi-
pocyte sizes and high insulin sensitivity with improved control of 
circulating free fatty acids compared with WT controls. HFD-fed 
Rorc-deficient mice are also protected from hyperglycemia and 
insulin resistance (92). Consistently, Rorc expression in the adi-
pose stromal vascular fraction from obese human subjects is posi-
tively correlated with adipocyte size and negatively correlated with 
adipogenesis and insulin sensitivity (92). In the liver, both whole-
body Rorc-knockout and liver-specific Rorc-knockout mice display 
reduced levels of lipid in liver and blood, reduced cholesterol, and 
reduced bile acid pool size (93, 94). RORγ is highly expressed in 
skeletal muscle and controls the expression of genes that regulate 
muscle and fat mass, and modulates the production of reactive 
oxygen species (95). An isoform of RORγ, called RORγt, is unique 
to inflammatory Th17 lymphocytes (96), although its metabolic 
function has not been characterized.

Pers and Crys. Period, the first clock gene to be identified, has 
three homolog genes (Per1, Per2, and Per3) in mammals (97–100). 
Cryptochrome (Cry) has two homologs, Cry1 and Cry2 (101). 
Although PERs and CRYs lack a DNA-binding domain and there-
fore are very unlikely to directly bind to DNA, they form a heterod-
imer that moves into the nucleus upon phosphorylation by casein 
kinase 1 (CK1), and inhibit the transcriptional activity of BMAL1-
CLOCK heterodimer (102–105).

Per1- or Per2-deficient mice, but not Per3-deficient mice, 
display disrupted locomotor activity rhythms in extended expo-
sure to constant darkness. Interestingly, the circadian disrup-
tion observed in Per1/Per3 and Per2/Per3 double-knockout mice 
resembles rhythms of circadian disruption of Per1- or Per2-defi-

Rors. The three RORs (RORα, RORβ, and RORγ) are mem-
bers of the nuclear receptor superfamily. They were named based 
on sequence similarities to the retinoic acid receptor (83–85), 
but they share DNA-binding specificity with REV-ERBs (58, 59). 
Their endogenous ligands remain controversial, but they may be 
activated by oxysterols as well as being constitutively activated 
through the ligand-independent recruitment of transcriptional 
coactivators (86). Both RORα and RORγ have been implicated in 
the control of energy homeostasis and regulation of lipid and glu-
cose metabolism.

Deficiency of Rora, but not Rorc, in mice fed an obesogenic 
high-fat diet (HFD) led to reduced levels of adiposity and hepatic 
triglyceride levels, inflammation, and insulin resistance in com-
parison with WT mice (87–89). Multiple organs contributed to this 
phenotype. In skeletal muscle, compared with WT mice, increased 
levels of AKT and phosphorylated AKT and enhanced glucose 
uptake were observed in Rora-deficient mice (89). Upon Rora 
knockout, genes related to lipid synthesis were downregulated 
in the liver, and inflammatory genes were also downregulated in 
white adipocyte tissue (87, 88). However, a previous study reported 
that RORα-null mice had increased triglyceride accumulation and 
lipogenic gene expression in the liver (90), leading researchers to 
revisit the function of RORs in liver. Liver-specific double knockout 
of Rora/Rorc shows the overactivation of the INSIG2/SREBP lipo-
genic response at the peak expression of RORs in mice (5 am) and 
exacerbation of diet-induced hepatic steatosis, demonstrating an 
important circadian rhythmic consideration for metabolic studies 
(91). In BAT, Ucp1 and other thermogenic genes were upregulated 
upon Rora knockout. Consistently, primary brown adipocytes from 
Rora-deficient mice displayed a higher metabolic rate (87).

Figure 2. Mechanisms of core clock component–specific regulation of target genes. Core clock components independently, or forming protein complex-
es, bind to specific chromatin regions to directly regulate circadian gene expression (left). Each core clock component indirectly mediates circadian gene 
expression via downstream TFs (right). GR, glucocorticoid receptor; NRs, nuclear receptors.
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mechanisms. CRY represses gluconeogenesis by inhibiting pro-
tein kinase A–mediated phosphorylation of cAMP response ele-
ment–binding protein (CREB) during fasting via blocking of glu-
cagon-mediated increases in intracellular cAMP concentration 
(117). CRY1 and CRY2 interact with glucocorticoid receptor (GR) 
in a ligand-dependent manner. Knockout of Cry1/Cry2 results in 
glucose intolerance and constitutively high levels of circulating 
corticosterone (118). Moreover, SREBP1c downregulates gluco-
neogenesis via CRY1-mediated FOXO1 degradation to regulate 
hyperglycemia in db/db mice (119).

Core clock component–specific regulation of metabolic cycles. In 
addition to the common regulation of the core circadian clock 
interlocking feedback loop, groups of rhythmic genes are specif-
ically regulated by certain core clock components. Consistently, 
knockouts of these components share some common phenotypes, 
including disrupted locomotor activities in constant dark and 
tumorigenesis in mice with chronic jet lag (120), but each knock-
out model also has component-specific metabolic outcomes as 
discussed above. To explore the underlying mechanisms of com-
ponent-specific regulation, the genome occupancy of core clock 
components was determined, revealing that only a small propor-
tion of binding sites are shared among all of the core components 
(25, 121). Further genome-wide rhythmic enhancer mapping using 
global run-on sequencing (GRO-Seq) identified that each phase of 
enhancers and downstream gene transcription is regulated by dis-
tinct core clock transcription factors (TFs) (122).

As summarized in Figure 2, the BMAL1-CLOCK complex 
can bind to E-box motif (123, 124), while REV-ERBs, compet-
ing with RORs, bind on RORE motifs to regulate the expression 
of target genes whose enhancers or promoters contain these 
motifs (58, 59, 122). In addition to the interaction with BMAL1-
CLOCK, CRY1 broadly interacts with multiple nuclear recep-
tors and modulates specific gene expression (125). In addition 
to competing with ROR on ROREs, REV-ERBs can be tethered 
by cell type–specific TFs and regulate the rhythmic expression 
of another specific group of genes involved in metabolism (60). 
The studies described above provide mechanisms of how core 
clock components bind in diverse ways on chromatin and direct-
ly regulate the oscillating expression of their target genes. Core 
clock components can also indirectly regulate their target genes 
via downstream TFs. For example, BMAL1 activates the oscillat-
ing expression of Hlf, Tef, and Dbp (which encode TFs in the PAR 
bZIP family) to indirectly regulate the expression of rhythmic 

cient mice, while Per1/Per2 double-knockout mice are immedi-
ately arrhythmic in constant darkness (106). PERs have different 
functions in the regulation of metabolism (106). Per1-deficient 
mice display elevated blood pressure involving a mechanism 
of renal sodium reabsorption (107). Rhythms of glucocorticoid 
secretion and diurnal feeding rhythms are disrupted in normal 
chow– and HFD-fed Per2-deficient mice, resulting in decreased 
body weight gain in mice (108). Moreover, Per2-deficient mice 
exhibit increased oxidative capacity in white adipocyte tissue and 
enhanced adipocyte differentiation of cultured fibroblasts (109), 
and Per1/Per2–deficient mice have different circadian accumu-
lation patterns of triacylglycerol compared with WT mice (110). 
Per2 deficiency in ischemic hearts impairs carbohydrate utiliza-
tion for oxygen-efficient glycolysis (111). Per3- or Per1/Per2/Per3–
deficient mice also gained more diet-induced body weight, sug-
gesting an opposing function to Per2 (112), while another study 
indicated that Per2 knockout alters the body composition, with 
both increased adipose and decreased muscle tissue (113).

Mice lacking Cry1 or Cry2 alone 
display a phase-accelerated or a 
phase-delayed free-running period of 
locomotor activities, respectively, but 
the circadian rhythms are still robust. 
Cry1/Cry2 double-knockout mice show 
arrhythmic behavior in constant dark-
ness (114). Mice deficient in Cry1, but 
not mice deficient in Cry2, are resis-
tant to HFD-induced obesity (115). 
HFD-fed Cry1/Cry2 double-knockout 
mice rapidly gain weight and display 
hyperinsulinemia (116). CRY regulates 
glucose homeostasis through several 

Figure 3. Interactions between circadian rhythms and human physiology. 
Light/dark cycles synchronize the intrinsic clock to a 24-hour cycle. In human 
physiology, alignment of wake/sleep cycles, eating patterns, and exercise 
schedule to certain circadian phases leads to beneficial metabolic outcomes, 
while misalignment exacerbates or causes metabolic disorders.

Table 2. Effects of environmental cues on biological rhythms and metabolism in humans

Environmental cue Major metabolic impact Refs.
Circadian misalignment  
(shift work, jet lag, sleep disorder)

Abnormal glucose and lipid metabolism, decreased insulin sensitivity, 
increased inflammation, and adverse cardiovascular consequences

229–235

Eating patterns  
(early meal, intermittent fasting,  
time-restricted feeding)

Affect levels of plasma glucose, triglyceride, BMI, GLP-1, insulin,  
blood pressure, body weight, B cell responsiveness, oxidative stress,  

fat oxidation, and cholesterol

193, 236–241

Physical activity  
(scheduled exercise)

Affects oxygen consumption, respiratory exchange ratio, heart rate,  
blood glucose levels, and body temperature

193, 197,  
242, 243

GLP-1, glucagon-like peptide-1; BMI, body mass index.
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genes whose regulatory elements contain D-box (123, 126, 127). 
REV-ERBs repress another D-box–binding transcription repres-
sor, E4bp4, which subsequently regulates the rhythmic expres-
sion of E4BP4 target genes (122). These downstream TFs of each 
core clock component either independently or collaboratively 
regulate the rhythmic expression of circadian output genes.

Environmental cues regulating biological 
rhythms and metabolism
Biological rhythms are the natural cycle of change in the body 
regarding biological processes, which are regulated by intrinsic 
circadian clock machinery and adjusted (entrained) by external 
environmental inputs and social cues, including light/dark cycles, 
nutrients, feeding schedule, and exercise time (128–130). Figure 3 
and Table 2 summarize the effects of these zeitgebers on biologi-
cal rhythms and metabolic function.

Follow the light. Photosensitive organisms are biologically pro-
grammed to follow light/dark cycles in order to entrain hormone 
production and bodily function. In mammals, the daily light/dark 
cycles entrain the circadian clock of the brain, specifically the SCN 
of the hypothalamus, to the 24-hour period in our environment. 
It has been suggested that disruption of circadian rhythms caused 
by abnormal light/dark cycles, including artificial light at night 
and the usage of screens with shorter-wavelength lights, results in 
metabolic disorders (131, 132). Night-shift workers display dyslip-
idemia, increased postprandial serum glucose and insulin (133), 
and increased circulating levels of several biomarkers of metabol-
ic syndrome and inflammation (134). Moreover, night-shift work-
ers and people with long working hours have a high risk of obesity 
and diabetes (135–142). Experimental animal models have been 
used to demonstrate that circadian misalignment causes metabol-
ic disturbances. Here, we will discuss the effect of constant bright 
light (LL), alternating dim and bright light (dLL), and wavelengths 
of light on metabolism, including obesity, insulin resistance, and 
hepatic steatosis (143, 144).

Mice exposed to LL become behaviorally arrhythmic, and 
their SCNs become desynchronized (145). The disruption of the 
peripheral clock was also observed in LL-exposed mice. Mice 
exposed to LL developed obesity and hepatic steatosis, which was 
paralleled by an altered miRNA profile targeting the core clock 
gene Rev-erbα (143). When an obesogenic diet is superimposed 
on LL, mice display a reduced amplitude of rhythms in the SCN 
and a complete abolishment of circadian rhythms of feeding pat-
tern, energy expenditure, and insulin sensitivity (146). During 
early development, the circadian system experiences a criti-
cal adjustment and is vulnerable to altered lighting conditions. 
During lactation, short-term LL in pups caused a loss of rhyth-
micity, a reduction in vasoactive intestinal polypeptide–positive 
(VIP-positive) and arginine vasopressin–positive (AVP-positive) 
cells in the SCN, a reduction of PER1 expression in the SCN, 
reduced body weight gain, and loss of daily rhythms in plasma 
glucose and triglycerides (147). These rhythmic metabolic disor-
ders could not be restored in conditions of alternating light and 
dark (LD) after lactation (147). In adult rats, LL downregulated 
plasma melatonin (which is absent in most mouse models; refs. 
148–150) and systematically induced complete circadian rhyth-
mic suppression of body temperature and locomotor activity, but 

this circadian disruption could be restored within 1 week in con-
stant darkness (DD) (151).

Like LL, dLL exposes mice to light over the course of the 
24-hour day, but also provides a temporal cue for a 24-hour day 
via different light intensity between day and night. Compared 
with LL, dLL has lesser impacts on circadian rhythms. Interesting-
ly, compared with LD controls, both LL- and dLL-exposed mice 
display increased body mass and reduced glucose tolerance, but 
caloric intake and total daily activity output are not affected (152). 
In the dLL-exposed mice, rhythms of Per1 and Per2 in the hypo-
thalamus were attenuated, similarly to those of REV-ERB genes in 
the liver and adipose tissue (153).

In addition to LL, acute exposure to light in the night or a 
different wavelength also affects biological rhythms and metab-
olism. Very short exposures to nocturnal light inhibit melatonin 
release, alter clock gene expression, and increase c-Fos expression 
in the SCN, and this effect is wavelength dependent: blue light 
has the greatest effect, whereas red light has no effect (154–157). 
Therefore, light as a predominant zeitgeber entraining the clock 
in the SCN is a major contributor to maintenance of organismal 
metabolic homeostasis.

You are what you eat. Diet composition is another important 
factor that affects the circadian clock. HFD disrupts circadian 
rhythms of locomotor and feeding activity in mice, with great-
er rhythmic expression of clock genes in fat than in liver (158). 
Rhythmic transcriptome profiling identified a genome-wide 
reprogramming of the clock in the liver (159). Using GRO-Seq to 
map HFD-specific circadian enhancers and quantify HFD-spe-
cific transcription rates, the DNA binding motifs for peroxisome 
proliferator–activated receptor (PPAR) and SREBP were shown 
to be enriched. Further functional studies revealed an unexpect-
ed synchronization of two opposing lipid processes, lipid syn-
thesis and oxidation, at a similar time of the day. The synchro-
nization could be a maladaptive response to the overnutrition 
environment (160).

Ketogenic diets (KDs) are high-fat, adequate-protein, very- 
low-carbohydrate diets that induce fatty acid oxidation as an 
energy source and lead to the synthesis of ketone bodies. This 
diet is used to treat epilepsy in children (161), to induce weight 
loss (162–164), and to decrease the risk of heart disease (165, 
166). In mice, KD induced a profound circadian remodeling in 
the liver and gut in a tissue-specific manner. KD drastically alters 
BMAL1 target genes in the liver, but not the gut, while highly 
diurnal rhythms of PPARα are only observed in the gut (167). A 
low-calorie diet, which is known to boost fat metabolism and 
lifespan, enhances the magnitude of cyclic expression of circa-
dian clock genes in Drosophila (168). These results highlight the 
intricate reciprocal relationship between metabolism and food 
content–regulated peripheral clocks.

Eat on time. Meal time is known to be a dominant zeitgeber 
for peripheral tissue clocks (such as the clock in the liver) (81, 
169). Eating during the active phase has healthy consequences for 
metabolism, while mistimed eating leads to metabolic disorders 
(170, 171). Restricting feeding to the sleep phase (here referred to 
as reverse-phase feeding [RPF]) uncouples circadian oscillators 
in peripheral tissues (including liver, kidney, and heart) from the 
SCN (169) and desynchronizes peripheral clocks (172). Coupling 

https://www.jci.org
https://doi.org/10.1172/JCI148278


The Journal of Clinical Investigation   R E V I E W  S E R I E S :  C I R C A D I A N  R H Y T H M

7J Clin Invest. 2021;131(15):e148278  https://doi.org/10.1172/JCI148278

RPF with HFD exacerbates increased adiposity, decreased glucose 
tolerance, and dyslipidemia, a metabolic profile often observed in 
subjects with night-eating syndrome (173). Human epidemiologi-
cal studies suggest that skipping breakfast is associated with high 
risks of developing obesity and related metabolic disorders (174–
177). Early nocturnal meal skipping in mice, equivalent to break-
fast skipping in humans, disturbs the peripheral clock, increases 
lipid synthesis, and favors body mass gain (178).

Conversely, restricting mice to HFD feeding in the active 
phase without reducing caloric intake prevents weight gain and 
metabolic disturbances, including hyperglycemia, insulin resis-
tance, hepatic steatosis, and hypercholesterolemia (179–181). 
Even in mice lacking core circadian clock genes, time-restricted 
feeding (TRF) during the active phase (from zeitgeber time points 
ZT 13 to ZT 22) can prevent HFD-induced metabolic disorders 
(182). In humans, because of the variation among time-restricted 
feeding protocols regarding eating time and period, it is unclear 
whether TRF contributes to weight loss, but TRF showed benefi-
cial metabolic outcomes in several independent studies (183–188).

Exercise with a schedule. Exercise is a crucial intervention in 
the prevention and treatment of metabolic disorders (189). Sched-
uled exercise has been shown to entrain circadian rhythms in 
skeletal muscle (190–192). However, the optimal timing of exer-
cise for preventing the effects of disrupted circadian rhythm and 
maximizing the health benefits is still largely unknown. Several 
studies have indicated that exercise performance shows diurnal 
rhythmicity (193). A recent study in mice indicated that exercise 
causes circadian remodeling involving carbohydrate exhaustion, 
usage of alternative energy sources, and adaptation of systemic 
energy expenditure (194). More world records have been broken 
by athletes in early evening, as strength, power, and endurance are 
increased in the early evening compared with early morning (195–
197). Interestingly, when the training period exceeded 12 weeks, 
individuals who exercise in the evening gained more muscle mass 
than individuals who exercise in the morning (198).

In addition to the above zeitgebers, other external environ-
mental and internal physiological cues, including temperature 
(199, 200), alcohol (201), aging (202), sexual phenotype (203, 
204), cancer (205), microbiota (206, 207), and oxygen levels 
(208–211), impose significant impacts on biological rhythms and 
chronometabolism. Moreover, the interactions among these tim-
ing cues can collaboratively entrain peripheral clocks. For example, 
nutrient catabolism, maintenance of body temperature, and exer-
cise are tightly linked to oxygen consumption (208, 209). Heart 
attack and obstructive sleep apnea caused by metabolic disorders 
lead to hypoxia (210, 211). These changes in oxygenation affect the 
circadian clock in an HIF-1α–dependent manner (208–211).

Conclusions and perspective
Molecular circadian biology originated with a genetic screen in 
Drosophila (identifying the Per mutant), and then extended to 
mammals through genetic screens in mice. As core clock compo-
nents have been uncovered, circadian whole-body gene-knockout 
mouse models have revealed the function of the molecular clock 
in regulating circadian behavior, including sleep/wake and feed-
ing/fasting cycles, as well as maintenance of metabolic homeosta-
sis. Emerging core circadian gene tissue-specific knockout mouse 

models and state-of-the-art “omics” analysis across different tis-
sues under various environmental stimuli have shed light on tis-
sue-specific circadian clocks. The recognition that multiple TFs 
function in the core clock, and that each of these has thousands 
of genomic DNA binding sites, suggests that the concept of “clock 
output genes” needs to be revised. Each of the core clock genes 
contributes directly to individual gene regulation in addition to 
its role in the reciprocal and homeostatic regulation of other clock 
genes by transcriptional-translational feedback loops that define 
the clock itself.

Interorgan rhythmic communications. Future studies are 
expected to further determine the interorgan rhythmic communi-
cations and how they are integrated to perform physiological func-
tions. Multidirectional interorgan interactions, including those 
between the nervous system and peripheral metabolic organs as 
well as between metabolic organs, are essential for adaption to 
external cues and maintain whole-body energy homeostasis. The 
nervous system coordinates whole-body metabolism not only by 
direct innervation of the target tissues but also by the production 
of neurohormones (212). Peripheral organs perform intercellular 
signaling in an autocrine, paracrine, or endocrine manner (213). 
Interorgan communications have been explored in feeding, fast-
ing, cold exposure, and exercise conditions (214–220). However, 
how tissue metabolism is linked and gated to specific temporal 
windows, and how this coordinated communication and coher-
ence among tissue clocks are remodeled in response to environ-
mental stimuli, need further investigation.

Intraorgan rhythmic communications. In addition to interor-
gan communication, intraorgan communication has attracted 
increasing attention due to the improved technique and comput-
ing methods of single-cell sequencing (221–225). We recently dis-
covered that the disruption of clocks in hepatocytes via deletion 
of the core clock genes REV-ERBα and REV-ERBβ remodels the 
rhythmic enhancers, transcriptomes, and metabolomes of mul-
tiple cell types within the liver (81). These results suggest rhyth-
mic communication of time signals between different cell types 
within an organ to coordinately perform a given physiological 
function. Interestingly, even within the same cell type, hepatocyte 
disruption of REV-ERBα/β regulates target gene expression in a 
liver zonation–dependent manner. Consistent with these findings, 
another independent study indicated that core circadian clock 
genes are expressed in a non-zonated pattern, but the rhythmicity 
of some oscillating genes is zonation dependent (226), suggesting 
that the microenvironment, including intraorgan communication, 
plays an important role in their rhythmic expression. Future stud-
ies would be important to determine the underlying mechanism 
and physiological consequences of intraorgan communication.

Circadian versus non-circadian functions of clock genes. Tis-
sue-specific knockout mouse models have been used to partially 
solve the above questions, but also raise another question: is it the 
rhythmicity or the expression level of these core clock genes that 
is important for circadian regulation? In Bmal1 whole-body knock-
out mice, constitutive re-expression of BMAL1 in brain and mus-
cle tissues partially rescues the disrupted rhythmic behavior (29), 
suggesting that the rhythmicity of the expression level of Bmal1 
mRNA is not essential for rhythmic behavior. This could be due to 
the post-transcriptional effects of an intact PER/CRY rhythm, but 
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could provide insights into the molecular hierarchy of circadian reg-
ulation and provide targets for chronotherapy.

Last but not least, expanding our knowledge of the reciprocal 
regulation of circadian rhythm and metabolism is valuable for boost-
ing the circadian clocks to improve quality of life, including chrono-
nutritional and chronopharmacological approaches. Determination 
of the optimal times to rest, eat, exercise, and administer drugs 
throughout the day to restore the perturbed circadian machinery 
in shift workers and individuals with sleep disorders will ultimately 
contribute to improving the outcome of metabolic disorders.
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