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Multinucleation as a prognostic 
biomarker
HPV is an oncogenic virus associated 
with squamous dysplasia and invasive 
carcinoma of a variety of body sites, most 
notably the oropharyngeal and anogeni-
tal regions (1). HPV-related carcinomas at 
these sites are recognized as molecularly 
and clinically distinct from their non-
HPV–related counterparts (2). Notably, 
although patients with HPV-associated 
oropharyngeal squamous cell carcino-
ma (OPSCC) have better outcomes than 
those with non-HPV–associated OPSCC, 
there remains considerable variation 
in outcomes within the HPV-associat-
ed cohort. Since treatment for OPSCC 
entails substantial morbidity, personaliz-
ing the intensity and choice of treatment 
by stratifying the HPV-related risk for 
each patient is highly desirable.

Multinucleation has previously been 
described as a prognostic biomarker in 
HPV-positive OPSCC. In 2012, Lewis et al. 
found that patients whose tumor showed 
multinucleation had worse outcomes than 
did those whose tumor lacked multinucle-
ation (3). Lewis and authors defined mul-
tinucleation as the presence of at least one 
high-power field of view containing three 
or more tumor cells with more than one 
nucleus. In a multivariate analysis, mul-
tinucleation was associated with worse 
disease-specific survival, with a HR of 11.9 
(P = 0.02) (3). However, while Lewis et al. 
demonstrated that multinucleation con-
veyed prognostic information (indepen-
dent of tumor stage, histologic type, extra-
capsular extension, and smoking history), 
multinucleation is not a required reporting 
element for HPV-associated OPSCC (3). 
Like other histologic features that show 

promising results in the literature, failure 
to adopt these methods clinically may in 
part be due to difficulties with efficiency 
and reproducibility when performing the 
task. Given that a single focus of multi-
nucleation is sufficient to qualify a tumor 
as positive, one can appreciate the time 
required to carefully inspect all tumor 
slides at high power and the likelihood of 
false negatives. Additionally, the amount 
of tumor submitted may bias this metric.

In this issue of the JCI, Koyuncu et al. 
build on the above work by transforming 
multinucleation from a human-measured 
biomarker to a biomarker based on quanti-
tative image analysis (4). Deep learning was 
key to the image analysis pipeline that Koyu-
ncu and colleagues put forth, but unlike 
many approaches to using deep learning to 
extract prognostic information from whole-
slide images (WSIs), the results are inher-
ently explainable and can be confirmed 
directly by a practicing pathologist (4).

Artificial intelligence applied  
to histopathology
The resurgence of artificial intelligence 
(AI) is one of the most exciting recent 
developments in medicine. Image-based 
specialties, such as radiology and pathol-
ogy, have generated particular interest 
due to the large gains in performance that 
convolutional neural networks (CNNs), a 
form of deep learning, bring to the field of 
computer vision (5). In histopathology, AI 
is used to perform aspects of computer-aid-
ed diagnosis (CAD) to quantify biomarkers 
and to extract novel predictive and prog-
nostic information from histologic sections. 
In the latter task, AI is trained to discover 
latent information residing in histologic 
and cytologic patterns rather than replicat-
ing known, human-derived criteria. While 
deep learning is promising, it raises several 
issues when applied to medicine, including 
the so-called “black box problem” — once 
a model is trained, it is difficult to explain 
why, in human terms, the model makes its 
predictions. Current models of prognosis, 
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networks engage in a game of one-upman-
ship that gradually ratchets up the perfor-
mance of both models. The ultimate goal of 
a GAN is to train a generative model capa-
ble of synthesizing images that are indistin-
guishable from the real images, i.e., images 
that consistently fool the discriminator.

Classic GANs generate images entirely 
from random noise, which has some uses 
but may not be appropriate for biomedical 
imaging. Most applications in biomedical 
domains therefore use modified versions 
that provide additional input data when 
training the generator and discriminator. 
One of these approaches is conditional gen-
erative adversarial networks (cGANs) (9). 
cGANs still use random noise as an input, 
but both the generator and discriminator 
models are conditioned on additional input 
data. The most common cGAN task in 
histopathology is image-to-image transla-
tion, which uses an image from a different 
domain to condition the GAN. In this sce-
nario, the generator, rather than creating 
a wholly fake image from random noise, 
is instead translating an image from the 
input (source) domain to the output (tar-
get) domain. Training a cGAN requires the 
availability of pairs of matched images — 
one for each domain. When paired images 
are unavailable, another type of GAN, the 

images directly to image segmentation 
masks (4). First described by Goodfellow et 
al. in 2014, GANs did not appear in the bio-
medical literature until several years later 
(8). GANs are one type of generative model 
that uses deep learning. In simple terms, a 
generative model is a form of unsupervised 
machine learning that, given a set of input 
data, attempts to generate fake inputs that 
could plausibly be part of the distribution 
of input data. What makes GANs extreme-
ly powerful is the use of two deep-learning 
models (a generator and a discriminator) 
arranged in an adversarial relationship. The 
discriminator is trained to distinguish real 
input images from fake images, whereas 
the generator is used to generate synthet-
ic images that resemble the images in the 
input domain. The discriminator and gener-
ator models are trained simultaneously and 
compete repeatedly in a type of zero-sum 
game. The generator creates fake images 
that are then provided to the discriminator 
along with images from the real data set. 
The discriminator then classifies the imag-
es as real or fake, and, based on how well it 
does, its parameters are updated to improve 
its performance of the task. Likewise, the 
parameters of the generator are also updat-
ed to improve its performance at fooling 
the discriminator. Thus, the two adversarial 

for example, rely on human-observable 
histologic features like proliferation rates, 
tumor grade, and other features. Contrast 
this with a CNN-based model that has been 
trained on WSIs labeled solely with patient 
outcomes (6). A high-performing model of 
this type may predict patient outcomes with 
reasonable accuracy, but how it makes that 
prediction is not inherently explainable. 
Thus, deep-learning–based methods are 
left to be judged on their design and per-
formance, and this can present substantial 
legal, ethical, and regulatory issues in medi-
cine (7). In response to these concerns, many 
computer scientists are developing ways to 
tease out the important features obscured 
in the deep neural networks of models like 
CNNs. Although explainable AI is making 
headway in explaining deep-learning pre-
dictions, it remains to be seen if the “black 
box problem” will hinder the acceptance of 
deep-learning algorithms.

Generative adversarial 
networks for image analysis
While Koyuncu and authors also use a 
deep-learning approach, they produced a 
metric that is inherently explainable (Figure 
1). Their method uses generative adversar-
ial networks (GANs) to perform image-to-
image translation, translating H&E-stained 

Figure 1. Direct and indirect application of deep 
learning to prognosis. Generally speaking, there 
are two different ways to use deep learning to 
derive prognostic information from histologic 
slides. (A) Both methods begin in a similar fash-
ion, with digitization of stained tumor samples 
from a patient to create WSIs. The tissue in each 
WSI is then divided into smaller image patches. 
(B) The direct approach uses a CNN or similar 
deep-learning model that has been trained using 
tumor patches as input and patient outcomes as 
labels. This process permits the model to directly 
predict patient outcomes but is not easily explain-
able using current methods. (C) The indirect 
method is illustrated with a simplified represen-
tation of the GAN-based method used by Koyu-
ncu et al., but other approaches might use fully 
convolutional networks or other types of CNNs to 
accomplish the same task. Two generators (GMN 
and GEP) translate the patches into segmentation 
masks, and these masks are combined to identify 
tumor nuclei (black) and multinucleated tumor 
nuclei (red). The MuNI is calculated for all tumor 
patches and serves as an intermediate value that 
can then be used, along with other clinical data, 
for prognostication.
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bursement in the United States (20). The 
MuNI, for example, would be ineligible for 
reimbursement under the current scheme, 
because existing medical billing codes for 
quantitative DIA only cover the analysis of 
immunohistochemical labels, not H&E-
stained slides. Clinicians need to pivot the 
discussion of DIA in histopathology from 
that of measuring immunohistochemical 
labels to the broader topic of quantifying 
image biomarkers, to drive the adoption 
of clinically validated biomarkers as they 
emerge. To this end, pathology as a field 
would be wise to follow the lead of radiol-
ogy, which recognizes the need to stan-
dardize image biomarkers and has begun 
efforts like the Image Biomarker Stan-
dardization Initiative (IBSI) (21). Although 
these are early days for digital imaging in 
pathology, interest in quantitative image 
biomarkers should increase as more clini-
cal laboratories adopt digital pathology.
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cycle-consistent generative adversarial net-
work (cycleGAN) can be used (10). In his-
topathology, these GAN variants have been 
used to perform a number of tasks, including 
image synthesis and data augmentation (11, 
12), stain normalization (13), stain-to-stain 
translation (14), imaging modality adapta-
tion (15, 16), image segmentation (17), ink 
removal (18), and WSI super-resolution (19).

MuNI: image biomarker or 
histologic feature?
In their study, Koyuncu et al. describe a 
metric that they call the multinucleation 
index or MuNI (4). At the heart of this 
metric are a pair of cGANs that perform 
image segmentation on tumor WSIs. GAN  
epithelial (GANEP) was trained to translate 
H&E-stained images directly into seg-
mentation masks that divide the images 
into epithelial and nonepithelial areas. 
The GAN multinucleation (GANMN) was 
trained to translate H&E-stained imag-
es into masks that segment out cells with 
multinucleation. The MuNI was then cal-
culated as the total number of multinu-
cleated cells divided by the total number 
of epithelial cells. Multivariable analysis 
demonstrated that MuNI predicted dis-
ease-free survival (DFS), overall survival 
(OS), and distant metastasis–free surviv-
al (DMFS) independent of age, smoking 
status, treatment type, and tumor (T) and 
lymph node (N) stage (4).

While Koyuncu et al. draw heavily on 
prior work by Lewis et al., the application 
of AI turns what was previously a histo-
logic feature into a quantitative image 
biomarker (3, 4). Image biomarkers are 
not frequently discussed in the context of 
histopathology, but are a topic of marked 
interest in radiology, given that special-
ty’s dependence on imaging. Some may 
argue that metrics like the MuNI are mere-
ly manifestations of quantitative digital 
image analysis (DIA) applied to histologic 
image features, but these arguments serve 
only to diminish the important role that 
DIA and AI should play in the future of dig-
ital pathology. Although DIA is currently 
used in clinical applications, it remains a 
narrowly deployed tool with limited reim-
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