Supplemental Figures

A
Expression validation for luciferase assays (Figure 2A)

B

> Expression validation for luciferase assays (Figure 2B)

C

Figure S1. Western blot validation of RUNX1 variants expression in luciferase reporter and GZMA reporter assays. (A-B) The expression of RUNX1 variants from Figure 2A-2B was detected by the anti-RUNX1 antibody. GAPDH was used as the internal control. (C) The expression of RUNX1 variants from Figure 2E was detected by anti-FLAG antibody, GAPDH was used as the internal control.

Figure S2. The design and validation of landing-pad insertion in Jurkat. (A) Schematic representation of landing pad and Bxb1 mediated attP recombination system. Upper panel: CRISPR-Cas9 mediated homology recombination was used to knock in the landing pad into the AAVS1 locus, the Bxb1_attP recombination site is juxaposed with BFP coding sequence under control of the EF1a promoter. Landing pad inserted cells are BFP positive. Lower panel: RUNX1-IRES-mCherry cassestte was inserted into the Bxb1_attP site between the EF1a promoter and BFP upon the co-transfection of Bxb1 expression plasmid. The succesfully recombined cells are mCherry ${ }^{+}$BFP'. (B) FISH confirmed that a single copy of the landing pad was inserted at the AAVS1 locus.

Figure S3. The design and validation of the EGFP knock-in after GZMA coding region in Jurkat cell. (A) The knock-in of EGFP after GZMA coding region was performed using CRISPRCas9 mediated homology recombination. TY1-P2A-EGFP was inserted at the endogenous GZMA locus before the stop codon. (B) PCR and sanger sequencing result of EGFP knock-in single clone 18 (sc18). Both the sanger sequencing (lower left panel) and PCR (lower right panel) showed TY1-P2A-EGFP-SV40 cassette was inserted homozygously. (C) Flow cytometry showed GFP signal (which reflects GZMA expression level) in the Jurkat cells. When RUNX1 was knocked down using shRNA, a significant decrease was observed in GFP intensity, confirming the effects of RUNX1 on GZMA transcription. (D) Similarly, immune blotting assay showed that GZMA expression level was decreased after the shRNA knock-down of RUNX1 (detected by TY1 antibody).

Figure S4. Schematic diagram of frameshift and nonsense variants in RUNX1 observed in childhood T-ALL. p.K117* and p.A142fs variants truncate both the DNA binding domain (RHD) and the transcriptional activation domain (TAD). The p.Q213fs, p.R233fs, and p.Y287* variants truncate the transcriptional activation domain.
A

B
CFU-GM/BFU-E colonies \qquad

C

Figure S5. CFU assays of RUNX1 variants transduced human cord blood CD34+ cells. (A) Representative image of the dishes of CFU assay after 14 days of cell plating (1,000 cells were initially plated into each plate). (B) Representative photomicrographs of CFU-GM and BFU-E colonies found in the CFU plates. (C) Representative image of Giemsa stained cells re-suspended from the CFU plates.

Figure S6. Immunophenotype of CD34+ cells expressing RUNX1 variants and proliferation. (A) Population of erythroid cells (CD235+) and myeloid cells (CD11b+) on CFU assay plates ($n=3$). Data represent mean \pm SEM. P-value was estimated by using Dunnett's test. (B) Changes in the GFP ${ }^{+}$population in unsorted samples during long-term culture of human cord blood CD34+ cells transduced with RUNX1 variants.

Figure S7. Design and validation p.R233fs heterozygous knock-in by CRISPR mediated homology recombination. (A) The mCherry+/GFP+ cells are enriched after two rounds of sorting. (B) DNA gel shows the PCR products of primer sets 233-OutArm -F/mCherry-nest-R3 (1621 bp, mutation allele) and 233-OutArm-F/EGFP-nest-R2 (2433 bp, WT allele) for eight single clones (we choose sc2 and sc8 in the following experiments). (C-D) RUNX1 gene locus and the design of p.R233fs knock-in donor plasmid (C) and WT donor plasmid (D) are shown the upper panel. Primer design and Sanger sequencing results for both variant (C) and WT (D) were shown in the lower panel. For p.R233fs allele (C), The HA-P2A-mCherry-SV40 cassette were added after p.R232-p.A233-p.Q234-p.P235, which is identical to the coding change resulted from p.R233fs in patients. For WT allele (D), the LHA and RHA are similar with that of p.R233fs with minor modification as shown in the middle panel.

Figure S8. Design and validation p.Y287* heterozygous knock-in by CRISPR mediated homology recombination. (A) The mCherry+/GFP+ cells are enriched after two rounds of sorting. (B) DNA gel shows the PCR products of primer sets 287-OutArm -F/mCherry-nest-R3 (1475 bp, mutation allele) and 287-OutArm-F/EGFP-nest-R2 (2134 bp, WT allele) for eight single clones (we choose sc3 and sc13 in the following experiments). (C-D) RUNX1 gene locus and the design of p.Y287* knock-in donor plasmid (C) and WT donor plasmid (D) are shown the upper panel. Primer design and Sanger sequencing results for both variant (C) and WT (D) were shown in the lower panel. For p.Y287* allele (C), The HA-P2A-mCherry-SV40 cassette were added after p.Q286, which is identical to the coding change resulted from p.Y287* in patients. For WT allele (D), the LHA and RHA are similar with that of p.Y287* with minor modification as shown in the middle panel.

Figure S9. Design and validation p.G365R heterozygous knock-in by CRISPR mediated homology recombination. (A) A three-step sorting strategy to enrich cells with successful editing, i.e., mCherry+/GFP+ cells. (B) DNA gel shows the PCR products of primer sets 365-OutArm -F/mCherry-nest-R3 (1489 bp, mutation allele) and 365-OutArm-F/EGFP-nest-R2 (1566 bp, WT allele) for four single clones (p.G365R: sc1 and sc22, WT: sc2 and sc5). (C-D) RUNX1 gene locus and the design of p.G365R knock-in donor plasmid (C) and WT donor plasmid (D) are shown the upper panel. Primer design and Sanger sequencing results for both variant (C) and WT (D) were shown in the lower panel. For p.G365R allele (C), The p.G365R mutation were generated on LHA, which is identical to the coding change resulted from p.G365R in patients. For WT allele (D), the LHA and RHA are similar with that of p.G365R with minor modification as shown in the middle panel. Sanger sequencing results of two variant clones (sc1 and sc22,) and two WT clones (sc2 and sc5, both alleles expressed WT RUNX1 with either HA or TY1 tag).

Figure S10. Validation of heterozygous knock-in of the RUNX1 variants by flow cytometry. Flow cytometry shows that both mCherry and GFP signals were reduced after RUNX1 knockdown. Upper panel: mCherry signals, which indicated variants RUNX1 expression, before and after RUNX1 knock-down. Lower panel: GFP signals, which indicated WT RUNX1 expression, before and after RUNX1 knock-down.

Figure S11. Scatter plot of WT and variant RUNX1 ChIP-seq signals. ChIP-seq signals across the genome in each knock-in cells (including p.R233fs heterozygous, p.Y287* heterozygous, p.G365R heterozygous, and WT Jurkat cells) were compared between each pair through dividing HA signals by TY1 signals. Each X-axis and Y-axis represent the log2 ratio of the normalized ChIP-seq signals (HA/TY1) in each clone. The Pearson correlation coefficient was evaluated for the ChIP-seq signal at each binding site between cell clones expressing WT or variant RUNX1. A high Pearson correlation coefficient indicates similarity in RUNX1 binding pattern.

Figure S12. The unique targets of RUNX1 showed different genome-wide distribution and co-factor binding patterns with the common targets shared by WT and variants RUNX1. (A) The flow path of ChIP-seq data analysis. ChIP-seq assays were performed in each variant knockin clones with either HA (variant RUNX1) or TY1 (WT RUNX1) antibodies. Peaks with p-value < 1.0×10^{-5} called by MACS2 were selected for further analysis. We used WT RUNX1 (TY1) in each clone as the control for ChIP-seq signals and generated a ratio between HA and TY1, which served as input for Pearson correlation analysis across variants. Peaks with the ratio between HA and TY1 >= 2 in variants but not in WT clone were defined as variant-specific peaks. Peaks with the ratio < 2 were defined as WT peaks (or the peak shared between WT and variants RUNX1). (B) The genomic distribution differs between the shared targets (WT targets) and variants unique targets. Each peak was annotated to Promoter, Exon, Intron, or Intergenic regions using Homer software. (C) The percentage of shared targets (WT targets) or variants unique targets overlapped with the binding sites of co-factors in previously published datasets. P-value was generated by Fisher's exact test. (D) Gene set enrichment analysis was performed using the ranking of variant versus WT RUNX1 ChIP-seq signal intensity ratio. Heatmap showed the Hallmark gene sets enriched in those genes with higher variants ChIP-seq signal intensity (green). Empty (white color) means NOM p-value >0.05. (E) The overlap between variants RUNX1 regulated genes and their targets. P -value was generated by Fisher's exact test.

Figure S13. Somatic JAK3 mutations identified in seven T-ALL cases containing germline RUNX1 variants.

Figure S14. The contribution of each identified signature was measured by the relative amount (percent) per sample.

Figure S15. Examples of blood smear of four JAK3 ${ }^{M}$ and four $J A K 3^{M} R U N X 1^{M}$ mice at the time of sacrifice, and four control B6 mice after 4 months of transplant. Scalebar= $50 \mu \mathrm{~m}$. Top row, second panel from the left was also shown in Figure 7D, panel JAK3 ${ }^{\text { }}$; middle row, first panel from the left was also shown in Figure 7D, panel $J A K 3^{M} R U N X 1^{M}$; bottom row, second panel from the left was also shown in Figure 7D, panel Control.

Supplemental Methods

Cells and Cell culture

Jurkat cells were purchased from the American Type Culture Collection (ATCC) and cultured in RPMI-1640 containing 10\% fetal bovine serum (FBS). Lenti-X 293 cells were purchased from Clontech and cultured in Dulbecco's Modified Eagle's Medium (DMEM) with high glucose (4.5 g / L), 4 mM L-glutamine, sodium bicarbonate, 10% FBS, 100 units $/ \mathrm{mL}$ penicillin G sodium, 100 $\mu \mathrm{g} / \mathrm{mL}$ streptomycin sulfate, and 1 mM sodium pyruvate. HEK-293T cells were purchased from ATCC and cultured in DMEM containing 10\% FBS. Hela cells were purchased from ATCC and cultured in Eagle's Minimum Essential Medium (EMEM) containing 10\% FBS. Human cord blood CD34+ cells were purchased from STEMCELL Technologies and cultured in serum-free expansion medium (SFEMII; STEMCELL, 09605) containing human CD34+ cell-expansion supplement (STEMCELL, 02691).

Luciferase Reporter Gene Assay

Human RUNX1b cDNA was cloned into the BamHI and Xhol-digested pcDNA3.1 backbone by using NEBuilder ${ }^{\circledR}$ HiFi DNA Assembly Master Mix [New England Biolabs (NEB), E2621]. RUNX1 variants were introduced using QuikChange II Site-Directed Mutagenesis Kit (Agilent, 200523). Human CBF β cDNA was cloned into the Kpnl and Xhol-digested pcDNA3.1 backbone by using NEBuilder HiFi DNA Assembly Master Mix. We cloned the SPI1 promoter and enhancer region into the pGL3 luciferase-reporter plasmid. Then we transiently transfected Hela cells with RUNX1 expression plasmid, either WT or a variant, and CBF β-expression plasmid, SPI1 promoter-driven luciferase reporter plasmid, and SV40 promoter-driven luciferase reporter plasmid as a control. Luciferase activity was measured 24 hours after transfection. Equal part of cell lysate from luciferase assays were mixed with $4 \times$ Laemmli sample buffer and boiled at $100^{\circ} \mathrm{C}$ for 10 minutes. Protein samples were separated on NuPAGE ${ }^{\text {TM }} 4 \%$ to 12% Mini Protein Gel (ThermoFisher, NP0323BOX) and stained with the following antibodies: anti-RUNX1 (CST, 4334S) and antiGAPDH (CST, 2118S). Anti-rabbit IgG, HRP-linked Antibody (CST, 7074) were used as the secondary antibody. Detailed plasmid sequence information can be found in the supplemental file.

GZMA Reporter Gene Assay

GZMA is known RUNX1 target gene (1) and is therefore its transcription can reflect RUNX1 variant function. We use modified landing-pad strategy (2) to introduce a single copy of each RUNX1 variant in each cell. The landing pad construct, i.e., Bxb1 intergrase-mediated attP recombination site followed by BFP, was inserted into the AAVS safe harbor locus, and cells were
then sorted for BFP^{+}to identify the population with successful insertion. When co-transfected with Bxb1 expression plasmid and attB-2FLAG-RUNX1-IRES-mCherry plasmid (WT or variants), the recombination will give rise to RUNX1 expression driven by the EF1a promoter. The successfully recombined cells will be identified by flow cytometry as mCherry ${ }^{+}$BFP'. In parallel, we inserted EGFP coding sequence at the 3' end of GZMA resulting in a fusion protein. GFP signal was normalized to the background GFP signal to indicate the activity of each RUNX1 variant (e.g., loss of function, dominant negative, benign), and cells without RUNX1 insertion at the AAVS locus were included as a negative control.

CRISPR/Cas9 with homology arm and sorting enrichment knock-in protocol (CHASE-KI) (3). For landing pad knock-in, we introduced a cleavage in AAVS locus by using guide RNA (gRNA) AAVS1 T2 CRIPR in pX330 (Addgene, \#72833)(4) and simultaneously transfected homologydirected repair (HDR) template plasmid into Jurkat cells. The HDR template plasmid (pUC18-AAVS-EF1a-Bxb1_attP-BFP) contained the left AAVS homology arm (AAVS-LHA), EF1a-Bxb1_attP-BFP cassette, and the right AAVS homology arm (AAVS-RHA). AAVS-LHA and AAVSRHA were amplified from pMK232 (CMV-OsTIR1-PURO) (Addgene, \#72834)(4). EF1 α was amplified from pEF1 $\alpha-F B-d C a s 9-p u r o ~(P l a s m i d ~ \# 100547)(5) . ~ B x b 1 _a t t P-B F P ~ w a s ~ a m p l i f i e d ~ f r o m ~$ dAAVS1-TetBxb1BFP plasmid(2). We added NbPDS3 gRNA plus a PAM sequence at the 5 ' end of both AAVS-LHA and AAVS-RHA during PCR amplification. These fragments were amplified with 18~20 bp overhang sequence and subcloned into BamHI and Kpnl-digested pUC18 backbone by using NEBuilder ${ }^{\circledR}$ HiFi DNA Assembly Master. Human RUNX1b cDNA with an Nterminal $2 \times$ FLAG tag was cloned into the Sacl and Aflll-digested attB-IRES-mCherry backbone(2) by using NEBuilder ${ }^{\circledR}$ HiFi DNA Assembly Master Mix. RUNX1 variants were introduced using QuikChange II Site-Directed Mutagenesis Kit.

A total of 5×10^{6} Jurkat cells were transiently transfected with $3 \mu \mathrm{~g}$ pUC18-AAVS-EF1a-Bxb1_attPBFP, $1 \mu \mathrm{~g}$ AAVS1 T2 CRIPR in pX330, and $1 \mu \mathrm{~g} \mathrm{NbPDS3-gRNA}$. transfected $\left(\mathrm{GFP}^{+}\right)$cells was performed 24 hours after transfection by BD Biosciences Aria cell sorters. The second sorting for landing pad knock-in (BFP ${ }^{+}$) cells were performed 14 days after the first sorting. Single clones were selected, and single copy knock-in were verified by PCR and FISH. We choose one single copy landing pad knock-in cells for the following experiments. All primer, gRNA, and HDR template sequences are provided in the supplemental file.

CHASE-KI (3) was used for the knock-in of the EGFP into the C terminal of endogenous GZMA allele before the stop codon. For EGFP knock-in, we introduced a cleavage after the GZMA STOP codon by using guide RNA (gRNA) and transfected the GZMA HDR template plasmid (pUC57-

GZMA-TY1-P2A-EGFP) into Jurkat cells. The sequence of GZMA HDR template is shown in the supplemental file. Briefly, the LHA of the GZMA HDR template contains exon 5 and part of intron 4 (from -600 bp to 0 bp upstream towards the GZMA STOP codon). The RHA of the GZMA HDR template contains the 3'UTR region (600 bp downstream from the GZMA STOP codon). We introduced a mutation after 14 bp of STOP codon to destroy the PAM sequence of gRNA recognition region, to eliminate the possibility that gRNA recognizes this region and cut it again after the homology recombination. Between the LHA and RHA is TY1-P2A-EGFP. The HDR template, synthesized by GENEWIZ, is surrounded by NbPDS3 gRNA plus a PAM sequence and are cloned into the pUC57 plasmid by GENEWIZ. We add P2A between GZMA and EGFP. As a self-cleaving peptide, P2A ensures that EGFP were co-translated with the GZMA but separate from GZMA by the posttranslational cleaving. This design not only ensure the GFP level equals the GZMA expression level, but also eliminate any possibility that GFP influence the GZMA function as fusion protein.

A total of 5×10^{6} Jurkat landing pad knock-in cells were transiently transfected with $3 \mu \mathrm{~g}$ ($\mathrm{pUC57-}$ GZMA-TY1-P2A-EGFP), $1 \mu \mathrm{~g} p \mathrm{p} 458-G Z M A-S T O P$, and $1 \mu \mathrm{~g}$ NbPDS3-gRNA. The first sorting for successfully transfected (BFP+ GFP ${ }^{+}$) cells was performed after 24 hours of transfection by BD Biosciences Aria cell sorters. The second sorting for GZMA reporter knock-in (BFP ${ }^{+}$GFP $^{+}$) cells were performed 14 days after the first sorting. Single clones were selected, and knock-in was verified by PCR, Sanger sequencing, and immunoblotting. We choose a homozygous GFP knockin single clones for the following experiments. All primer, gRNA, and HDR template sequences are provided in the supplemental file.

A total of 3×10^{6} Jurkat-GZMA-GFP reporter cells were transiently transfected with $4 \mu \mathrm{~g}$ attb-2FLAG-RUNX1-IRES-mCherry and $2 \mu \mathrm{~g}$ of Bxb1 expression plasmid (2) using Amaxa® Cell Line Nucleofector® Kit R, program T-016 (Lonza VVCA-1001). Flow cytometry analysis was performed to quantify GFP intensity in the mCherry ${ }^{+}$BFP ${ }^{-}$population, as a measurement of RUNX1 activity. mCherry ${ }^{-B_{F P}}{ }^{+}$population was sorted by flow cytometry and used for western blotting. Protein samples were separated on NuPAGE ${ }^{\text {TM }} 4 \%$ to 12\% Mini Protein Gel(ThermoFisher, NP0323BOX) and stained with the following antibodies: anti-FLAG-HRP (ThermoFisher, PA1-984B-HRP), antiGAPDH (CST, 2118S). Anti-rabbit IgG, HRP-linked Antibody (CST, 7074) were used as the secondary antibody.

Fluorescence in Situ Hybridization (FISH) to confirm landing-pad insertion

Jurkat landing pad knock-in cells were harvested after four hours of colcemid (Thermo Fisher Scientific, 15212012) incubation. Purified puc18-EF1a-BFP plasmid and Ppp1r12c BAC clone
(CH17-416P7 / 19q13.42) (BACPAC Genomics Inc) (AAVS1 locus) were used as the probes for FISH assays. The puc18-EF1 α-BFP DNA was labeled with Alexa Fluor ${ }^{\text {TM }}$ 594-5-dUTP, C11400) by nick translation and the Ppp1r12c BAC was labeled with Alexa Fluor ${ }^{\text {TM }}$ 488-5-dUTP (Fisher Scientific, C11397). Both labeled probes were mixed with sheared human DNA and hybridized to metaphase and interphase nuclei derived from Jurkat landing pad knock-in cells in a solution containing 50\% formamide (Millipore, 4610-OP), 10\% dextran sulfate (Millipore, S4030), and 2X SSC (Sigma, S6639). The cells were then stained with 4,6-diamidino-2-phenylindole and fluorescence images were taken by Nikon Eclipse 80i. Detailed plasmid sequence information can be found in the supplemental files.

Fluorescence Microscopy

Human RUNX1b cDNA was fused in-frame with mCherry or EGFP coding sequences and then cloned into BamHI and Xhol-digested pcDNA3.1 backbone by using NEBuilder HiFi DNA Assembly Master Mix. PcDNA3.1-mCherry-RUNX1b was subsequently used to generate RUNX1 variant sequence by QuikChange II Site-Directed Mutagenesis Kit. The mCherry-tagged RUNX1b (variants) and EGFP-tagged RUNX1b (WT) were co-transfected into HEK293T cells (Emsdiasum, 72222-01) using lipofectamine 2000 (Thermo Fisher Scientific, 11668030). 24 hours after transfection, cells were fixed with 4\% paraformaldehyde (Boster, AR1068). Fluorescence images were taken using a Nikon C2 confocal microscope. Detailed information about the plasmid sequence can be found in the supplemental files.

Co-immunoprecipitation assay for RUNX1-CBFß interaction

Human RUNX1b cDNA with an N-terminal $2 \times$ FLAG tag was cloned into the EcoRI-digested cl20c-MSCV-GFP backbone by using NEBuilder ${ }^{\circledR}$ HiFi DNA Assembly Master Mix. RUNX1 variants were introduced using QuikChange II Site-Directed Mutagenesis Kit. Human HEK-293T cells (seeded at 5×10^{6} cells per 10-cm dish, 24 hours before transfection) were co-transfected with 5 $\mu \mathrm{g}$ pcDNA3.1-CBF β and $5 \mu \mathrm{~g}$ cl20c-2FLAG-RUNX1b-IRES-GFP (WT or variant) by using polyethyleneimine. After 24 hours in culture, cells were collected, washed with $1 \times$ PBS, lysed with 1 mL RIPA lysis and extraction buffer (Thermo Fisher Scientific, 89900) containing PMSF (Sigma, 10837091001) and proteinase inhibitor cocktails (Sigma, SRE0055). The cell lysate was then incubated with $20 \mu \mathrm{~L}$ anti-FLAG M2 magnetic beads (Sigma, M8823) for 3 hours, washed with RIPA lysis and extraction buffer 5 times. Finally, the magnetic beads were re-suspended with $2 \times$ Laemmli sample buffer (Bio-Rad, 161-0737) and boiled at $100^{\circ} \mathrm{C}$ for 10 minutes. Protein samples were separated on $4 \%-15 \%$ Mini-PROTEAN TGX™ Precast Protein Gel (Bio-Rad, 4561086) and stained with the following primary antibodies: anti-FLAG (CST, 14793S), anti-CBF β (R\&D,

AF7349-SP), or anti-RUNX1 (CST, 4334S); followed by staining with one of the following secondary antibodies: VeriBlot for IP Detection Reagent (horseradish peroxidase, HRP) (Abcam, ab131366) or Donkey anti-Sheep IgG ($\mathrm{H}+\mathrm{L}$) secondary antibody (Thermo Fisher Scientific, A16041). Detailed plasmid sequence information can be found in the supplemental file.

Lentivirus Production

To generate cl20c-MSCV-IRES-mCherry plasmid, mCherry was cloned into BmgBI and Notldigested cl20c-MSCV-IRES-GFP by using NEBuilder ${ }^{\circledR}$ HiFi DNA Assembly Master Mix. Then human JAK3 cDNA was amplified from pDONR223-JAK3 (Addgene \#23944) and cloned into the EcoRI-digested cl20c-MSCV-IRES-mCherry backbone by using NEBuilder ${ }^{\circledR}$ HiFi DNA Assembly Master Mix. JAK3-M511I mutation was introduced using QuikChange II Site-Directed Mutagenesis Kit.

A total of 10^{7} human Lenti-X 293 cells (Takara) were seeded in a $10-\mathrm{mL}$ dish 8 hours before transfection. The following plasmids were mixed with 12 -fold (volume/weight) PEI and 100-fold (volume/weight) Opti-MEM (Thermo Fisher Scientific, 31985088): $6 \mu \mathrm{~g} \mathrm{pCAGkGP1.1R} ,2 \mu \mathrm{~g}$ pCAG-VSVG, $2 \mu \mathrm{~g}$ pCAG4-RTR2, and $15 \mu \mathrm{~g}$ cl20c-MSCV-2FLAG-RUNX1(WT or variants)-IRESGFP [or $17.8 \mu \mathrm{~g}$ cl20c-MSCV-JAK3(M511I)-mCherry, $12.7 \mu \mathrm{~g}$ cl20c-MSCV-IRES-GFP, $12.7 \mu \mathrm{~g}$ cl20c-MSCV-IRES-mCherry]. The mixture was vortexed for 10 seconds and incubated at room temperature for 20 minutes. The DNA-PEI-Opti-MEM mixture was then added dropwise to the plate. Medium was changed 12 hours after transfection. Two days later, the supernatant was harvested, filtered through a 0.45 -nm filter, and concentrated 100 -fold using ultracentrifugation (Beckman). Primers for plasmid construction can be found in the supplemental file.

In vitro Differentiation Assay in Human Cord Blood CD34+ Cells

Human cord blood CD34+ cells were thawed and re-suspended in SFEMII, cultured in SFEMII containing CD34+ expansion supplement (STEMCELL, 02691) for 5 days. Lentiviral transfection was performed on Day 5. Briefly, CD34+ cells were re-suspended in SFEMII at a final concentration of 1×10^{6} cells $/ \mathrm{mL}$ and split into 24 -well plate ($200 \mu \mathrm{l} /$ well), then $10 \mu \mathrm{~L}$ preconcentrated lentivirus (100 -fold concentrated) was added to each well and maintained in culture at $37^{\circ} \mathrm{C}$. Then 1 mL SFEMII was added after 6 hours of incubation. GFP^{+}cells were sorted 2 days after transfection. For the CFU assay, 1000 cells were plated in H 4034 medium and maintained in culture for 2 weeks. The number of BFU-E, CFU-M, and CFU-GM clones were counted on Day 14. Cells from each plate were then re-suspended and stained with anti-CD11b (PE, BD Biosciences, Clone ICRF44) or anti-CD235 (BV650, BD Biosciences, Clone GA-R2).

Flow cytometric analysis of the stained cells was performed on the BD LSRFortessa ${ }^{\text {TM }}$ cell analyzer (BD Biosciences). Flow data were analyzed on FlowJo_V10. Cells re-suspended from each CFU plate were spun down on the glass slides by cytospin and subsequently used for Giemsa staining (Millipore, GS500). For the CFU replating assay, 20,000 cells re-suspended from the first round of CFU assay were plated in H4034 medium and maintained in culture for two weeks. The number of BFU-E, CFU-M, and CFU-GM clones was counted on Day 14. Megakaryocyte-differentiation assays were performed using StemSpan Megakaryocyte Expansion Supplement according to the manufacturer's protocol (STEMCELL, 02696). Briefly, 15,000 GFP $^{+}$cells were re-suspended in 1 mL SFEMII containing megakaryocyte expansion supplement and then transferred into a 24 -well plate. On Day $7,1 \mathrm{~mL}$ SFEMII containing megakaryocyte expansion supplement was added to each well. Flow cytometric analysis was performed on Day 14. Anti-human CD41a (APC, BD Biosciences, Clone HIP8) and anti-human CD42b (PE, BD Biosciences, Clone HIP1) were used for flow cytometry. T-cell progenitordifferentiation assays were performed using StemSpan T-Cell Progenitor Differentiation Kit (STEMCELL, 09900) according to the manufacturer's instructions. Briefly, a 24 -well plate was coated with StemSpan Lymphoid Differentiation Coating Material (100-fold diluted in PBS) for 2 hours at room temperature. Then each well was washed with $1 \times$ PBS, and 10,000 cells were resuspended in 1 mL SFEMII containing lymphoid progenitor expansion supplement. On Day 4, 1 mL fresh medium was added. On Days 7 and 11, half the medium was replaced with fresh medium. Flow cytometric analysis was performed on Day 14. Anti-human CD5 (APC, BD Biosciences, Clone UCHT2) and anti-human CD7 (PE, BD Biosciences, Clone M-T701) were used for flow cytometry.
To examine the effects of RUNX1 variants on proliferation and apoptosis, RUNX1-expressing CD34+ cells were maintained in culture in Iscove's Modified Dulbecco Medium (IMDM) (STEMCELL, 36150) containing 20\% BIT9500 (STEMCELL, 09500) and $10 \mathrm{ng} / \mathrm{mL}$ FLT-3 ligand (STEMCELL, 78009.1), TPO (STEMCELL, 2522), SCF (STEMCELL, 78062.1), IL-3 (STEMCELL, 78146), and IL-6 (STEMCELL, 78050.1). The number of cells was counted every week for 5 weeks. Cells were also analyzed by flow cytometry for apoptosis on day 7 and day 16 , using Annexin-V and DAPI staining. Unsorted CD34+ cells were maintained in the same culture medium. The GFP+ population was detected by flow cytometry every week for 5 weeks.

RUNX1 Variant Knock-In in Jurkat cells for ChIP-seq

CHASE-KI protocol (3) was used to introduce p.R233fs, p.Y287*, and p.G365R variants at the endogenous locus, by homology-based recombination. p.G365R localized on the last exon of

RUNX1. For p.G365R knock-in, we introduced a cleavage near the RUNX1 STOP codon by using guide RNA (gRNA) and simultaneously transfected Jurkat cells two different HDR template plasmids. The sequence of HDR template for the p.G365R allele (p.G365R-MUT-LHA-3HA-P2A-mCherry-RHA) and that for the WT allele (p.G365R-WT-LHA-TY1-P2A-EGFP-RHA) are shown in the supplemental file. Briefly, the LHA of the p.G365R HDR template contains exon 8 and part of intron 7 (from -800 bp to 0 bp upstream of the RUNX1 STOP codon). The codon for p.G365 localized on LHA, and mutated from "GGC" to "CGC", to generate p.G365R mutation. The RHA of the p.G365R HDR template contains the 3'UTR region (451 bp downstream of the RUNX1 STOP codon). Between the LHA and RHA is HA-P2A-mCherry. The WT HDR template contains exon 8 and part of intron 7 (starting from -800 bp to 0 bp upstream of RUNX1 STOP codon). The RHA of the p.G365R HDR template contains the 3'UTR region (800 bp downstream of the RUNX1 STOP codon). TY1-P2A-EGFP is located between the LHA and RHA.
p.R233fs generates a frameshift on exon 6 and produces a termination codon on after amino acid 235. The sequence of HDR template for the p.R233fs allele (p.R233fs-MUT-LHA-3HA-P2A-mCherry-RHA) and that for the WT allele (p.R233fs-WT-LHA-TY1-P2A-EGFP-RHA) are shown in the supplemental file. Briefly, the LHA of the p.R233fs HDR template contains part of intron 5 and part of exon 6. The sequence of LHA was modified according to $p . R 233 f s$ to make sure that the homology recombination introduces p.R233fs in the knock-in allele. The RHA of the p.R233fs HDR template contains the rest part of exon 6 and part of intron 6 (797 bp downstream of the stop codon generated by p.R233fs). Between the LHA and RHA is HA-P2A-mCherry-SV40 poly (A). The LHA of the WT HDR template is similar with that of p.R233fs without the aforementioned modification. To eliminate the possibility of gRNA-mediated cleavage once recombination occurs, we destroyed the gRNA-PAM sequence on LHA by introducing a synonymous mutation. The RHA of the WT HDR template is same with that of p.R233fs. We add the rest of RUNX1 coding sequence after the LHA to generate a full-length WT RUNX1 CDS. Between the LHA and RHA of WT HDR templates is "RUNX1-CDS after p.A235"-TY1-P2A-EGFPSV40 poly(A).
p.Y287* localized on exon 7. The sequence of HDR template for the p.Y287* allele (p.Y287*-MUT-LHA-3HA-P2A-mCherry-RHA) and that for the WT allele (p.Y287*-WT-LHA-TY1-P2A-EGFP-RHA) are shown in the supplemental file. Briefly, the LHA of the p.Y287* HDR template contains part of intron 6 and part of exon 7 (from -800 bp to 0 bp upstream of the third base of Q286). To eliminate the possibility of gRNA-mediated cleavage once recombination occurs, we destroyed the gRNA-PAM sequence on LHA by introducing a synonymous mutation. The RHA of
the p.Y287* HDR template contains part of exon 7 and part of intron 7 (797 bp downstream of Q286). Between the LHA and RHA of p.Y287* HDR templates is HA-P2A-mCherry-SV40 poly(A). Both the LHA and RHA of the WT HDR template are same with that of p.Y287*. We add the rest of RUNX1 coding sequence after the LHA to generate a full-length WT RUNX1 CDS. Between the LHA and RHA of WT HDR templates is "RUNX1-CDS after p.Q286*"-TY1-P2A-EGFP-SV40 poly(A).

All HDR templates, synthesized by GENEWIZ, are surrounded by NbPDS3 gRNA plus a PAM sequence and are cloned into the pUC18 or pUC57 plasmid. Following transfection, both the variant and WT HDR templates were removed from the donor plasmid by NbPDS3 gRNAgenerated from a plant sequence with a low likelihood of off-target binding in the human genometo increase the recombination efficacy. Because mCherry and EGFP were inserted after either variant or WT RUNX1 coding region. Flow sorting of mCherry ${ }^{+} / \mathrm{GFP}^{+}$cells was performed to enrich cells with successful knock-in.

To generate heterozygous mutation knock-in cells, a total of 5×10^{6} Jurkat cells were transiently transfected with $3 \mu \mathrm{~g}$ mutation HDR plasmid, $3 \mu \mathrm{~g}$ WT HDR plasmid, $2 \mu \mathrm{~g} \mathrm{px458-RUNX1-stop-}$ codon/p.R233fs/p.Y287*-gRNA (to generate cleavage on RUNX1 allele), and $1 \mu \mathrm{~g}$ NbPDS3gRNA (to release HDR template from the donor plasmid). The first sorting for successfully transfected (GFP ${ }^{+}$) cells was performed after 24 hours of transfection by BD Biosciences Aria cell sorters. The second and third sorting (p.R233fs and p.Y287* have two rounds of sorting, p.G365R have three rounds of sorting) for both allele knock-in (GFP ${ }^{+} / m$ Cherry ${ }^{+}$) cells were performed 14 and 37 days after the first sorting. Single clones were selected, and knock-in of p.G365R, p.R233fs, or p.Y287* was verified by PCR, immunoblotting, and flow cytometry. All primer, gRNA, and HDR template sequences are provided in the supplemental file.

Chromatin-immunoprecipitation Assays

Chromatin-immunoprecipitation (ChIP) assays were performed on RUNX1 variant knock-in Jurkat cells by using ChIP-IT High Sensitivity kit (Activemotif, 53040) according to the manufacturer's protocol. Briefly, a total amount of 2×10^{6} cells were treated with Complete Cell Fixative Solution (provided by ChIP-IT High Sensitivity kit) for 15 minutes and then Stop Solution (provided by ChIP-IT High Sensitivity kit) for 5 minutes, followed by sonication. The following antibodies are used for ChIP assays: anti-HA (Abcam, ab9110), anti-TY1 (Diagenode, C15200054), and normal rabbit lgG (CST, 2729). Primers for ChIP-qPCR analysis are shown in the supplemental data.

Immunoprecipitation-Mass Spectrometry

Human HEK-293T cells (seeded at 5×10^{6} cells per $10-\mathrm{cm}$ dish for 24 hours before transfection, two dishes per group) were transfected with $10 \mu \mathrm{~g}$ pcDNA3.1-2FLAG-RUNX1b (WT or p.G365R mutation) using PEI. After 40 hours of culture, cells were collected, washed with $1 \times$ PBS, lysed with 1 mL RIPA lysis and extraction buffer containing PMSF, proteinase inhibitor cocktails, and PhosSTOP (Sigma, PHOSS-RO). Cell lysates were incubated on ice for 1 hour, followed by sonication and centrifugation ($14,000 \mathrm{~g}$) for 10 minutes at $4^{\circ} \mathrm{C}$. Supernatants were then incubated with 20μ L prewashed anti-FLAG M2 magnetic beads for 2 hours, washed 5 times with RIPA lysis and extraction buffer. Then $40 \mu \mathrm{~L}$ elution buffer $[150 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris at pH 7.5, 1 mM EDTA, 0.05% NP40, 10% glycerol, $500 \mu \mathrm{~g} / \mathrm{mL}$ FLAG peptide (Sigma, F3290)] was added, and supernatant was rotated at room temperature for 30 min . Then $20 \mu \mathrm{~L} 4 \times$ Laemmli sample buffer was added to the eluent and boiled at $100^{\circ} \mathrm{C}$ for 10 minutes. All samples were loaded onto a $4 \%-$ 15\% Mini-PROTEAN TGX ${ }^{\text {TM }}$ Precast Protein Gel for 10 minutes and stained using GelCode Blue Stain Reagent (Thermo Fisher Scientific, 24590). All the protein bands were cut from the gel and used for mass spectrometry. A small amount of protein was used as western blotting validation. Anti-Mono-Methyl Arginine antibody (CST, \#8711) was used as the first antibody. Anti-rabbit IgG, HRP-linked Antibody (CST, 7074) were used as the secondary antibody. Anti-FLAG-HRP (ThermoFisher, PA1-984B-HRP) was used for detecting WT RUNX1 expression.

RUNX1 Methylation Test in Jurkat Cells

WT or p.G365R RUNX1 expression was introduced into Jurkat landing pad cells by Bxbl mediated recombination. 3×10^{7} p.G365R or WT RUNX1 recombined cells were lysed with 1 ml RIPA lysis and extraction buffer containing PMSF, proteinase inhibitor cocktails, and PhosSTOP (Sigma, PHOSS-RO). IP assays, western blotting were performed the same way as in HEK293T cells.

Murine Bone Marrow Transplantation and Leukemia Modeling

C57BL/6 mice were purchased from The Jackson Laboratory (000664). Bone marrow cells of 8 weeks female C57BL/6 mice were collected from the femur, tibia, pelvis, and humerus. Lineagenegative c-Kit and Scal-1 1^{+}cells were then enriched by flow cytometry and maintained in culture in SFEM (STEMCELL, 09600) containing $10 \mathrm{ng} / \mathrm{mL}$ mSCF (78064), $20 \mathrm{ng} / \mathrm{mL}$ IGF2 (78221), 20 $\mathrm{ng} / \mathrm{mL} \mathrm{mTPO}$ (78072.1), $10 \mathrm{ng} / \mathrm{mL} \mathrm{hFGF}$, and $5 \mu \mathrm{~g} / \mathrm{mL}$ protamine sulfate (Sigma, P3369). Lentiviral transduction was performed using a retronectin- and lentivirus-coated 96 -well plate. EGFP ${ }^{+} / m$ Cherry $^{+}$cells were sorted after 48 hours of transduction, washed with PBS, and injected into the tail vein of lethally irradiated 8 weeks female C57BL/6 mice. Mice received LSK cells transduced with RUNX1-p.R233fs/ or empty vector (GFP ${ }^{+}$) and JAK3-M511I/ or empty vector (mCherry ${ }^{+}$). CBC test was performed every two weeks after transplantation. Flow cytometry were
performed after 4 months of transplantation or when sacrifice the mice.

ChIP-sequencing (seq), whole genome-seq, and RNA-seq data analysis

ChIP-Seq data was mapped to the human genome (GRCh37/hg19) by Bowtie2 (ver. 2.2.9) (6) with default parameters. Peak calling was performed by MACS2 (ver. 2.1.1.20160309) (7) with default parameters. Peaks with p-value $<1.0 \times 10^{-5}$ were reported. Reads count within each peak is generated by HTSeq and normalized by the total number of reads. HA enriched peaks represented variant RUNX1 binding sites in heterozygous mutation clones and WT binding sites in WT clones. TY1 enriched peaks represented WT RUNX1 binding sites in all clones. We use WT RUNX1 (TY1) in each clone as the control for ChIP-seq signals. Normalized reads count was then used to generate log2 ratio between HA and TY1, which served as input for Pearson correlation analysis across variants and WT RUNX1. Peaks with log2 ratio between HA and TY1 >= 1 in variant but not in WT clones were defined as variant-specific peaks. Peaks with log2 ratio between HA and TY1 < 1 across all variants clones were defined as common peaks. Heatmap for ChIP-seq signal was generated by deepTools(8). De novo motif enrichment was performed by Homer(9). Gene set enrichment analysis was performed based on the ranking of variant versus WT RUNX1 ChIP-seq signal intensity ratio using GSEA(10, 11).

Whole genome-seq was performed for matched germline-leukemia pairs, respectively. For wholegenome seq, libraries were constructed using Kapa Hyperprep kit (Roche) according to manufacturer's protocols and sequenced via HiSeq 2000/2500 and NovaSeq 6000 (2×151 bp pair-end reads). Whole genome-seq analyses were performed following procedures established previously $(12,13)$. Reads were aligned to the human reference genome GRCh37 by BWA (version 0.7.12)(14). Picard (http://broadinstitute.github.io/picard/, version 1.129) was used for marking PCR duplication. Afterward, the reads were realigned around potential indel regions by GATK IndeIRealigner module (version 3.5) following the recommended procedures(15). The MuTect2 module from GATK was used to identify single nucleotide variants and indels from matched leukemia and germline samples(16). Variants with any of the following features in the tumor data were excluded: 1) read depth $<20 ; 2$) mutant allele frequency $<10 \%$; 3) all reads supporting mutation calls coming from the same mapping direction; and 4) two or more mutation called in the same sample within a 30 bp window. Remaining high-quality variants were then annotated by ANNOVAR(17). Tumor copy-number variations and structural variations were detected using CONSERTING(18) and CREST(19).

Total RNA library was constructed using Illumina TrueSeq stranded mRNA library prep kit and sequenced using the HiSeq 2000/2500 or NovaSeq 6000 platform (2×101 - bp pair-end reads).

On average, we achieved at least 20x coverage for more than 30% of the transcriptome. Gene expression was quantified by $\operatorname{STAR}(20)$ (ver. 2.6.0b) under default parameters with the human genome (GRCh37/hg19) and annotation file (Gencode v19)(21, 22). Differential expression analysis between data from variant and WT RUNX1 cells was performed by aFold under default setting (23).

Mutation signature analysis

SNVs (GRCh37/hg19) were classified into 96 possible combinations by their trinucleotide contexts and SNV classes (e.g., C to A, G or T). All SNVs from 5 samples were then compiled into a 96×11 matrix. The matrix was fitted into known mutational signatures and identified by Bootstrap with cosine similarity cutoff of 0.01 following the instruction from Maura et al (24). The contribution of each identified signature was measured by the relative amount (percent) per sample. Known mutational signatures were obtained from COSMIC (Mutational signatures V3, synapse.org ID: syn12009743)(24).

HDR template:

Landing pad (EF1a-Bxb1_attP-BFP)
CCTTTGCAAGCAAACATCTTGACTGCTTTCTCTGACCAGCATTCTCTCCCCTGGGCCTGTG CCGCTTTCTGTCTGCAGCTTGTGGCCTGGGTCACCTCTACGGCTGGCCCAGATCCTTCCCT GCCGCCTCCTTCAGGTTCCGTCTTCCTCCACTCCCTCTTCCCCTTGCTCTCTGCTGTGTTG CTGCCCAAGGATGCTCTTTCCGGAGCACTTCCTTCTCGGCGCTGCACCACGTGATGTCCTC TGAGCGGATCCTCCCCGTGTCTGGGTCCTCTCCGGGCATCTCTCCTCCCTCACCCAACCC CATGCCGTCTTCACTCGCTGGGTTCCCTTTTCCTTCTCCTTCTGGGGCCTGTGCCATCTCT CGTTTCTTAGGATGGCCTTCTCCGACGGATGTCTCCCTTGCGTCCCGCCTCCCCTTCTTGT AGGCCTGCATCATCACCGTTTTTCTGGACAACCCCAAAGTACCCCGTCTCCCTGGCTTTAG ССАССТСТССАТССТСТTGСTTTCTTTGCCTGGACACCCCGTTCTCCTGTGGATTCGGGTC AССТСТСАСТССТTTCATTTGGGCAGCTCСССTACCCСССTTAССTСTCTAGTCTGTGCTAG CTCTTCCAGCCCCCTGTCATGGCATCTTCCAGGGGTCCGAGAGCTCAGCTAGTCTTCTTCC TCCAACCCGGGCCCCTATGTCCACTTCAGGACAGCATGTTTGCTGCCTCCAGGGATCCTGT GTCCCCGAGCTGGGACCACCTTATATTCCCAGGGCCGGTTAATGTGGCTCTGGTTCTGGGT ACTTTTATCTGTCCCCTCCACCCCACAGTGGGGCctaggtcttgaaaggagtgggaattggctccggtgcccgt cagtgggcagagcgcacatcgcccacagtccccgagaagttggggggaggggtcggcaattgaaccggtgcctagagaaggtgg cgcggggtaaactgggaaagtgatgtcgtgtactggctccgccttttcccgagggtgggggagaaccgtatataagtgcagtagtcg ccgtgaacgttcttttcgcaacgggtttgccgccagaacacaggtaagtgccgtgtgtggttcccgcgggcctggcctctttacgggttat ggccettgcgtgccttgaattacttccacctggctgcagtacgtgattcttgatcccgagcttcgggttggaagtgggtgggagagttcga ggccttgcgcttaaggagccccttcgcctcgtgcttgagttgaggcctggcctgggcgctggggccgccgcgtgcgaatctggtggca ccttcgcgcctgtctcgctgcttcgataagtctctagccatttaaaatttttgatgacctgctgcgacgcttttttctggcaagatagtcttgta aatgcgggccaagatctgcacactggtatttcggtttttggggccgcgggcggcgacggggcccgtgcgtcccagcgcacatgttcgg cgaggcggggcctgcgagcgcggccaccgagaatcggacgggggtagttctcaagctggccggcctgctttggtgcctggcctcgc gccgccgtgtatcgccccgccctgggcggcaaggctggcccggtcggcaccagttgcgtgagcggaaagatggccgcttcccggc cctgctgcagggagctcaaaatggaggacgcggcgctcgggagagcgggcgggtgagtcacccacacaaaggaaaagggcctt tccgtcctcagccgtcgcttcatgtgactccacggagtaccgggcgccgtccaggcacctcgattagttctcgagctttggagtacgtcg tcttaggttggggggaggggtttatgcgatggagtttccccacactgagtgggtggagactgaagttaggccagcttggcacttgatgt aattctccttggaatttgccettttgagttggatcttggttcattctcaagcctcagacagtggttcaaagttttttcttccatttcaggtgtcg tgaGGAATTGATCCAGATCTGCTGGTTTGTCTGGTCAACCACCGCGGTCTCAGTGGTGTACG GTACAAACCGCCACCATGGTGTCTAAGGGCGAAGAGCTGATTAAGGAGAACATGCACATGA AGCTGTACATGGAGGGCACCGTGGACAACCATCACTTCAAGTGCACATCCGAGGGCGAAG GCAAGCCCTACGAGGGCACCCAGACCATGAGAATCAAGGTGGTCGAGGGCGGCCCTCTC CCCTTCGCCTTCGACATCCTGGCTACTAGCTTCCTCTACGGCAGCAAGACCTTCATCAACCA

CACCCAGGGCATCCCCGACTTCTTCAAGCAGTCCTTCCCTGAGGGCTTCACATGGGAGAG AGTCACCACATACGAAGACGGGGGCGTGCTGACCGCTACCCAGGACACCAGCCTCCAGGA CGGCTGCCTCATCTACAACGTCAAGATCAGAGGGGTGAACTTCACATCCAACGGCCCTGTG ATGCAGAAGAAAACACTCGGCTGGGAGGCCTTCACCGAGACGCTGTACCCCGCTGACGGC GGCCTGGAAGGCAGAAACGACATGGCCCTGAAGCTCGTGGGCGGGAGCCATCTGATCGC AAACGCCAAGACCACATATAGATCCAAGAAACCCGCTAAGAACCTCAAGATGCCTGGCGTC TACTATGTGGACTACAGACTGGAAAGAATCAAGGAGGCCAACAACGAGACCTACGTCGAGC AGCACGAGGTGGCAGTGGCCAGATACTGCGACCTCCCTAGCAAACTGGGGCACAAGCTTA ATTAAGGATCCATCGGATCCCGGGCCCGTCGACGGTACCCTGTGCCTTCTAGTTGCCAGCC ATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTC CTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGG GGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGG GGATGCGGTGGGCTCTATGGTTACTAGGGACAGGATTGGTGACAGAAAAGCCCCATCCTTA GGCCTCCTCCTTCCTAGTCTCCTGATATTGGGTCTAACCCCCACCTCCTGTTAGGCAGATTC CTTATCTGGTGACACACCCCCATTTCCTGGAGCCATCTCTCTCCTTGCCAGAACCTCTAAGG TTTGCTTACGATGGAGCCAGAGAGGATCCTGGGAGGGAGAGCTTGGCAGGGGGTGGGAG GGAAGGGGGGGATGCGTGACCTGCCCGGTTCTCAGTGGCCACCCTGCGCTACCCTCTCC CAGAACCTGAGCTGCTCTGACGCGGCTGTCTGGTGCGTTTCACTGATCCTGGTGCTGCAG CTTCCTTACACTTCCCAAGAGGAGAAGCAGTTTGGAAAAACAAAATCAGAATAAGTTGGTCC TGAGTTCTAACTTTGGCTCTTCACCTTTCTAGTCCCCAATTTATATTGTTCCTCCGTGCGTCA GTTTTACCTGTGAGATAAGGCCAGTAGCCAGCCCCGTCCTGGCAGGGCTGTGGTGAGGAG GGGGGTGTCCGTGTGGAAAACTCCCTTTGTGAGAATGGTGCGTCCTAGGTGTTCACCAGG TCGTGGCCGCCTCTACTCCCTTTCTCTTTCTCCATCCTTCTTTCCTTAAAGAGTCCCCAGTG CTATCTGGGACATATTCCTCCGCCCAGAGCAGGGTCCCGCTTCCCTAAGGCCCTGCTCTGG GCTTCTGGGTTTGAGTCCTTGGCAAGCCCAGGAGAGGCGCTCAGGCTTCCCTGTCCCCCT TCCTCGTCCACCATCTCATGCCCCTGGCTCTCCTGCCCCTTCCCTACAGGGGTTCCTGGCT CTGCTCTGTCAAGATGTTTGCTTGCAAAGG
GZMA-TY1-P2A-EGFP
CCTTTGCAAGCAAACATCTTGACTGCCTGAAAGGGACTGATTTGGTTTTGTTTCTTTTGGAA GGCAATTATCTGCTAGAAGAACCACAAAACATAGTGTTTATTCTTTGCTTCAATGTATCATCTG CATTTGACTATTTTGCCCCTTGAGTTATTAAGCATTTTGAGAAAACGACAAATAAACAGGAGA CTTTCCTTTCCAAAAGCAGAGCAATAGTCTCAAAATTAGCTGATAACATGTACAAGTTTCACT TCGATTTTCACTGGCTCATAAATAAACCAAGTGAACCAATTCAAAAATATTAAAATATTTCCAAA CATTTTAATTTTTAAAATTAAAGCACTATCTTCAATTAAGTCAAGGTTGGTCTTAACTGCATATT

AAATGCTGCAGAATTTCTTCCATTTCACTAGTGGTAATGCTGAACACTGACCCCACACCCTA CCCCTCTTGTTTTCCTCCAGGGAGATTCTGGAAGCCCTTTGTTGTGCGAGGGTGTTTTCCG AGGGGTCACTTCCTTTGGCCTTGAAAATAAATGCGGAGACCCTCGTGGGCCTGGTGTCTAT ATTCTTCTCTCAAAGAAACACCTCAACTGGATAATTATGACTATCAAGGGAGCAGTTGAGGT GCACACCAACCAGGACCCCCTGGACGCCGAAGTCCATACAAATCAGGATCCTCTGGATGC CGAAGTGCACACCAATCAGGATCCCCTGGACGCTGGAAGCGGAGCTACTAACTTCTCTCTG TTAAAGCAAGCAGGAGACGTGGAAGAAAACCCCGGTCCCATGGTGAGCAAGGGCGAGGA GCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACA AGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAG TTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACC TACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGT CCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACT ACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTG AAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTAC AACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCA AGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACA CCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCC GCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACC GCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTGAGGATCCTGATCATAATCAG CCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCT GAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAAT AAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTT GTCCAAACTCATCAATGTATCTTATAAATAACCGTTTgCTTTCATTTACTGTGGCTTCTTAATCT TTTCACAAATAAAATCAATTTGCATGACTGTACCTGTTTCTCTCTTGTAACCTTAGTGGGCAG ATCTGCACCAGCAAAGTGAAGCAGAGTTACATGGCAGCCTTGTAGATAATGCAAGGATTACG TGATCAATGTCACCAGAGTCATTTGTGCGTCAAGTGACATGGGAATGCTTCCTGAATTATTCA TCTCTCTGTCTCCATGAAATCCAGCAAGAACAACCCTAAGATCAGGTCTAATAACAAATGCA GTAAAGGCCTCCACAATTCCACAGGAAACAGAAACAGCCAGTCTGGAACATTTGTGTTAAAA GGAAATATAGGGCATTGTTCCACATTAACACCTGCTTTTCATGTTATACACAAGAACCTGAGT CTATGGGAGAAAAAGAAACAAGCAATGCCTTACGGTATTTTCCAAATTCTAGGGCATACAAAT AAAGTGCTTGGGCAGCCAAGAAAATTATACAATAGAGAGTCAGCCTTCTTTCTCAGTGCCTT GCATTTAAGCCTTGGATTACCTAGGTGATTTCTCAGTTCTCTTTGTTCTTGAGACGGGGGTC AAGATGTTTGCTTGCAAAGG
p.G365R-MUT-LHA-3HA-P2A-mCherry-RHA

CCTTTGCAAGCAAACATCTTGACCATCCTGAGTGGTCCCCGACCTCCTGGGCATAGCATCA TGGGTAGTCCCCATCCTCTTGGGAGGTGACATGCTGGGTGATCCTCGTCATCTCAGGAGGT GGCATCCTGGGTGGTCCCTGTCCCCCTGGGTATAGCATCCTGGGTAATCCTCGTCCTCTTG GGAGTAGCATCCCGGGTGGTCCCCGTCCTCCCCAGCAGTAGCATCCTGGGTGGCTTCCCA TCCTCCTAGGCGGTATCATCCTGGGTAGCCCCCTGGGGCAGAGGGAAGAGCTGTGGCCTC CGCAACCTCCTACTCACTTCCGCTCCGTTCTCTTGCCCGCCCTGCAGCGGCACCCGACCT GACAGCGTTCAGCGACCCGCGCCAGTTCCCCGCGCTGCCCTCCATCTCCGACCCCCGCAT GCACTATCCAGGCGCCTTCACCTACTCCCCGACGCCGGTCACCTCGGGCATCCGCATTGG TATGTCCGCGATGGGGTCCGCGACCCGGTATCATACGTATCTCCCCCCGCCGTATCCGGGG TCCTCCCAGGCCCAAGGTGGGCCCTTTCAGGCGAGTTCCCCGTCGTATCATCTATATTATGG GGCGTCCGCGGGGTCGTATCAATTTTCGATGGTAGGGGGCGAACGGTCCCCCCCGCGGAT TCTACCGCCGTGTACGAATGCGTCGACGGGGTCGGCCCTACTTAATCCGAGTCTTCCCAAT CAAAGTGATGTAGTAGAAGCGGAAGGGAGTCATAGTAATTCTCCGACGAATATGGCGCCGT CGGCGCGGCTAGAAGAAGCGGTATGGAGACCGTATTACCCATACGATGTTCCTGACTATGC GGGCTATCCCTATGACGTCCCGGACTATGCAGGATCCTATCCATATGACGTTCCAGATTACG CTGGAAGCGGAGCTACTAACTTCTCTCTGTTAAAGCAAGCAGGAGACGTGGAAGAAAACCC CGGTCCCGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTT CAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCG AGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCC CTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGA AGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGG AGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTG CAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGC CCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAG GACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTA CGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCT ACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACA GTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGTGAT GCACCAGCCCTGGCCCGGCTGGGCCCCGCGGGCCGCCGCCTTCGCCTCCGGGCGCGCG GGCCTCCTGTTCGCGACAAGCCCGCCGGGATCCCGGGCCCTGGGCCCGGCCACCGTCCT GGGGCCGAGGGCGCCCGACGGCCAGGATCTCGCTGTAGGTCAGGCCCGCGCAGCCTCC TGCGCCCAGAAGCCCACGCCGCCGCCGTCTGCTGGCGCCCCGGCCCTCGCGGAGGTGT CCGAGGCGACGCACCTCGAGGGTGTCCGCCGGCCCCAGCACCCAGGGGACGCGCTGGA

AAGCAAACAGGAAGATTCCCGGAGGGAAACTGTGAATGCTTCTGATTTAGCAATGCTGTGA ATAAAAAGAAAGATTTTATACCCTTGACTTAACTTTTTAACCAAGTTGTTTATTCCAAAGAGTG TGGAATTTTGGTTGGGGTGGGGGGAGAGGAGGGGTCAAGATGTTTGCTTGCAAAGG p.G365R-WT-LHA-TY1-P2A-EGFP-RHA CCTTTGCAAGCAAACATCTTGACCATCCTGAGTGGTCCCCGACCTCCTGGGCATAGCATCA TGGGTAGTCCCCATCCTCTTGGGAGGTGACATGCTGGGTGATCCTCGTCATCTCAGGAGGT GGCATCCTGGGTGGTCCCTGTCCCCCTGGGTATAGCATCCTGGGTAATCCTCGTCCTCTTG GGAGTAGCATCCCGGGTGGTCCCCGTCCTCCCCAGCAGTAGCATCCTGGGTGGCTTCCCA TCCTCCTAGGCGGTATCATCCTGGGTAGCCCCCTGGGGCAGAGGGAAGAGCTGTGGCCTC CGCAACCTCCTACTCACTTCCGCTCCGTTCTCTTGCCCGCCCTGCAGcggcacccgacctgacagc gttcagcgacccgcgccagttccccgcgctgccctccatctccgacccccgcatgcactatccaggcgccttcacctactccccgacg ccggtcacctcgggcatcggcatcggcatgtcggccatgggctcggccacgcgctaccacacctacctgccgccgccctacccogg ctcgtcgcaagcgcagggaggcccgttccaagccagctcgccctcctaccacctgtactacggcgcctcggccggctcctaccagtt ctccatggtgggcggcgagcgctcgccgccgcgcatcctgccgccctgcaccaacgcctccaccggctccgcgctgctcaacccca gcctcccgaaccagagcgacgtggtggaggccgagggcagccacagcaactcccccaccaacatggcgccctccgcgcgcctg gaggaggccgtgtggaggccctacGAGGTGCACACCAACCAGGACCCCCTGGACGCCGAAGTCCAT ACAAATCAGGATCCTCTGGATGCCGAAGTGCACACCAATCAGGATCCCCTGGACGCTGGAA GCGGAGCTACTAACTTCTCTCTGTTAAAGCAAGCAGGAGACGTGGAAGAAAACCCCGGTCC CATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGG ACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACC TACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCC ACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATG AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC CTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGG CACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGA ACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCG CCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAAC CACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATG GTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAG tgaTgcAccagCcctggcccggctgggccccgcgggccgccgccttcgcctccgggcgcgcgggcctcctgttcgcgacaagcc cgccgggatcccgggccotgggcccggccaccgtcctggggccgagggcgcccgacggccaggatctcgctgtaggtcaggccc gcgcagcctcctgcgcccagaagcccacgccgccgccgtctgctggcgccccggccctcgcggaggtgtccgaggcgacgcacc tcgagggtgtccgccggccccagcacccaggggacgcgctggaaagcaaacaggaagattcccggagggaaactgtgaatgctt
ctgatttagcaatgctgtgaataaaaagaaagattttatacccttgacttaacttttaaccaagttgtttattccaaagagtgtggaatttgg ttggggtggggggagaggagggatgcaactcgccctgtttggcatctaattcttattttaattttccgcaccttatcaattgcaaaatgcgt atttgcatttgggtggttttattttatatacgtttatataaatatatataaattgagcttgcttctttcttgctttgaccatggaaagaaatatgattc cctttctttaagttttatttaacttttctttggacttttgggtagttgttttttttgtttgttttgttttttgagaaacagctacagctttgggtcattttaa ctactgtattcccacaaggaatccccagatatttatgtatcttgatgtTCAGACATTTATGTGTTGTCAAGATGTTTGC TTGCAAAGG
p.Y287*-MUT-LHA-3HA-P2A-mCherry-RHA

CCTTTGCAAGCAAACATCTTGACAGACTTTTGTCTCTTCTCTATCCCAGGCCTCTTATAATGG CAATCTATAAAATACCTGCTAAAAACTCTGACTTTTAAAAGTTGCAAACTCGAAGTCCTGAAA AGGAACAGAAGGCTTGGGTTGATAGGGCCAGTTCTACTGCTGGGTTTGTGAACTAGTCATT AGACCTCATTGCCGGTTTCCCAGCCAGACCTTCTTTCCTGTCATCCTTGGGAGAGAATTCG CCTTACTATAAAACATTTACCAGCCCATGGAATACTTTTTGCCAAAGGTAAAGGTATAAAAAAA AAGCCCAAAACTCTACGTTCTTACCGAACACAGACAGGTGATCCCCTGAGTTTATAAAATGT TTCTGATGATGATAATTGTAATTATTGGCAAAGCTGAAATCATGTCAGCAGTCATATGATACTT GAAGTTCTCAAGTGCTGCAGTTCAACAGTCTGGACATTAATACTTCTACCTTGAAAGTGTAAT CCATTCСTCTCATCATTGTTAGCATGATTAAATAAAACCTTTGGAAGGAATAGTTATCAGGTGA AAATCTCCAAGAATCAGTCTCTTTTGGGGGAAAATAATCCAACAGAGGCAGATACTTGGACT TGAGTAGGCTTATTAAACCCTGGTACATAGGCCACATACATGTATGTGACATATTTGAACAAG GGCCACTCATTTCTTATTAAAAGACATTTTTTAAATCCCACCCCACTTTACATATAATTGACCTT TCTGATTCTCTTCAGatacaaggcagatccaaccatccccaccgtggtcctacgatcagtcctaTcaaTACCCATACG ATGTTCCTGACTATGCGGGCTATCCCTATGACGTCCCGGACTATGCAGGATCCTATCCATATG ACGTTCCAGATTACGCTGGAAGCGGAGCTACTAACTTCTCTCTGTTAAAGCAAGCAGGAGA CGTGGAAGAAAACCCCGGTCCCGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAA GGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGAT CGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTG ACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGC TCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCC GAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGAC CCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAA CTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGA GCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGA AGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTG CAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGAC TACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGA

CGAGCTGTACAAGtagGGATCCTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTG СТTTAAAAAACCTCССАСАССТСССССТGAACCTGAAACATAAAATGAATGCAATTGTTGTTG TTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAAT AAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTActgggat ccattgcctctccttctgtgcacccagcaacgcccattcacctggacgtgccagcggcatgacaaccetctctgcagaactttccagtc gactctcaaGTAAGCCACTTGAAAACACATTCTTTGCAGCTGAGCTGGGGTGGAAGGTCCAGG AGACTAGAGGTGCATGAAGGAGTTGGCAGAACATTATTGAGTAAAACATGGTTTAAAGGTGA ССТАТСТСТАСТСТGAGTCCCATGCCCATGCACTGATTTTCTTGGATACATAAGAGGCAGAGA TTGTGGATGTGAAGGCAGAAGTGGCTTGGAGAAGTAGGTTCCTTAGACATCTAAAGTTGTTC ACATTTGGCAAGAAAGGATGGTGACTGAAGGGTTAAGAACAATATAAAAAGCCAAAGTTTTC AACTTTTAGGACTCATTATTCCAAATGAATTCTGGACTAATGGGACTGGTCCATGCGGTGGT GGTAAATTTTCACAGATCACATGGACAGCACACGGGAGTACATGTGGAATGGGAAATAAATA CAGCCGCCCCTTGGTATCCATGGAGGACTGGTTCCAGGACCCCCCATGGATACCAAAACCC ATGGATGCTCAAGTCCCTCATATAAAATGGTATATTTATATATAACATATATATCCTCCCATGTAT TTAAATCATCCCTAGATTACTCGTAATACCTAATAAAATGTAAATGCTATGTAAATACTTGTTATA CTGCATTGTTTAGGGAATGACAAGAAGAAAAGTCTGTATATGTCTAATACAGACACAACCATC CTTTTTTTGTCAAGATGTTTGCTTGCAAAGG
p.Y287*-WT-LHA-TY1-P2A-EGFP-RHA

ССTTTGCAAGCAAACATCTTGACAGACTTTTGTCTCTTCTCTATCCCAGGCCTCTTATAATGG CAATCTATAAAATACCTGCTAAAAACTCTGACTTTTAAAAGTTGCAAACTCGAAGTCCTGAAA AGGAACAGAAGGCTTGGGTTGATAGGGCCAGTTCTACTGCTGGGTTTGTGAACTAGTCATT AGACCTCATTGCCGGTTTCCCAGCCAGACCTTCTTTCCTGTCATCCTTGGGAGAGAATTCG CCTTACTATAAAACATTTACCAGCCCATGGAATACTTTTTGCCAAAGGTAAAGGTATAAAAAAA AAGCCCAAAACTCTACGTTCTTACCGAACACAGACAGGTGATCCCCTGAGTTTATAAAATGT TTCTGATGATGATAATTGTAATTATTGGCAAAGCTGAAATCATGTCAGCAGTCATATGATACTT GAAGTTCTCAAGTGCTGCAGTTCAACAGTCTGGACATTAATACTTCTACCTTGAAAGTGTAAT CCATTCCTCTCATCATTGTTAGCATGATTAAATAAAACCTTTGGAAGGAATAGTTATCAGGTGA AAATCTCCAAGAATCAGTCTCTTTTGGGGGAAAATAATCCAACAGAGGCAGATACTTGGACT TGAGTAGGCTTATTAAACCCTGGTACATAGGCCACATACATGTATGTGACATATTTGAACAAG GGCCACTCATTTCTTATTAAAAGACATTTTTTAAATCCCACCCCACTTTACATATAATTGACCTT TCTGATTCTCTTCAGatacaaggcagatccaaccatccccaccgtggtcctacgatcagtcctaTcaataTctTggGtcTa tCgcAtcCccAtcCgtTcaTccTgcCacCccTatCtcGccAggGcgCgcGagTggTatgacTacGctTtcCgcCgaGc tCtcTagCcgGctTtcGacggcacccgacctgacagcgttcagcgacccgcgccagttccccgcgctgccctccatctccgaccc ccgcatgcactatccaggcgccttcacctactccccgacgccggtcacctcgggcatcggcatcggcatgtcggccatgggctcggc
cacgcgctaccacacctacctgccgccgccctaccccggctcgtcgcaagcgcagggaggcccgttccaagccagctcgccctcct accacctgtactacggcgcctcggccggctcctaccagttctccatggtgggcggcgagcgctcgccgccgcgcatcctgccgccct gcaccaacgcctccaccggctccgcgctgctcaaccccagcctcccgaaccagagcgacgtggtggaggccgagggcagccac agcaactcccccaccaacatggcgccctccgcgcgcctggaggaggccgtgtggaggccctacGAGGTGCACACCAAC CAGGACCCCCTGGACGCCGAAGTCCATACAAATCAGGATCCTCTGGATGCCGAAGTGCAC ACCAATCAGGATCCCCTGGACGCTGGAAGCGGAGCTACTAACTTCTCTCTGTTAAAGCAAG CAGGAGACGTGGAAGAAAACCCCGGTCCCATGGTGAGCAAGGGCGAGGAGCTGTTCACC GGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGT GTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCA CCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTG CAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGC CCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCC GCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATC GACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCAC AACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCC ACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCG GCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGC AAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGG GATCACTCTCGGCATGGACGAGCTGTACAAGtgaGGATCCTGATCATAATCAGCCATACCACA TTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAA ATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAG CATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTC ATCAATGTATCTTActgggatccattgcctctccttctgtgcacccagcaacgcccatttcacctggacgtgccagcggcatgac aaccctctctgcagaacttccagtcgactctcaaGTAAGCCACTTGAAAACACATTCTTTGCAGCTGAGCTG GGGTGGAAGGTCCAGGAGACTAGAGGTGCATGAAGGAGTTGGCAGAACATTATTGAGTAAA ACATGGTTTAAAGGTGACCTATCTCTACTCTGAGTCCCATGCCCATGCACTGATTTTCTTGGA TACATAAGAGGCAGAGATTGTGGATGTGAAGGCAGAAGTGGCTTGGAGAAGTAGGTTCCTT AGACATCTAAAGTTGTTCACATTTGGCAAGAAAGGATGGTGACTGAAGGGTTAAGAACAATA TAAAAAGCCAAAGTTTTCAACTTTTAGGACTCATTATTCCAAATGAATTCTGGACTAATGGGA CTGGTCCATGCGGTGGTGGTAAATTTTCACAGATCACATGGACAGCACACGGGAGTACATG TGGAATGGGAAATAAATACAGCCGCCCCTTGGTATCCATGGAGGACTGGTTCCAGGACCCC CCATGGATACCAAAACCCATGGATGCTCAAGTCCCTCATATAAAATGGTATATTTATATATAACA TATATATCCTCCCATGTATTTAAATCATCCCTAGATTACTCGTAATACCTAATAAAATGTAAATGC TATGTAAATACTTGTTATACTGCATTGTTTAGGGAATGACAAGAAGAAAAGTCTGTATATGTCT

AATACAGACACAACCATCCTTTTTTTGTCAAGATGTTTGCTTGCAAAGG
p.R233fs-MUT-LHA-3HA-P2A-mCherry-RHA cctttgcaagcaaacatcttgactcctgtcaactcctccttaggggtacatgggggagtcggcttcagggaagaaggaatgcttgtgaa aagcctgtgaggagagggagagggagaggggctgaggggctgaggatgccctgcgtgtacctggaaatgggacctccccagag gctgtgggtttgcagccacgcctcatttcctcttggaaggggccctaccactaagctgcggggcccactttgccgcctctaaaacgtgcc agtggctgggtttgcagtaaggaacagccgttctgatgcccctgggaggccaccttcctggctgccacagcatagcccctggcatgtg gccatgtgccaacaattaatgcgcctctttccctcccggcatcaccaccaccgccaagttctgtatctcagtgagttgtgcccattggaag tgggtgtagagggttggggagggtgccaaggcccagactgggggagcactctgtggccgaggcggtgaaagggggcccattctgc tgagaggacagtggccccaaattcagctggcatatctctagcgagtctatgttggggtgaggggagagagaggggaaagacaaga aaagccccagtttaggaaatccacaatacttttctgatctcttccctccctccttccctccccccatcccctcccctccctgctccccacaa taggacatcggcagaaactagatgatcagaccaagcccgggagcttgtcctttccgagcggctcagtgaactcgagcagctgcgc gcacagccatacccatacgatgttcctgactatgcgggctatccctatgacgtcccggactatgcaggatcctatccatatgacgttcca gattacgctggaagcggagctactaacttctctctgttaaagcaagcaggagacgtggaagaaaaccccggtcccgtgagcaaggg cgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcgaga tcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttc gcctgggacatcctgtcccctcagttcatgtacggctccaaggcctacgtgaagcaccccgccgacatccccgactacttgaagctgt ccttccccgagggcttcaagtgggagcgcgtgatgaacttcgaggacggcggcgtggtgaccgtgacccaggactcctccctgcag gacggcgagttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaagaagaccatgggct gggaggcctcctccgagcggatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacgg cggccactacgacgctgaggtcaagaccacctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaa gttggacatcacctcccacaacgaggactacaccatcgtggaacagtacgaacgcgccgagggccgccactccaccggcggcat ggacgagctgtacaagtgaggatcctgatcataatcagccataccacatttgtagaggtttacttgctttaaaaaacctcccacacctc cccctgaacctgaaacataaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcac aaattcacaaataaagcattttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttagggtcagcccacaccacccag cccccacgcccaaccctcgtgcctccctgaaccactccactgcctttaaccctcagcctcagagtcagatgcagggtaagtaccagat ggagcccactgcccgcctctcctgcacctgggccaccacccacaactggcccccatgtgcacacaccttcccagaccaactggggtt tccccttgatgctcagagaaaggcctcgaaccaacagcaccacctgggagctgttggaaatgcagagtcttgggccccacccaccc cagacccaccgagtcagatctgcattgtaaccagatccccacaaggaaaagcactgctacagaggatacgaggagctctgggtat ggatatccatattggatagatagctctcttgaatttttaagagttagctttggctatgctattttttacctacccattaggcttgaagacacac acgcagacacacacacacacacacgtcaagcaaagtgaagatgggatgtttcaagttctcgctattgccagattatttgtgggtttgta tctagtgttttttattattaagaaatagttgaaatgtatggatgtcatcacatcaagggtgttatttgcaaatcaatagagaatgcaggtccc cccagcccatggggctagctggcaattactaaagcgctgtaagatgcaataattgcctaaggcccactgtgccaaattagataataca agaagttcatttacactgtagaccagtgacgtcaatgactgtttgctctgtgataccgttcgtcaagatgttgcttgcaaagg
p.R233fs-WT-LHA-TY1-P2A-EGFP-RHA

CCTTTGCAAGCAAACATCTTGACTCCTGTCAACTCCTCCTTAGGGGTACATGGGGGAGTCG GCTTCAGGGAAGAAGGAATGCTTGTGAAAAGCCTGTGAGGAGAGGGAGAGGGAGAGGGG CTGAGGGGCTGAGGATGCCCTGCGTGTACCTGGAAATGGGACCTCCCCAGAGGCTGTGG GTTTGCAGCCACGCCTCATTTCCTCTTGGAAGGGGCCCTACCACTAAGCTGCGGGGCCCA CTTTGCCGCCTCTAAAACGTGCCAGTGGCTGGGTTTGCAGTAAGGAACAGCCGTTCTGATG CCCCTGGGAGGCCACCTTTCCTGGCTGCCACAGCATAGCCCCTGGCATGTGGCCATGTGC CAACAATTAATGCGCCTCTTTCCCTCCCGGCATCACCACCACCGCCAAGTTCTGTATCTCAG TGAGTTGTGCCCATTGGAAGTGGGTGTAGAGGGTTGGGGAGGGTGCCAAGGCCCAGACT GGGGGAGCACTCTGTGGCCGAGGCGGTGAAAGGGGGCCCATTCTGCTGAGAGGACAGTG GCCCCAAATTCAGCTGGCATATCTCTAGCGAGTCTATGTTGGGGTGAGGGGAGAGAGAGG GGAAAGACAAGAAAAGCCCCAGTTTTAGGAAATCCACAATACTTTTTCTGATCTCTTCCCTC ССТССТTСССТССССССАТССССТССССТСССТGСTССССАСAATAGGACATCGGCAGAAA CTAGATGATCAGACCAAGCCCGGGAGCTTGTCCTTTTCCGAGCGGCTCAGTGAACTCGAG CAGCTGCGACGCACAGCCATGAGAGTTTCCCCTCATCATCCTGCGCCTACCCCTAATCCAC GCGCATCTTTAAATCActccactgcctttaacccACAACCACAATCTCAAATGCAAGATACAAGGCAG ATCCAACCATCCCCACCGTGGTCCTACGATCAGTCCTACCAATACCTGGGATCCATTGCCTC TCCTTCTGTGCACCCAGCAACGCCCATTTCACCTGGACGTGCCAGCGGCATGACAACCCT CTCTGCAGAACTTTCCAGTCGACTCTCAACGGCACCCGACCTGACAGCGTTCAGCGACCC GCGCCAGTTCCCCGCGCTGCCCTCCATCTCCGACCCCCGCATGCACTATCCAGGCGCCTT CACCTACTCCCCGACGCCGGTCACCTCGGGCATCGGCATCGGCATGTCGGCCATGGGCTC GGCCACGCGCTACCACACCTACCTGCCGCCGCCCTACCCCGGCTCGTCGCAAGCGCAGG GAGGCCCGTTCCAAGCCAGCTCGCCCTCCTACCACCTGTACTACGGCGCCTCGGCCGGCT CCTACCAGTTCTCCATGGTGGGCGGCGAGCGCTCGCCGCCGCGCATCCTGCCGCCCTGC ACCAACGCCTCCACCGGCTCCGCGCTGCTCAACCCCAGCCTCCCGAACCAGAGCGACGT GGTGGAGGCCGAGGGCAGCCACAGCAACTCCCCCACCAACATGGCGCCCTCCGCGCGCC TGGAGGAGGCCGTGTGGAGGCCCTACGAGGTGCACACCAACCAGGACCCCCTGGACGCC GAAGTCCATACAAATCAGGATCCTCTGGATGCCGAAGTGCACACCAATCAGGATCCCCTGG ACGCTGGAAGCGGAGCTACTAACTTCTCTCTGTTAAAGCAAGCAGGAGACGTGGAAGAAAA CCCCGGTCCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGG TCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGC GATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTG CCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCC GACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAG

CGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAG GGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAA CATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGAC AAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGC GTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCT GCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCG CGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGA GCTGTACAAGTGAGGATCCTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCT TTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTT AACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAA AGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAGGGTCA GCCCACACCACCCAGCCCCCACGCCCAACCCTCGTGCCTCCCTGAACCACTCCACTGCCT TTAACCCTCAGCCTCAGAGTCAGATGCAGGGTAAGTACCAGATGGAGCCCACTGCCCGCCT CTCCTGCACCTGGGCCACCACCCACAACTGGCCCCCATGTGCACACACCTTCCCAGACCA ACTGGGGTTTCCCCTTGATGCTCAGAGAAAGGCCTCGAACCAACAGCACCACCTGGGAGC TGTTGGAAATGCAGAGTCTTGGGCCCCACCCACCCCAGACCCACCGAGTCAGATCTGCATT GTAACCAGATCCCCACAAGGAAAAGCACTGCTACAGAGGATACGAGGAGCTCTGGGTATGG ATATCCATATTGGATAGATAGCTCTCTTGAATTTTTTAAGAGTTAGCTTTGGCTATGCTATTTTT TTACCTACCCATTAGGCTTGAAGACACACACGCAGACACACACACACACACACGTCAAGCA AAGTGAAGATGGGATGTTTCAAGTTCTCGCTATTGCCAGATTATTTGTGGGTTTTGTATCTAG TGTTTTTTTATTATTAAGAAATAGTTGAAATGTATGGATGTCATCACATCAAGGGTGTTATTTGC AAATCAATAGAGAATGCAGGTCCCCCCAGCCCATGGGGCTAGCTGGCAATTACTAAAGCGC TGTAAGATGCAATAATTGCCTAAGGCCCACTGTGCCAAATTAGATAATACAAGAAGTTCATTTA CACTGTAGACCAGTGACGTCAATGACTGTTTGCTCTGTGATACCGTTTCGTCAAGATGTTTG CTTGCAAAGG

Primer list:

Primer name	Sequence	Purpose
pc3.1-RUNX1b-F	TTGGTACCGAGCTCGGATCCGCCACCATGCGT ATCCCCGTAGATGCCAGCACGAGCCGCCG	pcDNA3.1- RUNX1b
pc3.1-GFP-F	TTGGTACCGAGCTCGGATCCGCCACCATGGTG AGCAAGGGCGAGGAG	pcDNA3.1-EGFP- RUNX1b
pc3.1-GFP-RUNX1b-r	CGGCGGCTCGTGCTGGCATCTACGGGGATAC GCATCTTGTACAGCTCGTCCATGCC	pcDNA3.1-EGFPRUNX1b
pc3.1-GFP-RUNX1b-f	GGCATGGACGAGCTGTACAAGATGCGTATCCC CGTAGATGCCAGCACGAGCCGCCG	pcDNA3.1-EGFPRUNX1b
pc3.1-mCherry-F	TTGGTACCGAGCTCGGATCCGCCACC ATGGTGAGCAAGGGCGAGGAG	pcDNA3.1- mCherry-RUNX1b
pc3.1-mCherry-RUNX1b-R	CGGCGGCTCGTGCTGGCATCTACGGGGATAC GCATCTTGTACAGCTCGTCCATGCC	pcDNA3.1- mCherry-RUNX1b
pc3.1-mCherry-RUNX1b-F	GGCATGGACGAGCTGTACAAGATGCGTATCCC CGTAGATGCCAGCACGAGCCGCCG	pcDNA3.1- mCherry-RUNX1b
pc3.1-RUNX1b-R	ACGGGCCCTCTAGACTCGAGTCAGTAGGGCCT CCACACGG	pcDNA3.1- mCherry/EGFP- RUNX1b
pc3.1-CBFb-F	CGTTTAAACTTAAGCTTGGTACCATGCCGCGC GTCGTGCC	pcDNA3.1-CBFb
pc3.1-CBFb-R	ACGGGCCCTCTAGACTCGAGTTAACGAAGTTT GAGGTCATCACCACC	pcDNA3.1-CBFb
attB-FLAG-RUNX1b-F	GATATCACCGCAAGAGCTCCACGCCACCATGG ATTACAAGGATGACGACGATAAGGGCGATTAC AAGGATGACGACGATAAGATGCGTATCCCCGT AGATGCCAGCACGAGCCGCCG	attB-2FLAG-RUNX1-IRESmCherry
attB-RUNX1b-R	TCAGACCGGTGAATTCTTAAGTTATCAGTAGGG CCTCCACACGG	attB-2FLAG-RUNX1-IRESmCherry
cl20c-2FLAG-RUNX1b-F	TTCTCTAGGCGCCGGAATTCGCCACCATGGAT TACAAGGATGACGACGATAAGGGCGATTACAA GGATGACGACGATAAGATGCGTATCCCCGTAG	cl20c-MSCV- 2FLAG-RUNX1b-IRES-GFP

	ATGCCAGCACGAGCCGCCG	
cl20c-RUNX1b-R	TGCATGGATCCCTAGGAATTCTCAGTAGGGCC TCCACACG	cl20c-MSCV- 2FLAG-RUNX1b-IRES-GFP
cl20c-MSCV-IRES-mCherry-F	CCCCCGAACCACGGGGACGTGGTTTTCCTTTG AAAAACACGATAATACCATGGTGAGCAAGGGC GAGGAGGA	cl20c-MSCV-IRESmCherry
cl20c-MSCV- IRES-mCherry-R	TATACGGCATCGATGCGGCCGCTTCACTTGTA CAGCTCGTCCA	cl20c-MSCV-IRESmCherry
cl20c-MSCV-JAK3-IRES-mCherry-F	TCCTTCTCTAGGCGCCGGAATTCGCCACCATG GCACCTCCAAGTGAAGA	cl20c-MSCV-JAK3-IRES-mCherry
cl20c-MSCV-JAK3-IRES-mCherry-R	TGCATGGATCCCTAGGAATTCCTATGAAAAGG ACAGGGAGTG	cl20c-MSCV-JAK3-IRES-mCherry
JAK3-M511I-mutagenesis-F	CCAATACCAGCTGAGTCAGATAACATTTCACAA GATCC	cl20c-MSCV-JAK3(M511I)-IRES-mCherry
JAK3-M511I-mutagenesis-R	GGATCTTGTGAAATGTTATCTGACTCAGCTGGT ATTGG	cl20c-MSCV-JAK3(M511I)-IRES-mCherry
p.K117*-F	CTGCCCATCGCTTTCTAGGTGGTGGCCCTAG	Mutagenesis
p.K117*-R	CTAGGGCCACCACCTAGAAAGCGATGGGCAG	Mutagenesis
p.Q213fs-F	GCAGAAACTAGATGATAGACCAAGCCCGGGAG CTTG	Mutagenesis
p.Q213fs-R	CAAGCTCCCGGGCTTGGTCTATCATCTAGTTTC TGC	Mutagenesis
p.R233fs-F	CTGGAGCAGCTGCGCGCACAGCCATGAG	Mutagenesis
p.R233fs-R	CTCATGGCTGTGCGCGCAGCTGCTCCAG	Mutagenesis
p.N153Y-F	CTACCGCAGCCATGAAGTACCAGGTTGCAAG	Mutagenesis
p.N153Y-R	CTTGCAACCTGGTACTTCATGGCTGCGGTAG	Mutagenesis
p.A142fs-F	CAATGATGAAAACTACTCAACCGGCTGAGCTG	Mutagenesis

	AGAAATG	
p.A142fs-R	CATTTCTCAGCTCAGCCGGTTGAGTAGTTTTCA TCATTG	Mutagenesis
p.Y287*-F	CGATCAGTCCTACCAATAGCTGGGATCCATTG	Mutagenesis
p.Y287*-R	GCAATGGATCCCAGCTATTGGTAGGACTGATC	Mutagenesis
p.K110Q-F	GGCGCTGCAACCAGACCCTGCCCATC	Mutagenesis
p.K110Q-R	GATGGGCAGGGTCTGGTTGCAGCGCC	Mutagenesis
p.P275L-F	CAAGGCAGATCCAACTATCCCCACCGTGGTC	Mutagenesis
p.P275L-R	GACCACGGTGGGGATAGTTGGATCTGCCTTG	Mutagenesis
p.T246M-F	ACCCAGCCCCCATGCCCAACCCTCGT	Mutagenesis
p.T246M-R	ACGAGGGTTGGGCATGGGGGCTGGGT	Mutagenesis
p.313_317del-F	GCGGCATGACAACCCTTTCCAGTCGACTCTC	Mutagenesis
p.313_317del-R	GAGAGTCGACTGGAAAGGGTTGTCATGCCGC	Mutagenesis
p.M418V-F	CTACCAGTTCTCCGTGGTGGGCGGCGAG	Mutagenesis
p.M418V-R	CTCGCCGCCCACCACGGAGAACTGGTAG	Mutagenesis
p.G365R-F	CACCTCGGGCATCCGCATCGGCATGTC	Mutagenesis
p.G365R-R	GACATGCCGATGCGGATGCCCGAGGTG	Mutagenesis
p.P359R-F	TACTCCCCGACGCGGGTCACCTCG	Mutagenesis
p.P359R-R	CGAGGTGACCCGCGTCGGGGAGTA	Mutagenesis
p.S318_S319deli nsX-F	CTCTGCAGAACTTTAGCTCCAGTCGACTCTCAA C	Mutagenesis
p.S318_S319deli	GTTGAGAGTCGACTGGAGCTAAAGTTCTGCAG	
nsX-R	AG	Mutagenesis
365-OutArm-F	CCTGGGCGGTAAATTCTGATAG	CHASE-KI
233-LHA-F2	GGAation	
365-LHA-F2	GGCATAGCATCATGGGTAGTC	validation
$233-O u t A r m-F 2 ~$	CAGGACTGGCTCTGGTTTAAG	CHASE-KI validation

287-OutArm-F2	CATTTGCCTAAGAATAGCGTTGG	CHASE-KI validation
287-LHA-F2	GGCAGATACTTGGACTTGAGTAG	CHASE-KI validation
mCherry-nest-R3	CGCAGCTTCACCTTGTAGAT	CHASE-KI validation
EGFP-nest-R	AGACGTTGTGGCTGTTGTAG	CHASE-KI validation
RUNX1-Stop- gRNA+PAM	GGAGGCCCTACTGAGGCGCCAGG	CHASE-KI validation
RUNX1-R233fs- gRNA40+PAM	TCAGTGAACTGGAGCAGCTGCGG	CHASE-KI validation
RUNX1-p.Y287*- gRNA76+PAM	AGGCAATGGATCCCAGGTATTGG	CHASE-KI validation
Seq-HA	TAGGATCCTGCATAGTCCGG	CHASE-KI validation
Seq-TY1	GTGTGCACTTCGGCATCCA	CHASE-KI validation
Seq-CDS	CCACCATGGAGAACTGGTAG	CHASE-KI validation

References

1. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):209-21.
2. Matreyek KA, Stephany JJ, and Fowler DM. A platform for functional assessment of large variant libraries in mammalian cells. Nucleic Acids Res. 2017;45(11):e102.
3. Hyle J, Zhang Y, Wright S, Xu B, Shao Y, Easton J, et al. Acute depletion of CTCF directly affects MYC regulation through loss of enhancer-promoter looping. Nucleic Acids Res. 2019;47(13):6699-713.
4. Natsume T, Kiyomitsu T, Saga Y, and Kanemaki MT. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. Cell Rep. 2016;15(1):210-8.
5. Liu X, Zhang Y, Chen Y, Li M, Zhou F, Li K, et al. In Situ Capture of Chromatin Interactions by Biotinylated dCas9. Cell. 2017;170(5):1028-43 e19.
6. Langmead B, and Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012;9(4):357.
7. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome biology. 2008;9(9):1-9.
8. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44(W1):W160-5.
9. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576-89.
10. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Nat/ Acad Sci U S A. 2005;102(43):15545-50.
11. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-73.
12. Qian M, Zhang H, Kham SK-Y, Liu S, Jiang C, Zhao X, et al. Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. Genome Research. 2017;27(2):185-95.
13. Rusch M, Nakitandwe J, Shurtleff S, Newman S, Zhang Z, Edmonson MN, et al. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat Commun. 2018;9(1):3962.
14. Li H, and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-60.
15. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research. 2010;20(9):1297-303.
16. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics. 2011;43(5):491-8.
17. Wang K, Li M, and Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research. 2010;38(16):e164-e.
18. Chen X, Gupta P, Wang J, Nakitandwe J, Roberts K, Dalton JD, et al. CONSERTING: integrating copy-number analysis with structural-variation detection. Nature Methods. 2015;12(6):527-30.
19. Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J, et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nature Methods. 2011;8(8):652-4.
20. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.
21. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research. 2012;22(9):1760-74.
22. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Research. 2018;47(D1):D766-D73.
23. Yang W, Rosenstiel P, and Schulenburg H. aFold - using polynomial uncertainty modelling for differential gene expression estimation from RNA sequencing data. BMC Genomics. 2019;20(1):364.
24. Maura F, Degasperi A, Nadeu F, Leongamornlert D, Davies H, Moore L, et al. A practical guide for mutational signature analysis in hematological malignancies. Nat Commun. 2019;10(1):2969.

Table S1. Number of RUNX1 peaks enriched in each datasets

	Our dataset	RUNX1_CD34	RUNX1_Jurkat
Our dataset	59151		
RUNX1_CD34	7233	13993	
RUNX1_Jurkat	2529	887	7076

RUNX1_CD34 was retrived from GSE45144, RUNX1_Jurkat was retrived from GSE33850.

Table S2. De novo motif analysis of the common target shared by variants and WT RUNX1 or the unique targets of variants RUNX1

Set	Rank	Logo	P-value	Best Match/Details
	1		$1.00 \mathrm{E}-4745$	RUNX2(Runt)/PCa-RUNX2-ChIP-Seq(GSE33889)/Homer(0.977)
	2		$1.00 \mathrm{E}-1704$	BORIS(Zf)/K562-CTCFL-ChIP-Seq(GSE32465)/Homer(0.930)
WT	3		$1.00 \mathrm{E}-1640$	Etv2(ETS)/ES-ER71-ChIP-Seq(GSE59402)/Homer(0.967)(0.969)
	4		$1.00 \mathrm{E}-307$	YY2/MA0748.1/Jaspar(0.672)
	5		$1.00 \mathrm{E}-303$	Tc77(HMG)/GM12878-TCF7-ChIP-Seq(Encode)/Homer(0.966)
	1		$1.00 \mathrm{E}-571$	RUNX2/MA0511.2/Jaspar(0.851)
p.R232fs	2		$1.00 \mathrm{E}-127$	BORIS(Zf)/K562-CTCFL-ChIP-Seq(GSE32465)/Homer(0.924)
	3		$1.00 \mathrm{E}-20$	TBX20/MA0689.1/Jaspar(0.706)
p.Y287*	1		$1.00 \mathrm{E}-161$	RUNX2/MA0511.2/Jaspar(0.937)
	2		$1.00 \mathrm{E}-86$	BORIS(Zf)/K562-CTCFL-ChIP-Seq(GSE32465)/Homer(0.907)
p.G365R	1		$1.00 \mathrm{E}-11$	RUNX2(Runt)/PCa-RUNX2-ChIP-Seq(GSE33889)/Homer(0.766)

Table S3. The overlap between p.R233fs ChIP-seq targets and p.R233fs regulated genes Table S4. The overlap between p.Y287* ChIP-seq targets and p.Y287* regulated genes Table S5. The overlap between p.G365R ChIP-seq targets and p.G365R regulated genes Table S6. RUNX1 co-binding proteins detected by immunoprecipitation-mass spectrometry
Table S7. Conclusion of somatic mutations in germline RUNX1 cases

These tables can be found in the Supplemental Data

Table S8. Conclusion of somatic JAK3 mutations in germline RUNX1 cases

Germline RUNX1 variants	Type	JAK3 mutation	USI
p.K117X	ETP	p.M511I	PAUGCE
p.A142fs	ETP	p.M511I	PAVEJY
p.Q213fs	Unknown	p.M511I	PAREXD
p.R233fs	ETP	R657Q	PASWFN
p.P359R and p.Y287X	Unknown	p.L940V	PAWIPW

Table S9. The summary of T-ALL subtypes in our T-ALL cohort and Germline RUNX1

cases					
	Total number	ETP	near-ETP	not ETP	unknown
TALL4034	1231	103	163	708	257
Total XIII/XV	123	9	0	114	0
RUNX1 germline	6	3	0	1	2

Table S10. ACMG annotation of RUNX1 variants identified in this study

This table can be found in the Supplemental Data

