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Historical perspectives
Studies of sickle cell disease (SCD), a life-threatening, multisystem 
genetic blood disorder that affects approximately 100,000 Ameri-
cans and millions worldwide, have driven many advances in science 
and medicine. In 1910, Herrick described “sickle-shaped cells” in a 
dental student from the West Indies suffering from pain episodes 
and anemia (1). In 1949, Pauling and colleagues noted abnormalities 
in the properties of sickle hemoglobin (HbS), which were shown by 
Ingram in 1956 to result from altered amino acid composition, dis-
tinguishing SCD as “the first molecular disease” (2, 3). Around the 
same time, Neel and Beet determined SCD inheritance to be auto-
somal recessive (4, 5). The concept of natural selection for malaria 
resistance in SCD heterozygotes was proposed by Haldane in 1949 
and confirmed by Allison a few years later (6, 7). It wasn’t until 1978 
that Kan and Dozy reported the diagnosis of SCD by DNA analysis 
of fetal amniotic fluid cells, heralding a new era in genetic testing (8).

The deadly manifestations of SCD and its genetic features 
have been recognized for centuries in Africa, where hundreds of 

thousands of affected individuals are born each year. The concepts 
of “ọgbanje” (Ibo) and “abiku” (Yoruba), which translate to “a child 
destined to die and be born repeatedly to the world,” are attribut-
ed to SCD (9, 10). Medical advances have improved outcomes of 
affected individuals in high-income countries, but most patients 
continue to experience severe morbidities and premature mortal-
ity, beginning in adolescence. Now, emerging scientific discoveries 
are fueling innovative strategies to treat SCD via genetic manipu-
lation of autologous hematopoietic stem cells (HSCs), promising 
effective cures (11, 12). However, the field has been shaken by 
recent reports of myeloid malignancies following lentiviral vec-
tor–mediated (LV-mediated) β-globin replacement gene therapy. 
Specifically, of 47 SCD patients treated with LV gene therapy in 
two related clinical trials (NCT02140554 and NCT04293185) over 
the past six years, three have been diagnosed with myelodysplas-
tic syndrome or acute myeloid leukemia (13, 14). Here we review 
autologous genetic therapies for SCD, aiming to provide a balanced 
view of the risks and benefits of this rapidly evolving field.

Pathophysiology of SCD
SCD is caused by mutations in the HBB gene, which encodes the 
β-globin subunit of adult hemoglobin (HbA, α2β2) (15, 16). Most 
affected individuals are homozygous for a p.Glu6Val substitu-
tion resulting in the production of βS-globin, which combines 
with α-globin to form HbS (α2β

S
2). Another common form of SCD 

results from compound heterozygosity between HbS and HbC 
(p.Glu6Lys), resulting in HbSC (α2β

SβC) disease. Hemoglobin S and 
C mutations frequently coexist with α- or β-thalassemia alleles, 
which can modify SCD phenotypes (17). Under hypoxic condi-
tions, HbS or HbC form rigid polymers that cause red blood cells 
(RBCs) to acquire a sickle shape and initiate a complex pathophys-
iology that includes hemolysis, inflammation, dysregulated nitric 
oxide metabolism, hypercoagulation, and vasculopathy. Conse-
quently, patients experience severe acute pain episodes, chron-
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cells (HSPCs), a complex mixture of long-term bone marrow–repop-
ulating HSCs and committed progenitors, some of which provide 
early, short-term hematopoietic reconstitution after HSCT; (iii) ex 
vivo genetic manipulation of CD34+ cells targeting the HSC subpop-
ulation to correct the SCD mutation or circumvent its toxicities; and 
(iv) myelotoxic/myeloablative conditioning to create a receptive 
bone marrow niche, followed by infusion of the modified HSPCs.

Ethical informed consent. Translating scientific advances 
into SCD patient care is challenging. Participation in high-risk, 
potentially curative clinical trials can be influenced by patient- 
perceived disease burden, expected benefits, fear of toxicities, 
and socio-ecological factors including anticipated stress, religious 
beliefs, and support systems (24–26). Other barriers include lack 
of appropriate educational material, therapy-associated costs, and 
limited access to longitudinal care. A recent report by the National 
Academies of Science, Engineering, and Medicine (NASEM) not-
ed that “the SCD community has developed a significant lack of 
trust in the health care system due to the nearly universal stigma 
and lack of belief in their reports of pain, a lack of trust that has 
been further reinforced by historical events, such as the Tuske-
gee experiment” (27). Many patients fear that HIV can be trans-
mitted by lentiviral vectors (LVs), a myth that can be dispelled by 
better education and a trustful relationship with care providers 
(28, 29). Some SCD patients may overestimate the potential ben-
efits of an experimental therapy and believe that no alternative 
care options exist. The participation of individuals with SCD in 
high-risk/high-reward clinical trials should be explored through a 
shared decision-making process with health care providers using 
culturally sensitive disease- and treatment-specific approaches 
tailored to the knowledge level of study participants. A multilev-
el decision aid for choosing disease-modifying treatments for 
SCD incorporates patient features (trust, SCD severity), decision 
characteristics (risk-benefit, urgency), physician perspectives 
(patient/family motivation, patient psychosocial characteristics), 
and environmental factors (institutional practice, insurance cov-
erage) (30). Long-term collaborative relationships between clin-
ical investigators, caregivers, and eligible subjects for SCD clini-
cal trials are essential and require ongoing attention to potential 
communication barriers, social/cultural issues, and patient values 
(31). Given the uncertainties of high-risk therapeutic clinical trials, 
it may be valuable to conduct psychosocial assessments evaluat-
ing the emotional function, coping ability, and social support sta-
bility of potential participants to facilitate informed consent and 
better manage outcome expectations. Offering coping strategies 
and opportunities for clinical trial participants to explore poten-
tially unexpected or less favorable outcomes enhances the shared 
decision-making model (26).

Isolation of HSPCs from individuals with SCD. Most genetic 
therapies for SCD require collecting 4 × 106 to 15 × 106 autologous 
peripheral blood CD34+ HSPCs per kilogram (32, 33). Mobilization 
with granulocyte CSF is contraindicated because of potentially 
life-threatening immune cell activation (34). Until recently, bone 
marrow aspiration was the standard method for collecting CD34+ 
HSPCs from SCD patients. This strategy usually requires two to 
four separate harvests under general anesthesia, which can trigger 
serious complications (34). However, four recent studies indicate 
that CD34+ HSPCs can be mobilized safely in adults with SCD 

ic pain, progressive multi-organ damage, and premature death. 
Common manifestations include stroke, acute lung injury (acute 
chest syndrome), bone avascular necrosis, and chronic heart, 
lung, and kidney disease. Loss of splenic function beginning in 
infancy predisposes patients to sepsis.

Unmet clinical needs
Medical costs for SCD in the United States exceed 1 billion dol-
lars per year (18). Newborn screening and medical therapies have 
greatly improved the survival of children with SCD in high-in-
come countries, although most patients continue to experience 
morbidities and die in early adulthood. In Africa, India, and the 
Middle East, there are millions of SCD patients who lack access to 
modern medical care, many of whom die before age 5. Ideally, all 
children with SCD would receive safe, effective curative therapy 
early in life to minimize organ damage. Allogeneic hematopoi-
etic stem cell transplantation (HSCT) is the only approved cure, 
with an overall event-free survival of approximately 90%–95% 
after transplantation from HLA-matched sibling donors (19–21). 
Results of HSCT using alternative donor sources are promising, 
but many patients still experience immunological complications, 
such as graft rejection and graft-versus-host disease. As the risks 
of allogeneic HSCT remain substantial, determining which young 
SCD patients are most likely to benefit from this procedure is 
complex (22, 23). Hence, safer cures are needed. Genetic correc-
tion of autologous HSCs eliminates immune toxicities associated 
with allogeneic HSCT and expands patient eligibility by allowing 
affected individuals to be their own HSC donors. The major exist-
ing safety concern of these therapies is genotoxicities predispos-
ing to malignant transformation; efforts are underway to under-
stand and avoid this problem.

Autologous genetic therapies for SCD
All current protocols to treat SCD by autologous HSCT include four 
major steps (Figure 1): (i) the obtaining of ethical informed consent; 
(ii) isolation of patient CD34+ hematopoietic stem and progenitor 

Figure 1. Four major steps in autologous hematopoietic stem cell (HSC) 
therapies to treat SCD. (i) Clinical researchers inform participants about 
the procedure, associated risks, and alternative treatments, then obtain 
written consent. (ii) CD34+ HSPCs are mobilized with plerixafor and isolat-
ed from blood by apheresis. (iii) HSPCs are manipulated ex vivo to correct 
the SCD mutation or induce HbF expression. (iv) The participant receives 
bone marrow conditioning with myelotoxic/myeloablative agents, followed 
by infusion of the modified HSPCs.
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multipotent progenitors and HSCs that provide short- and long-
term hematopoietic reconstitution, respectively (46). Both the 
CD90+CD45RA– and CD38– subfractions of CD34+ cells are 
enriched for HSCs (47, 48). Enumerating these subpopulations 
in autologous donor CD34+ cells may estimate more accurately 
the number of biologically relevant target cells available for gene 
therapy, correlate better with engraftment levels, and provide a 
refined target population for genetic modification in order to sim-
plify manufacturing and reduce associated costs.

In vitro genetic correction of HSCs. Multiple tools and strategies 
exist for modifying HSCs to circumvent SCD pathologies (Figures 
2 and 3): (a) gene therapy via transduction with an LV encoding 
an antisickling β-like globin gene driven by erythroid-specific reg-
ulatory elements; (b) creation of genetic alterations that induce 
RBC fetal hemoglobin (HbF) expression; or (c) direct repair of the 
mutant SCD codon (valine), either to normal (glutamic acid) or 
to a benign, nonsickling variant, such as hemoglobin G-Makassar 
(alanine). Tools for genome editing include zinc finger nucleases 
(ZFNs), transcription activator–like effector nucleases (TALENs), 
CRISPR/Cas9, base editors, and prime editors (49, 50). Early 
clinical studies to treat SCD using LVs and genome editing are 
under way (Table 2).

β-Globin gene addition via lentiviral vectors. Because HSC 
self-renewal and differentiation require multiple rounds of cell 
division, therapeutic transgenes for hematopoietic disorders 
must be integrated into chromosomal DNA. The use of self-inac-
tivating, HIV-based LVs for this purpose has been developed and 
refined extensively over more than 25 years and is now producing 
promising results for treating multiple blood disorders, including 
β-hemoglobinopathies (SCD and β-thalassemia) (11, 12, 51, 52). 
Importantly, LVs can accommodate the complex regulatory ele-
ments required to support high-level, erythroid-specific expres-
sion of a β-like globin transgene while maintaining the capacity to 
transduce HSCs efficiently (Figure 2A).

The first apparent gene therapy cure for SCD, reported in 
a 13-year-old boy in France in 2017, used an LV encoding the 
antisickling β-globin variant βA-T87Q (HGB-206, NCT02140554; 
ref. 53). At 15 months after therapy, the blood hemoglobin level 
was 11.8 g/dL with 48% HbAT87Q and 49% HbS, and the participant 
was symptom free. In a parallel trial conducted in the United States 
(HGB-206, NCT02140554), an evolution over three successive 

using plerixafor, a small molecule that inhibits interaction of the 
HSC chemokine receptor CXCR4 with its ligand, stromal-derived 
factor-1α (SDF-1α), on bone marrow niche cells (Table 1), with 
fewer severe adverse events in comparison with bone marrow 
harvesting in one study comparing both methods (35–38). Several 
conclusions derive from these studies. First, plerixafor mobiliza-
tion of HSPCs, followed by apheresis harvesting, is generally safe 
and effective in SCD. The major toxicity noted was vaso-occlusive 
pain crisis that resolved with medical therapy. It is unclear whether 
this toxicity was caused by the drug, apheresis collection, or both. 
Second, the fraction of long-term repopulating HSCs and their 
suitability for genetic manipulation may be superior in plerixa-
for-mobilized HSPCs compared with those obtained by bone 
marrow aspiration (39, 40). Third, peripheral blood CD34+ cell 
counts peak as early as 3–6 hours after plerixafor administration, 
and apheresis should be initiated within this time frame. Fourth, 
the safest and most effective plerixafor dose appears to be 240 μg/
kg, although higher doses are worth studying. Fifth, the CD34+ 
cell yield varies greatly between subjects. Hydroxyurea therapy 
was associated with reduced CD34+ cell numbers and therefore 
should be discontinued for at least 2–4 weeks prior to CD34+ cell 
mobilization and collection, and longer periods may be better. To 
minimize adverse events associated with plerixafor mobilization 
and apheresis, RBC transfusion (simple or exchange) should be 
initiated to maintain blood hemoglobin level of 10 g/dL with HbS 
fraction less than 30% after discontinuing of hydroxyurea.

The CD34+ cell yield after a single plerixafor dose and apher-
esis cycle is usually insufficient for successful autologous therapy. 
Several strategies to maximize the HSPC yield per collection cycle 
are under investigation. Inflammation may alter the properties of 
SCD HSPCs and impair collection and purification. Adjustment 
of apheresis parameters to compensate for these features can 
improve CD34+ cell yields, but may also interfere with subsequent 
purification steps by increasing RBC contamination (37, 38). New 
CXCR4 antagonists are under study (41–44). In non-SCD individ-
uals, the CXCR2 agonist GROβ, given alone or with plerixafor, can 
efficiently mobilize a unique population of HSPCs with superior 
long-term repopulating capabilities (45). These new agents may 
improve HSPC collection from individuals with SCD.

The CD34+ population contains only a small, variable propor-
tion of the key target cells for SCD gene therapy, which include 

Table 1. Plerixafor-mediated HSC mobilization in patients with SCD

Study Plerixafor dose  
(μg/kg)

No. of  
participants

Patient  
age

Peak CD34+ cell 
count (/μL)

Product Hct  
(%)

CD34+ cell  
recovery (%)

CD34+ cell yield  
(× 106/kg)

Uchida et al., 2020 (38) 240 15 29 (20–50) 52 (9–183)A 4.5 (2.7–7.5) 46.8 (26–96) 6.3 (2.2–12.0)
Lagresle-Peyrou et al., 2018 (37) 240 3 20 (19–21) >80A 5.8 (4.8–8.2) 82 (31–92) 4.6 (4.5–5.8)
Esrick et al., 2018 (36) 180 3 26 (19–30) 36 (31–65)A 5.6 (3.7–17) 54 (20–81) 0.616 (0.069–1.2)

240 3 25 (25–38) 156 (27–290)A 11.7 (10.5–16.4) 59 (41–61) 16.38 (2.94–24.53)
Boulad et al., 2018 (35) 80 6 30.5 (21–34) 27.5 (7–132)B NA NA NA

160 3 32 (25–37) 43 (7–251)B NA NA NA
240 6 34.5 (23–46) 30.5 (10–95)B NA NA NA

Median (range) values are shown. Hydroxyurea was discontinued at least 2 weeks before HSC mobilization in the studies, except Boulad et al. 2018, in 
which hydroxyurea was not discontinued. AMeasured 2 hours after plerixafor. BMeasured 12 hours after plerixafor. Hct, hematocrit.
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greater than 99% reduction in severe pain events (55). The medi-
an vector copy number (VCN) was 3.8 (2.3–5.7) copies per diploid 
genome, resulting in a blood hemoglobin level of 11.2 (10.5–16.2) 
g/dL, approximately half of which was derived from the βA-T87Q 
transgene. Additional LV gene therapy trials for SCD have been 
opened recently (Table 2), and new strategies being developed 
to improve the efficacy of LVs are likely to improve this approach 
(62–65). Overall, current evidence indicates that LV gene therapy 
for SCD is effective, although recently raised safety concerns must 
be addressed (13, 14).

Genetic modifications to induce HbF expression. Normally 
around birth, transcription of γ-globin switches gradually to that 

patient groups has been reported in a series of abstracts (54–58). 
Initially, efficacy was suboptimal owing to inefficient HSPC col-
lection and transduction (HGB-206/NCT02140554, group A; n 
= 7). These problems have been gradually overcome by clinical 
and technical modifications in group B (n = 2), including prether-
apy RBC transfusions, shifting from bone marrow–derived HSCs 
to plerixafor-mobilized cells, and cell manufacturing protocol 
refinements, including LentiBOOST (Sirion Biotech), an amphi-
pathic membrane-modifying molecule that improves LV trans-
duction (59–61). Seventeen individuals treated under the most 
recent version of the protocol (group C) with a median follow-up 
of 11 months became RBC transfusion free and experienced a 

Figure 2. Tools for genetic manipulation of patient CD34+ HSPCs to treat SCD. (A) LV gene therapy: An antisickling β-like globin gene or BCL11A shRNA 
flanked by erythroid regulatory elements is inserted into a replication-deficient LV that is packaged into vector particles. The LV integrates semi- 
randomly into the host HSPC genome and is expressed in erythroid progeny. The β-like globin forms functional hemoglobin, while the BCL11A shRNA 
induces γ-globin expression to raise HbF levels. (B) Genome editing: The RNA-guided Cas9 nuclease binds the DNA target site via its associated guide 
RNA (gRNA) and creates a precise DSB that is repaired either by NHEJ, generating insertion-deletion mutations that induce HbF; or by HDR, which utilizes 
a donor DNA repair template to correct the SCD codon. (C) Base editing: Catalytically impaired Cas9n fused to either a cytosine or adenosine deaminase 
introduces precise base pair alterations. Adenosine (A) base editors convert A:T to G:C; cytosine base editors convert C:G to T:A. Base editors are used to 
induce HbF or convert the SCD codon to a benign variant. (D) Prime editing: Cas9n fused to a reverse transcriptase binds the target site via base pairing 
with the guide portion of the associated prime editing guide RNA (pegRNA) and creates a single-stranded DNA nick. The reverse transcriptase domain 
uses the pegRNA template to synthesize the desired edit following the nick. Cellular DNA repair machinery removes the endogenous DNA “flap” and 
repairs the nick to generate a heteroduplex intermediate that is converted to the edited product by DNA repair.
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or in vivo after xenotransplantation into immunodeficient mice 
(77–79). Six subjects have been treated in a clinical trial using this 
approach (NCT03282656). Preliminary results with 7–29 months 
follow-up include RBC HbF levels of 20%–41% and hemoglobin 
levels of 9.3–11.4 g/dL (33). No post–gene therapy acute vaso- 
occlusive pain events, acute chest syndrome, or stroke were 
reported in any participant, although one subject continued to 
experience priapism for up to 8 months after gene therapy and 
another remains transfusion dependent for cerebral vasculopathy, 
albeit at a decreased transfusion frequency.

Genome editing to activate γ-globin gene expression. Genome- 
editing nucleases, such as ZFNs, TALENs, and CRISPR/Cas9, 
introduce precisely targeted double-stranded DNA breaks (DSBs) 
that are subsequently resolved by endogenous repair pathways, 
either non-homologous end joining (NHEJ) or homology-direct-
ed repair (HDR) (Figure 2B and refs. 49, 50). The Cas9 nuclease 
is easiest to use because its sequence specificity is programmed by 
an associated guide RNA (gRNA) that binds the DNA target site 
via Watson-Crick base pairing, in contrast to other genome-edit-
ing nucleases that are programmed by more complicated protein 
engineering. In HSCs, most DSBs are resolved by NHEJ, which 
typically introduces base pair insertions or deletions (indels) that 
can disrupt DNA regulatory motifs. Using this strategy, several 
groups have induced RBC γ-globin transcription and HbF expres-

of β-globin, thereby shifting the production of HbF to HbA. The 
onset of SCD symptoms coincides with this switch, usually around 
6 months of age (Figure 3A). Methods to induce HbF therapeuti-
cally for β-hemoglobinopathies have been sought for decades (66–
68). This HbF therapy premise derives from a naturally occurring 
benign genetic condition termed hereditary persistence of fetal 
hemoglobin (HPFH), which results in persistently elevated HbF 
levels (more than 30%) in all RBCs (69, 70). Individuals who coin-
herit HPFH and SCD exhibit few or no SCD effects because HbF 
inhibits HbS polymerization (71) and γ-globin gene (HBG1 and 
HBG2) induction competes for the locus control region, a powerful 
upstream enhancer, to suppress mutant HBBS gene expression (72, 
73). Two transcriptional repressors, ZBTB7A and BCL11A, partici-
pate in the developmental silencing of HBG1 and HBG2 by binding 
to their respective promoter cis-regulatory elements (74–76). Some 
HPFH variants disrupt these cis elements to inhibit repressor bind-
ing, while other variants create nearby de novo binding sites for 
transcriptional activators (70). Numerous approaches to induce 
RBC HbF therapeutically for SCD via genetic manipulation of 
HSCs are under investigation (Table 2 and Figure 3B).

RNA interference to silence BCL11A expression. Transduction 
of normal or SCD donor CD34+ cells with a microRNA-adapted 
short hairpin RNA (shRNAmiR) that suppresses BCL11A expres-
sion induced high-level HbF in RBC progeny generated in vitro 

Table 2. Autologous genetic therapies for SCD and β-thalassemia in clinical trials

Strategy Modality Lead group Status Clinical trial  
number

No. of  
participants

Results References

β-Like globin gene 
replacement

βA-T87Q LV bluebird bio Phase III, 
marketing 
approval  
(Europe) 

NCT02140554, 
NCT02906202

40 SCD, 23 
β-thalassemia

25 SCD (group C) participants followed for 3–25 
months. Most had near-pancellular expression of 

HbAT87Q ≥6 months after therapy with 99.5% mean 
reduction in the annualized VOC+ACS rate overall; 
89% of evaluable participants with β-thalassemia 

are transfusion independent at a median  
of 19 months follow-up.

55, 210

Modified  
γG16D-globin LV

Cincinnati Children’s 
Hospital Medical Center

Phase I/II NCT02186418 3 3 SCD participants, follow-up 6–30 months,  
with clinical improvement (decreased VOEs)

154

Modified γG16D-globin LV CSL Behring Phase I NCT04091737 3 No results posted

LV expressing the  
βAS3-globin gene

Assistance Publique–
Hôpitaux de Paris

Phase I/II NCT03964792 10 No results posted

βAS3-FB LV University of California, 
Los Angeles

Phase I/II NCT02247843 6 No results posted

HbF induction BCL11A shRNA LV Dana-Farber Cancer 
Institute

Phase I/II NCT03282656 6 6 SCD participants infused, follow-up 7–29 months. 
No patient has had a VOC, ACS, or stroke since  

the gene therapy infusion.

33

Cas9 NHEJ; disruption  
of erythroid enhancer  

in BCL11A gene

CRISPR Therapeutics/
Vertex Pharmaceuticals

Phase I/II NCT03745287 2 SCD, 5 
β-thalassemia

2 SCD participants with follow-up of 3 and  
12 months have had no SCD-related VOEs since 

infusion of gene-modified cells; 5 β-thalassemia 
participants with follow-up of 3–15 months  

are transfusion independent.

32, 83

Cas9 NHEJ Novartis/Intellia Phase I/II NCT04443907 Not reported No results posted

ZFN NHEJ; disruption  
of erythroid enhancer  

in BCL11A gene

Sangamo/Bioverativ/
Sanofi 

Phase I/II NCT03432364 2 2 participants with β-thalassemia infused, follow-up 
3–6 months. Both require intermittent transfusions, 

though requirements are decreased.

211

All clinical trials for SCD listed on ClinicalTrials.gov as of January 2021 are shown. Some trials also include patients with β-thalassemia. ACS, acute chest 
syndrome; NHEJ, non-homologous end joining; VOC, vaso-occlusive crisis; VOE, vaso-occlusive pain event; ZFN, zinc finger nuclease.
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sion by creating indels that disable an erythroid-specific BCL11A 
gene enhancer (80–82). Preliminary results from a clinical study 
(CLIMB SCD-121, NCT03745287) are promising (Table 2 and 
refs. 32, 83). Two SCD participants (follow-up 3 and 12 months) 
maintained a hemoglobin level of around 10 g/dL with 46.8% and 
42.4% HbF. Two participants (one with SCD and one with β-thalas-
semia) exhibited sustained high-level editing of the targeted alleles 
(78%–81%) in bone marrow cells at 6 and 12 months. Although lon-
ger studies in more individuals are required, these findings indicate 
efficient modification of long-term repopulating HSCs.

An alternative strategy to induce RBC HbF uses genome edit-
ing–mediated NHEJ to disrupt HBG1 and HBG2 promoter motifs 
that recruit the BCL11A or ZBTB7A repressor proteins (Figure 3B 
and refs. 84–86). Another clinical study (NCT04443907) is exam-
ining the safety and efficacy of Cas9-mediated disruption of a 
BCL11A binding site in the γ-globin gene promoters (Table 2).

It is also possible to disrupt DNA regulatory elements using 
base editors, engineered Cas9-directed DNA modification 
enzymes that introduce precise, targeted nucleotide alterations 
(Figure 2C and ref. 49). Base editors contain modified versions of 
Cas9, termed Cas9 nickase (Cas9n), fused to a nucleotide deami-
nase. Adenosine base editors contain Cas9n fused to a laboratory- 

evolved adenosine deaminase that converts targeted A:T base 
pairs to G:C pairs. Cytosine base editors fuse Cas9n with a cytosine 
deaminase to convert targeted C:G base pairs to T:A pairs. Base 
editors are now being used to disrupt DNA elements that silence 
γ-globin expression, including the BCL11A erythroid enhancer 
(87) and binding sites for BCL11A or ZBTB7A in the HBG1 and 
HBG2 genes (88, 89).

Direct repair of the mutant SCD codon. The most desirable strat-
egy for genetic correction of SCD is to convert the mutant codon 
(valine, GTG) to the normal one (glutamic acid, GAG). Codon 
conversion can be achieved by genome editing–mediated HDR, or 
prime editing (Figure 2C). Achieving high-level SCD correction by 
genome editing–mediated HDR is complicated by low rates of HSC 
correction, concomitant formation of indels that disrupt the HBB 
reading frame, and the requirement for an exogenous DNA repair 
template, which can be challenging to deliver and is potentially 
cytotoxic (90–94). In most preclinical studies of genome editing, 
human HSCs are approximated by their capacity to repopulate the 
bone marrow of immunodeficient mice at 16 weeks following trans-
plantation. An early study attained 11.8% ± 3.7% allele correction by 
HDR and 55% ± 19% indels in bulk HbSS CD34+ HSPCs; following 
xenotransplantation, allele correction measured in HSCs was 2.3% 

Figure 3. Genetic manipulations to treat SCD. (A) The developmentally 
regulated β-like globin gene cluster is shown. Noncoding transcriptional 
regulatory regions are shown as DNase I–hypersensitive sites (HSs) at the 
locus control region (LCR) and 3′ to the HBB gene (3′HS1). The fetal γ-globin 
genes (HBG1 and HBG2) are expressed during late gestation, resulting in 
the production of RBC HbF. Around birth, γ-globin expression declines and 
is replaced by β-globin, resulting in a shift from HbF to HbA (α2β2) normally, 
or HbS (α2β

S
2) in the case of SCD. Inhibiting the γ- to β-globin switch has 

been a historical Holy Grail for treating SCD and β-thalassemia. (B) Induc-
tion of HbF by interfering with the expression or function of HBG1/HBG2 
transcriptional repressors BCL11A or ZBTB7A. Strategies for manipulation 
of autologous SCD patient HSCs include disruption of an erythroid-specific 
BCL11A gene enhancer via genome-editing nuclease–mediated NHEJ or base 
editing, transduction with an LV that drives erythroid-specific expression of 
a BCL11A shRNA, and disruption of BCL11A or ZBTB7A binding motifs in the 
HBG1 and HBG2 promoters. (C) Conversion of the mutant SCD codon (valine) 
to normal glutamic acid can be engineered by genome-editing nuclease–
mediated HDR or by prime editing. Alternatively, the SCD mutant valine 
codon can be converted to alanine by adenosine base editing to generate 
the nonsickling benign variant Hb G-Makassar.
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± 1.8%, with 46% ± 6% indels (95). Another early study achieved 
approximately 50% SCD allele correction in bulk HbSS CD34+ cells 
(92). Although xenotransplantation analysis of this population was 
not reported, the investigators achieved 3.5% HDR at the same tar-
get site in bone marrow–repopulating HSCs using a GFP-encoding 
DNA repair template. A more recent study reported HDR correction 
of 33.6% SCD alleles in bulk CD34+ cells. Four months after xeno-
transplantation, the correction rate declined to 23%, with approxi-
mately 30% having at least one corrected allele and 57% contain-
ing biallelic gene-disrupting indels (96). In a humanized mouse 
model for HbSS SCD, investigators have achieved an average of 
14.8% (1%–35.4%, n = 9) allele correction in repopulating HSCs, 
with improvement of hemolytic anemia (97). Direct correction of 
the SCD codon will likely improve with protocols and technologies 
designed to enhance the rates of HDR in HSCs and/or select for 
those that are genetically corrected (98–104).

Prime editors contain Cas9n fused to an engineered reverse 
transcriptase that directly copies edited sequence information 
from a prime editing guide RNA (pegRNA) into a target DNA 
locus, then causes the cell to replace the original DNA sequence 
on both strands with the newly synthesized DNA flap (Figure 2D 
and refs. 49, 105). Prime editing can convert the SCD mutation to 
the wild-type allele at relatively high efficiencies in HEK293 cells 
(26%–52%; ref. 105) but requires further optimization for high- 
frequency targeted modification of human HSCs.

Base editors cannot create the T-to-A transversion required to 
revert the mutant SCD codon (valine, GTG) to wild-type (glutamic 
acid, GAG). However, adenine base editors can convert the mutant 
valine to alanine (GCG) to generate hemoglobin G-Makassar (Hb 
G-Makassar), a rare naturally occurring, nonsickling variant dis-
covered in Southeast Asia (Figure 3C). Hb G-Makassar heterozy-
gotes and one reported homozygote exhibit normal RBC indices, 
indicating that the variant is benign (106–109). Protein evolution 
strategies have developed an A base editor that can convert HbS 
alleles to Hb G-Makassar efficiently in HEK293 cells (110) and in 
mouse repopulating HSCs from subjects with SCD (111).

Genotoxicities associated with genetic modification of HSCs. All 
methods to manipulate the HSC genome carry the potential for 
genotoxicity, the major concern being inadvertent clonal malig-
nant transformation. Leukemia caused by γ-retroviral vector–
mediated insertional activation of the LMO2 proto-oncogene 
was a major setback for early clinical studies of gene therapy for 
immunodeficiency (11, 12, 112). While the use of modified LVs 
markedly reduced this problem, Espinoza et al. reported dysplas-
tic clonal hematopoiesis following LV transduction of HSPCs in 
a rhesus macaque model (113). This study identified two factors 
that increased the risk for malignancy: a high VCN (nine) and a 
potent murine stem cell virus (MSCV) constitutively active pro-
moter-enhancer in the LV long terminal repeat. The LV used in 
the study was a hybrid vector that likely affected the insertional 
profile, contributing to the malignancy. None of the LVs used in 
clinical trials for β-hemoglobinopathies use the MSCV element 
(11). In the HGB-207 (NCT02906202) clinical trial for β-thalas-
semia, one participant treated with LV gene therapy developed 
a dominant HSC clone with insertional activation of HMGA2, 
a DNA-binding protein associated with benign and malignant 
tumor formation (114). Hematopoiesis remained stable over 

15 months, and there have been no subsequent reports on this 
patient. It remains to be determined whether the myeloid malig-
nancies recently reported in two individuals with SCD gene ther-
apy are related to LV insertion (13, 14).

To our knowledge, no clinically relevant adverse event attrib-
utable to LV integration has been reported in any clinical trial for 
any indication (12). Nonetheless, preclinical safety studies of all 
LVs must determine integration sites after transduction in vitro, 
and assess for clonal dominance after transplantation of transduc-
ed cells in animal models (112). In human LV gene therapy trials, 
long-term (15 years) clinical evaluations and longitudinal deter-
minations of vector integration sites in purified hematopoietic 
lineages must be included to assess clonal dominance as part of 
safety monitoring. These studies may also offer insights into the 
biology of hematopoietic differentiation and clonal succession 
(115, 116). It should be possible to enhance such studies by analyz-
ing single cells, which is now being done to map clonal trajectories 
in malignant hematopoiesis (117).

Genome-editing nucleases may induce several genotoxicities, 
although it is too early to know the clinical impact (118–120). First, 
genome-editing proteins can create unintended off-target DSBs 
followed by formation of small indels, usually in DNA regions 
with homology to the targeted site. Second, on- and off-target 
DSBs can create kilobase-scale local DNA rearrangements or 
deletions, including loss of the entire chromosomal arm telomer-
ic to the DSB. Moreover, DSBs can activate the TP53 tumor sup-
pressor protein, leading to cell cycle delay, apoptosis, and selec-
tive pressure for TP53 gene loss, which can promote malignant 
transformation (121–125). Methods to investigate potential geno-
toxicities include computational algorithms based on homology 
to the on-target nucleotide sequence, whole genome sequencing, 
and molecular cloning approaches that enrich for genomic seg-
ments with genome editing–induced DSBs, followed by next-gen-
eration sequencing (118–120). Standard karyotyping approaches 
and/or more sensitive high-throughput sequencing–based meth-
ods, such as Uni-Directional Targeted Sequencing (UDiTaS), 
may detect translocations and chromosomal rearrangements 
caused by genome editing (126). Current methods can detect 
genome-editing off-target mutations at sensitivities from 0.01% 
to 1%. Theoretically, oncogenic mutations could occur at lower 
rates. Moreover, the current regulatory standard for tumorigenic-
ity is to evaluate a patient-sized dose of genome-edited HSPCs 
in immunodeficient mice. As the natural life span of these mice 
is less than 1 year, this assay may fail to detect oncogenic muta-
tions that require longer time frames for clonal expansion. Hence, 
a major challenge for therapeutic genome editing is to develop 
more sensitive detection methods for genotoxicities, including 
cell-based approaches to assess oncogenic risks associated with 
specific gene targeting protocols.

Approaches to reduce off-target DSBs by enhancing the 
specificity of genome-editing nucleases have focused mainly on  
CRISPR/Cas9 systems, which are more versatile and adaptable 
than ZFNs and TALENS (118, 119). The specificity of Cas9-mediat-
ed DSBs may be increased via at least five methods: using dimeric 
versions that require two distinct adjacent gRNA-programmed 
binding domains to install a DSB; developing Cas9 variants with 
reduced catalytic activity at regions of DNA with partial homol-
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Reduced-toxicity HSCT conditioning regimens using antibod-
ies against HSPC cell surface receptors are under study for treat-
ing refractory leukemia (158) and may also be effective for autol-
ogous HSCT. Unconjugated anti-CD117 (c-KIT) antibody is being 
tested as a non-genotoxic conditioning agent for allogeneic HSCT 
in infants with severe combined immunodeficiency, with promis-
ing early data (159, 160). Killing of anti-CD117–bound HSPCs is 
inhibited by their expression of CD47 and its interaction with sig-
nal regulatory protein-α (SIRPα) on the surface of immune effector 
cells (161). Thus, coadministration of anti-CD47 may enhance the 
efficacy of anti-CD117 for pre-HSCT conditioning (162). Studies 
in mice and nonhuman primates indicate that bone marrow con-
ditioning with toxin-linked antibodies against CD45 or CD117 
can facilitate donor HSC engraftment with minimal toxicity (163–
167). Reduced-toxicity bone marrow conditioning with radioiso-
tope-linked antibodies has been examined in allogeneic HSCT for 
hematological malignancies (168–172). Similar approaches using 
α-emitters with high linear energy transfer and short path lengths 
(40–90 μm) (173, 174), such as actinium-225 and astatine-211, may 
provide reduced-toxicity conditioning in autologous HSCT for 
nonmalignant blood disorders, including SCD.

Preclinical endpoints that predict therapeutic 
responses
Ideally, genetic correction of autologous SCD patient HSCs will 
generate 100% nonsickling RBCs with normal circulatory life 
span, eliminate disease symptoms, and arrest end-organ dam-
age. Modification of all HSCs is not required to achieve this goal 
because corrected RBCs have a survival advantage in the circu-
lation. The clinical benefits of any autologous HSCT for SCD 
depend on the fraction of modified HSCs in the bone marrow and 
the relative survival advantage conferred to RBC progeny, which 
can be modeled mathematically (151, 175). In general agreement 
with these models, allogeneic HSCT studies with normal or 
SCD-heterozygous donors indicate that chimerism as low as 20% 
can result in 100% circulating donor RBCs (151–153, 176). By this 
analogy, heterozygous or homozygous correction of the mutant 
SCD codon via HDR must occur in at least 20% of repopulating 
HSCs. The same may hold true for base editor conversion of HbS 
to Hb G-Makassar, assuming that the HbGS heterotetramer is 
nonsickling under normal physiological conditions.

Lentiviral vector gene therapy. Variables that predict success-
ful LV gene therapy for SCD include the fraction of modified 
human HSCs, expression levels of the β-like globin transgene, 
its antisickling properties, and its ability to outcompete endog-
enously expressed βS-globin for binding to α-globin during Hb 
assembly. Clinical trial data using the BB305 βA-T87Q-globin LV 
(HGB-206, NCT02140554) demonstrate a relatively high VCN in 
the preinfusion CD34+ cell product (mean 3.8 copies per diploid 
genome), which may be required for full therapeutic efficacy (177). 
This VCN generates approximately 16–20 pg βA-T87Q per cell in an 
immortalized erythroid line harboring an engineered βS muta-
tion (178). Interestingly, this study showed that expression of the  
βA-T87Q transgene caused VCN-dependent reductions in endoge-
nous βS-globin mRNA and protein.

Genetic induction of HbF. Predicting the therapeutic require-
ments for γ-globin gene induction is complex because the protec-

ogy to the on-target site; modifying the structure or length of the 
programming gRNA; employing short gRNAs as decoys against 
potential off-target loci; and using phage-derived proteins that 
antagonize CRISPR/Cas9 nuclease activity (118, 119, 127–129).

In contrast to standard genome-editing nucleases and LVs, 
base editors act through mechanisms that are independent of 
DSBs, facilitating more precise DNA modifications and reducing 
some genotoxicities (49, 124, 130). However, base editors also 
carry unique potential to create undesired modifications. At target 
sites, base editors can produce “bystander” edits of nearby A or C 
nucleotides or induce low-frequency DSBs with resultant indels. 
Base editors can also induce low-level off-target deamination of 
A or C nucleotides in DNA or RNA through Cas-dependent and 
-independent mechanisms (131, 132). Several laboratories have 
created variants of adenine and cytosine base editors by altering 
their Cas9 and/or deaminase domains (131–143).

Similar to base editors, prime editing does not act through the 
creation of DSBs. Early studies indicate that prime editing is less 
prone to off-target modifications than is conventional Cas9 nucle-
ase with the same gRNAs (105, 144–146).

Bone marrow conditioning and infusion 
regimens
Myelotoxic chemotherapy and/or irradiation before infusion of 
genetically modified autologous HSCs eliminates resident HSPCs 
that compete for the hematopoietic niche, facilitating engraft-
ment. Most autologous HSCT protocols use high-dose myeloab-
lative conditioning to promote full replacement of bone marrow 
with corrected HSCs (32, 33, 53, 147, 148). Major toxicities include 
multi-organ damage, infertility, and myeloid neoplasms (149). One 
individual who received LV gene therapy with high-dose busulfan 
for SCD developed myelodysplastic syndrome after approximately 
3 years (13). As the malignant clone did not harbor LV DNA, trans-
formation was attributed to busulfan conditioning. The myelodys-
plastic syndrome transformed to acute myeloid leukemia, and the 
patient subsequently underwent induction chemotherapy followed 
by haploidentical transplantation. Unfortunately, relapsed disease 
ultimately led to his death. Genotoxic agents like busulfan create 
mutations that can synergize with preexisting germline or somatic 
cancer susceptibility mutations, and/or an abnormal bone marrow 
microenvironment, to induce malignant evolution (150).

Because normal or genetically corrected RBCs survive lon-
ger in the circulation than SCD RBCs, therapeutic effects may be 
gained by establishing partial bone marrow chimerism with nor-
mal or HbAS HSCs (151–153). Sub-ablative conditioning has been 
incorporated into one LV gene therapy clinical trial for SCD (154) 
and may reduce HSCT toxicities for all SCD patients. However, a 
recent report raises caution (155). Three of 76 adult SCD patients 
who received allogeneic HSCT with reduced-intensity conditioning 
developed graft rejection followed by myeloid leukemia. Two indi-
viduals studied further were found to harbor somatic TP53 muta-
tions in bone marrow HSPCs prior to HSCT. Most likely, outgrowth 
of these preleukemic clones was favored by low-intensity condi-
tioning, similar to what has been observed with HSCT for myelo-
dysplastic syndrome or acute myeloid leukemia (156, 157). Thus, it 
may be prudent to screen adults with SCD for somatic mutations 
associated with clonal hematopoiesis before autologous HSCT.
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advancing rapidly and the future is promising. However, the field 
is in its infancy, the best strategies remain unknown, and each step 
(Figure 1) requires further optimization. Moreover, advances are 
also occurring in alternative donor allogeneic HSCT, including the 
use of haploidentical donors with non-myeloablative bone marrow 
conditioning (196–198). Ensuring that patients and families are 
fully informed about the potential risks and benefits of different 
curative approaches represents a major ethical challenge (19, 199).

Recent reports of SCD patients developing myeloid neoplasms 
after undergoing LV gene therapy remind us that experimental 
treatments come with unknown risks. Of 47 patients treated in the 
largest LV gene therapy trial to date, three have been diagnosed 
with myeloid malignancies. One of these has been attributed to 
busulfan conditioning, and studies are under way to investigate 
the etiologies of the two cases reported more recently (13, 14). Leu-
kemia has not been reported in several hundred individuals who 
have been treated with LV gene therapy for indications other than 
SCD, including 63 β-thalassemia patients who received the same 
vector used for SCD in separate clinical trials. Thus, SCD itself 
may predispose to gene therapy–related myeloid malignancies, 
possibly by enhancing the rate of preleukemic somatic mutations 
acquired before treatment (155, 200) (discussed in “Bone marrow 
conditioning and infusion regimens” above) and/or by creating an 
abnormal bone marrow microenvironment (150, 201). Similar risks 
could also apply to newer LV gene therapy or genome editing proto-
cols. A promising trial of LV-mediated posttranscriptional silencing 
of BCL11A was also paused out of an abundance of caution, though 
no such events have been described in the nine individuals treated 
to date (Table 2 and ref. 202). These recent observations highlight 
the need for close long-term clinical and molecular monitoring, 
beginning before the initiation of gene therapy.

The notion that individuals with SCD may be uniquely sus-
ceptible to gene therapy–related myeloid malignancies raises con-
cerns about hydroxyurea as a potential contributor. Hydroxyurea 
is antimetabolite that has been used to treat SCD since the 1980s. 
Some studies indicate that hydroxyurea can be mutagenic in vitro 
and enhance the rate of myelodysplastic syndrome/acute myeloid 
leukemia transformation in patients with myeloproliferative dis-
orders (203). However, these studies have remained inconclusive, 
and a World Health Organization expert panel concluded that 
hydroxyurea is not classifiable as to its carcinogenicity to humans 
(203). Moreover, long-term studies have shown that hydroxyurea 
therapy reduces morbidity and mortality in SCD without increas-
ing the rates of accumulated mutations or cancer (204). It has 
recently been reported that individuals with SCD are at increased 
risk for myeloid malignancies, yet no further increase was noted 
in the data after hydroxyurea’s FDA approval (205). We conclude 
that while the potential for chronic hydroxyurea administration to 
influence long-term outcomes of gene therapy should be investi-
gated, current evidence indicates that the benefits of hydroxyurea 
therapy outweigh the risks for most patients.

Current autologous HSCT therapies for SCD are technological-
ly complex, expensive, and high-risk. We believe that the develop-
ment of reduced-toxicity bone marrow conditioning regimens to be 
used in conjunction with autologous HSCT represents a high-prior-
ity challenge. As safe and effective approaches become established, 
it will be important to streamline manufacturing and reduce costs 

tive effects of HbF on SCD can be partial and the levels required 
to inhibit SCD pathologies are likely organ specific. For example, 
high HbF is associated with longer life span, reduced pain epi-
sodes, and fewer leg ulcers (179, 180). A protective role for HbF 
against cerebrovascular disease is less clear. Several studies show 
that silent cerebral infarcts or ischemic strokes associate with low 
HbF levels (181–183). However, these associations were not repli-
cated in two large, multicenter studies (184, 185).

Genetic modifications that induce HbF pancellularly are like-
ly to attenuate SCD-related morbidities more effectively than 
those that induce HbF heterocellularly (179, 180). Many patients 
with SCD in India and parts of the Middle East carry the Arab-In-
dian haplotype at the β-like globin locus, which is associated 
with approximately 20% HbF expressed heterocellularly. These 
individuals experience SCD-related morbidities, although lat-
er in life compared with patients in the United States and other 
regions where the Arab-Indian haplotype is less common (186, 
187). In contrast, individuals with SCD and HPFH possessing 
more than 30% HbF distributed pancellularly appear to be symp-
tom free (179, 188, 189). Thus, while the protective thresholds for 
HbF induction may vary across different organ systems, genetic 
manipulations that induce more than 30% pancellularly should 
produce substantial clinical benefits and may induce cures. For 
comparison, six individuals who received autologous HSCs that 
were transduced with LV encoding erythroid-expressed BCL11A 
shRNA exhibited a median of 30.5% (range, 20.4%–41.3%) HbF 
in RBC lysates, with 70.8% (range, 58.9%–93.6%) of individual 
RBCs expressing HbF, as detected by immunoflow cytometry (F 
cells) (33). One individual who received autologous HSCs harbor-
ing Cas9-disrupted BCL11A erythroid enhancer has maintained 
42%–49% HbF expressed pancellularly in RBCs at 15 months 
after therapy (32). All of these patients have exhibited markedly 
reduced pain episodes and improved laboratory parameters of 
hemolysis. It will be important to correlate laboratory studies with 
detailed multiorgan assessments at 5 and 10 years on these and 
future gene therapy research participants.

Induction of HbF inhibits RBC sickling by reducing the effec-
tive concentration of HbS, which is the primary determinant of its 
polymerization at low oxygen tension (71). It is estimated that 9–12 
pg HbF per RBC can block HbS polymerization in venous capillary 
beds (179). The fraction of RBCs that achieve this HbF threshold is 
poorly predicted by standard clinical tests such as percentage HbF 
in RBC lysates and detection of F cells with anti-HbF antibodies. 
Moreover, these tests imprecisely predict SCD severity. Thus, 
improved analytical methods to quantify HbF and HbS concentra-
tions in individual RBCs and to measure their propensity for sick-
ling under physiological oxygen concentrations should enhance 
preclinical testing of genetic strategies to treat SCD (190–195).

Perspectives and future
While studies of SCD over the past 50 years have benefited medi-
cal science, it may be argued that affected patients have fared less 
well. The 2020 NASEM report notes that “the health care needs of 
individuals living with SCD have been neglected by the U.S. and 
global health care systems, causing them and their families to suf-
fer” (27). Now we are poised to develop new potentially curative 
therapies based on autologous HSCT. Enabling technologies are 
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