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ABSTRACT

The evolutionary pressure of endemic malaria and other erythrocytic pathogens has shaped
variation in genes encoding erythrocyte structural and functional proteins, influencing responses
to hemolytic stress during transfusion and disease. We sought to identify such genetic variants
in blood donors by conducting a genome-wide association study (GWAS) of 12,353 volunteer
donors, including 1,483 African Americans, 1,477 Asians, and 960 Hispanics, whose stored
erythrocytes were characterized by quantitative assays of in vitro osmotic, oxidative, and cold-
storage hemolysis. GWAS revealed 27 significant loci (p<5x10%), many in candidate genes known
to modulate erythrocyte structure, metabolism, and ion channels, including SPTA1, ALDH2,
ANK1, HK1, MAPKAPK5, AQP1, PIEZO1, and SLC4A1/Band 3. GWAS of oxidative hemolysis
identified variants in antioxidant enzymes including GLRX, GPX4, G6PD, and a novel golgi-
transport protein SEC14L4. Genome wide significant loci were also tested for association with the
severity of steady state (baseline) in vivo hemolytic anemia in patients with sickle cell disease,
with confirmation of identified SNPs in HBA2, G6PD, PIEZO1, AQP1 and SEC14L4. Many of the
identified variants, such as those in G6PD, have previously been shown to impair erythrocyte
recovery after transfusion, associate with anemia, or cause rare Mendelian human hemolytic
diseases. Candidate SNPs in these genes, especially in polygenic combinations, may affect RBC
recovery after transfusion and modulate disease severity in hemolytic diseases, such as sickle cell

disease and malaria.



INTRODUCTION

Blood transfusion is one of the most common procedures during hospital stays, with more
than 36,000 red blood cell (RBC) transfusions performed daily in the United States. Clinically, RBC
transfusions are largely considered to be homogeneous. However, a growing number of studies
have evaluated the potential impact of unique donor characteristics, such as sex, age and body
mass index, on RBC storage integrity (1-3), post-transfusion recovery and survival of RBCs, and
consequent clinical outcomes (4-7). In addition, the U.S. donor population is ethnically diverse,
with hundreds of functionally and immunologically relevant RBC single nucleotide
polymorphisms (SNPs) (8, 9).

Studies evaluating inbred mouse strains demonstrated strong heritable determinants of
RBC susceptibility to canonical in vitro stressors such as cold storage hemolysis, osmotic
hemolysis, and oxidative hemolysis; importantly, these in vitro responses also correlated with
post-transfusion RBC recovery and function (4, 10, 11). In humans, in vitro hemolysis of donor
RBCs in response to osmotic or oxidative stress is a reproducible and heritable trait that can be
further modulated by factors such as donation history, ancestry, age, and sex (12, 13). Human
studies of RBC recovery and survival following blood bank storage have demonstrated variability
among donors that is reproducible over time, suggesting donor specific factors such as sickle cell
trait (7) and glucose-6-phosphate dehydrogenase (G6PD) deficiency (14-16), can reduce post-
transfusion RBC recovery (17). Indeed, in a recent study, the post transfusion RBC recovery was
evaluated in 10 volunteers with G6PD deficiency using chromium-51 cell labeling. Recovery was
78.5% in G6PD-deficient subjects versus 85.3% for transfusion in 27 control subjects without
G6PD (P = 0.0009) (16).

Genetic variability also contributes to the intensity of hemolysis observed in Mendelian
hemolytic diseases, such as sickle cell anemia. In patients with homozygous hemoglobin (Hb) SS
disease, there is a significant variability in the intensity of steady state or baseline hemolysis (18-
21). Co-inheritance of a- and B-thalassemia and mutations modulating the expression of fetal
hemoglobin (HbF) influence hemoglobin levels and hemolysis in patients with sickle cell disease
(21, 22). Furthermore, the variability in severity of hemolysis influences clinical outcomes (23),

promoting vasculopathy and the development of end-organ complications, such as pulmonary



hypertension, cutaneous leg ulceration and chronic kidney injury. We and others have
demonstrated that cell-free hemoglobin released during hemolysis in the setting of sickle cell
disease and transfusion of aged stored blood is toxic, driving nitric oxide depletion, oxidative
injury, heme-mediated inflammation, and iron overload (19-21, 23, 24).

These findings inform a hypothesis that rare and common genetic variants modulate
various characteristics of erythrocytes leading to altered susceptibility to hemolysis that may
influence erythrocyte storage in blood banks, transfusion outcomes, and potentially the severity
of hemolytic diseases. Considering this hypothesis, the aim of this study was to identify genes
that modulate hemolysis in cold storage and hemolytic disorders by conducting a genome-wide
association (GWA) study in RBC donors enrolled in the National Heart, Lung, and Blood Institute
(NHLBI) RBC-Omics project (2, 25). We tested the associations between in vitro measures of stress
hemolysis in cold stored RBCs (spontaneous storage hemolysis, osmotic fragility, and oxidative
hemolysis) and high-density GWA SNPs (26) to discover candidate loci that regulate the function
of human RBCs and their resilience to stress. This GWA cohort of 12,353 volunteer donors was
enriched for groups with African, Hispanic, and Asian ancestry. Collected and stored RBCs were
characterized by quantitative assays for in vitro osmotic, oxidative and cold-storage hemolysis.
Consistent with the anticipated genetic variability in donor RBCs, our analysis identified 27 GWA
significant loci (p < 5x10%), many in candidate genes known to modulate erythrocyte structure,
metabolism, and ion channels. We further verified whether the SNPs identified from our in vitro
hemolytic stress phenotyping have relevance to hemolytic disease by analyzing their association
with in vivo measurements of the severity of steady-state (outpatient) hemolytic anemia (low
hemoglobin values and high indices of RBC hemolysis) in two cohorts of sickle cell disease (SCD)
patients.

These studies suggest that the identification of genetic variables that modulate the
stability of RBCs in storage, response to stressors, and the functional integrity of RBCs after
transfusion could advance donor selection criteria and procedures and storage policies.
Identification and removal of genetically susceptible RBC donors/units that rapidly degrade in
storage (exclusion of “fragile” RBC donors/units) and selection of profiled “super donors” that

might be stable for longer periods of storage or survive longer after transfusion could provide for



a precision transfusion medicine strategy, more advanced than current random sampling of
donors and transfusion of RBC units irrespective of recipient disease status or short- or long-term
transfusion requirements. In addition, the variants could provide information about risk and
severity of hemolytic anemia in patients with hemolytic diseases, such as sickle cell, thalassemia

and malaria, as well as advance the discovery of proteins and enzymes that modulate RBC

function.



RESULTS

Population Ancestry of REDS-11l RBC-Omics cohort

The RBC-Omics cohort included a diverse group of U.S. blood donors born in many (n=71)
countries. Initially, groups were divided into continent ancestry groups; however, we have
followed recent recommendations to divide the Hispanic (27, 28) and Asian ancestry groups into
multiple subgroups based upon country of birth. Donors of Hispanic ancestry were divided into
two groups: Mexican and Central American Hispanics (Supplemental Figures 1 and 2) and
Caribbean Island Hispanics (Supplemental Figures 1 and 3). Donors of Asian ancestry were divided
into East Asians and South Asians to reflect the diversity of these RBC-Omics subpopulations (27,
28). In total the REDS-IIl RBC-Omics populations (Figure 1A) were divided into seven ancestry
groups that included non-Hispanic Whites (n =7,586), East Asians (n =1,049), South Asians
(n =257), Mexican and Central American Hispanics (n = 456), Caribbean Island Hispanics (n = 489),
African Americans (n=1,046) and “Other” participants (n=1,336). “Other” participants is a
heterogeneous group including all individuals that did not cluster within the other groups, but
included people who self-identified as Native Americans, Native Hawaiians, Native Alaskans,
multiple races, or were from countries like Iran and the Philippines. We also considered the entire

RBC-Omics as a single group referred to as ALL Ancestries.

Genome Wide Association Studies of Osmotic, Oxidative, and Storage Hemolysis in Mega
Analysis

The SNP-based heritability from LDScore regression for osmotic hemolysis was 0.348
(SE=0.062), and for oxidative hemolysis was 0.156 (SE=0.073). The heritability score for storage
hemolysis was not different from zero. Genome wide analysis of 12,353 subjects from the REDS-
[l RBC-Omics cohort was conducted between 14.1 million genotyped and imputed SNPs for
osmotic (Figure 1B), oxidative (Figure 1C), and cold storage hemolysis (Figure 1D). GWA analyses
using ALL Ancestries samples identified 14, 4, and 2 genome-wide significant regions that were
associated with osmotic, oxidative, and spontaneous cold storage hemolysis, respectively (Table

1). Q-Q plots (Supplemental Figure 4) did not exhibit any p-value inflation.



Genome wide analysis of osmotic hemolysis in the entire data set (ALL Ancestries)
revealed that the genome-wide significant variants were in or close to several logical candidate
genes known to modulate RBC structure and function, such as spectrin alpha chain, erythrocytic
1 (SPTA1/Band 1; p<1.01E-22), Ankyrin 1 (ANK1/Band2.1; p<5.85E-28), Aquaporin 1 (AQPI;
p<4.23E-10), and Solute Carrier Family 4 Member 1 (SLC4A1/Band 3; p<3.62E-08) (Table 1). In
addition, a number of novel GWA significant variations were found in metabolic enzymes
(Hexokinase 1 - HK1; p<4.90E-11), stress kinases (MAPKAPKS5; p<2.24E-13), ion channels (Piezo
type mechanosensitive ion channel component 1; PIEZO1; p<4.04E-14), and other proteins, such
as Myosin IXB (MYO9B; p<9.88E-15). Supporting the internal validity of these findings, many of
these SNPs are in proteins known to cause RBC disorders such as spherocytosis (23), elliptocytosis
(29), xerocytosis (30), and alpha-thalassemia (31).

GWA analysis of oxidative hemolysis identified genome wide significant SNPs in glucose-
6-phosphate dehydrogenase (G6PD; p<2.66E-17), SEC14 Like 4 (SEC14L4; p<9.85E-10),
glutaredoxin (GLRX; p<1.15E-12) and glutathione peroxidase 4 (GPX4; p<3.80E-14). G6PD, GLRX,
and GPX4 are all known to have roles in protecting cells from oxidative damage. Analysis of
storage hemolysis (Figure 1D) identified only two genome wide significant loci; one on
chromosome 8 distant more than 500 Kb from the nearest genes, and another on chromosome

17 (TMCS; P< 1.34E-08).

Ancestry-Specific GWA Results

Individual principal component analysis (PCA) defined ancestry group GWA revealed a
high degree of overlap with the ALL Ancestries analysis; however, seven additional genome-wide
significant loci were observed in genes such as EYS (P<3.20E-09), HBB (P<3.66E-10), HBA2
(P<2.90E-14), and G6PD (P<2.66E-17) within specific ancestry groups (Table 1) and in only some
cases (G6PD and HBA2) were the results significant in the ALL Ancestries analysis. Several loci
such as GPX4 and SEC14L4 were only significant when considered with ALL Ancestries groups
together. Only studying hemolysis in ancestry specific and in combined analysis enabled the

discovery of all 27 of these loci.



Identification and Bioinformatics Analysis of Variation

We identified 12 directly genotyped genome-wide significant (p<5X10%) non-
synonymous variants (NSVs) for hemolysis measures in the entire population or in the ancestry
specific groups, predicted using SIFT or PolyPhen2. SPTA1 contains a NSV rs857725 (Lys1693GIn
p<8.75E-21, Figure 2A). Notably, the marker for alpha-thalassemia (Figure 2B) deletion
(chr16:223678) and the HbS variant modulated osmotic, oxidative, and spontaneous storage
hemolysis (7). In HBB, the HbS variant (rs334, Glu7Val, p<3.66E-10) was significantly associated
with osmotic hemolysis in the African American ancestry group (Figure 2C). For oxidative
hemolysis, SEC14L4 AX-83171224/rs9606739 (Argl24Gly, p<3.07E-09, Figure 2D) and G6PD
rs1050828 (Val68Me, p<2.66E-17, Figure 2E) were significant NSVs, whereas for spontaneous
storage hemolysis, TM(C8 rs7208422 (Asn306lle p<1.23E-08, Figure 2F) was GWA significant.

Chromosome 8 had two non-overlapping genome-wide significant loci for osmotic
hemolysis within ANK1 (Figure 3A-D). The first locus is centered on rs4737010 (Figure 3A), and
the second is 87 kb away and centered on the NSV rs34664882 (Alall4Val; Figure 3B).
PolyPhen2and SIFT suggested that rs34664882 is deleterious. The SNP appears to have a large
guantitative effect on osmotic hemolysis across multiple ancestry groups, accounting for 3.2% of
the variation in osmotic hemolysis in the combined data set. The second GWA-significant locus
near ANK1 is centered on rs4737009, which is in the canonical binding motif for the MAZ and
STATS5A transcription factors (Supplemental Figure 5). It is likely that both rs34664882 and
rs4737009 are independent and functionally consequential mutations for osmotic hemolysis.
Conditional GWA showed these loci (rs34664882 and rs4737009) are fully independent and each
is genome wide significant conditional on the other locus. Additional conditional GWA suggested
there may be two or more independent locus at SEC14L4 and PIEZO1 (data not shown).

Within G6PD, the rs1050828 Val68Met variant associated with oxidative hemolysis in this
study is a common class lll variant, also referred to as G6PD A-. Individuals with class Il GE6PD
variants are susceptible to acute hemolytic anemia when their RBCs are exposed to oxidant stress
(32). G6PD deficiency is a chromosome X linked disorder. Figure 2E shows that female
heterozygotes have intermediate phenotypes for oxidant-induced hemolysis between the female

homozygote groups, and the few (n=4) females A- homozygotes are similar to the male



hemizygote groups. This supports the observation that heterozygotes for many disorders
potentially have altered or intermediary phenotypes (33).

Pathway and gene-set enrichment analysis identified three Bonferroni corrected
significant groups for osmotic hemolysis: Spectrin associated cytoskeleton (P, =
6.77 x 10™*), Steiner erythrocyte membrane genes (P,,,, = 2.58 X 1073), and Nikolsky breast
cancer 19p13 amplicon (P,,, = 0.028). For oxidative hemolysis, there were no gene sets

significantly enriched after the Bonferroni correction.

Inference of Differential Expression

MetaXcan was used to infer expression patterns for all genes based on the genotypes that
have been identified by GTEX as eQTLs. The inferred gene expression was correlated with
spontaneous storage, osmotic, and oxidative hemolysis in the RBC-Omics cohort. Thirteen genes
were predicted to be significantly (p<0.05) differentially expressed and significantly (p<0.05)
associated with osmotic (n=11) or oxidative (n=2) hemolysis but not spontaneous storage
hemolysis (n=0) (Table 2). Of these, ten were situated within one of the genome-wide significant
regions, and two others were close (<700 kb). Most of the genes (SLC4A1, SWAP70, MFSD2B)
found by MetaXcan were kinases, channels, and metabolic genes whose mechanisms could be
affected by changes in gene expression (34-36). MetaXcan did not identify RBC membrane
structural genes, such as ANK1 and SPTA1, which is consistent with the previous observations
that disease causative variations in genes coding for structural genes tend to be to gain or loss of
function mutations, as opposed to changes in gene expression levels (37-39). The most significant
SNP in GLRX (rs72785409; p=6.14E-48) is an eQTL for GLRX in whole blood based upon 15 cohorts

in the eQTLGen database (40).

Polygenic Scores

We modeled the polygenic scores (PGS) by using data from 2/3 of the population,
whereas data from the remaining third was used for validation. We found the pruning and

thresholding model in osmotic hemolysis at p<10” and r’<0.4 to validate better than the best



LDPred score (correction of best LD Pruning = 0.173 versus best LDPred model = 0.0904;
Supplemental Figures 6-9). According to these data for osmotic and oxidative hemolysis, pruning
and thresholding is a more precise method of developing PGS scores than LDPred.

Table 3 highlights the correlation of each of the three hemolysis PGS within each ancestry
group with the observed hemolysis measures. Within non-Hispanic White samples, the
correlation with osmotic hemolysis was 0.221, which explained more of the variability in osmotic
hemolysis than any single marker. The best model for oxidative hemolysis was in African
American and Mexican/Central American Hispanics (MCAH) samples, where the PGS correlation is
approximately 0.260. Some ancestry groups did not yield PGS scores because of small sample
sizes or lack of markers with a p-value less than 107 when split for cross validation. To develop
predictors within these groups, hemolysis measures by ancestry group were correlated with the
non-Hispanic White PGS score. This revealed that an ancestry specific PGS score was more precise
than those developed in other ancestry groups, even if the latter sample size is larger. Therefore,
when possible, PGS should be developed in ancestry-appropriate groups; if not applicable, scores
from other ancestry groups can be used but will give diminished precision.

Unlike single gene disorders where only a few people contain causal loci, for polygenic
traits such as hemolysis everyone has a combination of alleles which increase or decrease
hemolysis across all identified loci. For example, for the top 50 loci identified in the non-Hispanic
White PRS score for osmotic hemolysis, all RBC-Omic donors are heterozygous for between 7 and
34 of the loci (mean+SD = 18.3%+4.6). Thus, genetic factors modulated osmotic and oxidative

hemolysis in all individuals.

Genetic Analysis of In vivo Hemolysis in the WALK-PhASST and PUSH SCD Cohorts

To test the hypothesis that the genetic findings obtained from in vitro stress hemolysis
perturbations of cold-stored RBCs from healthy blood donors may also be relevant to the in vivo
severity of steady-state hemolytic anemia in human diseases, the genome-wide significant SNPs
identified in the 27 loci for each hemolysis GWA were then tested in two cohorts of patients with
SCD (Walk-PHaSST and PUSH). Note that there were 232 significant SNPs within these 27 loci.

The same SNPs were tested for association using an in vivo measure of intensity of steady-state



hemolytic anemia as a quantitative trait in the SCD patient cohorts. Considering our small sample
size of SCD cohorts, we restricted our analysis to the 1000 SNPs that were common (MAF >0.05)
in SCD cohorts and were imputed with good quality (r? >0.8). Results between in vitro and in vivo
hemolysis were considered consistent if the initial GWA p-value was significant at the genome
level (p<5X108) and the p-value for the association in the two SCD cohorts was also significant
(p<0.05).

Consistent results were found in seven regions, including four regions for osmotic
hemolysis GWA and three of four regions from the oxidative hemolysis GWA (p<0.05; Table 4).
Significant results were found for osmotic hemolysis on chromosomes 7 (AQP1), 12 (several
genes), and 16 (HBA2, PIEZO1). Oxidative hemolysis was concordant for three of the four
genome-wide significant loci including on chromosome 5 (GLRX), 22 (SEC14L4), and X (G6PD).
Even using more conservative assessments, the HBA2 and G6PD loci were significant in the sickle

cell cohorts with Bonferroni testing correction.



DISCUSSION

This study is the first genome-wide evaluation of in vitro RBC stress hemolysis in cold-
stored samples from blood donors, with secondary assessment of GWA significant findings on
the in vivo severity of baseline (steady-state) hemolytic anemia in SCD patients. Increased
hemolysis is a hallmark of several diseases, including SCD, and is associated with worse
transfusion outcomes, such as poor RBC recovery and increased rates of post-transfusion sepsis.
This notion is supported by recent murine studies demonstrating mouse strain-specific
susceptibility to RBC cold storage injury that correlate with post-transfusion RBC recovery and
function (4, 7, 11). In addition to limiting storage time and reducing post-transfusion RBC
recovery, hemolysis drives endothelial dysfunction and vascular injury. We and others have
demonstrated that cell-free hemoglobin released during hemolysis in the setting of SCD and
transfusion of aged stored blood is toxic, driving nitric oxide depletion, oxidative injury, heme-
mediated inflammation, and iron overload (19-21, 23, 24).

We identified twenty loci that were genome-wide significant in all sample analysis
(p<5x10°8) for at least one of the hemolysis measures (Table 1). Many of the identified variants
were concentrated in proteins known to cause human RBC disorders characterized RBC fragility
such as dehydrated hereditary stomatocytosis (PIEZO1) (41, 42), spherocytosis ANK1, SPTAI,
SLC4A1 (23, 43), ellipto-poikilocytosis (SPTA1) (44), xerocytosis (PIEZO1) (30), alpha-thalassemia
(HBB) (31), and spontaneous and oxidant stress—induced hemolytic anemia (HK1 and G6PD) (16,
45). Providing additional validity, many of the implicated SNPs have been associated with
laboratory complete blood cell count measurements, such as reticulocyte counts (SPTA1 and
PIEZO1) (46), and other complete blood count indices (G6PD) (47). Consistent with relevance of
our in vitro quantitative measures of stress hemolysis, the identified SNPs from the RBC donor
GWAS cohort in alpha-thalassemia, G6PD, PIEZO-1, Aquaporin-1, SEC14 Like 4 (SEC14L4), and
glutaredoxin (GLRX) were found to GWA significantly associate with hemoglobin and hemolytic

lab indices in the blood of SCD patients.

In addition to genes known to alter RBC function and hemolytic propensity and promote
disorders (e.g., spherocytosis and xerocytosis), we identified a number of genes not previously

known to impact RBC function including MYO9B. We also identified seven loci, including HBB,



HBA, G6PD and EYS2, that were genome-wide significant in at least one non-Hispanic white
ancestry group (African American, East Asian, South Asian, Caribbean Island Hispanic (CIH),
Mexican/Central American Hispanic (MCAH), and Others, which includes multi-racial people,
Alaska/Hawaiian/Native Americans, and Pacific islanders (Table 1) highlighting the importance of
studying diverse populations to provide a more comprehensive evaluation of genetic factors
which affect RBC hemolysis. The number of discoveries in the specific ancestry groups is fewer
than in the non-Hispanic white population in part due to the lower power from reduced sample
sizes in these populations. For some of the loci such as G6PD and HBB in African Americans, the
effect is likely due to known variation in these genes such as the A- or HbS variant that are mostly
absent in non-Hispanic white populations. This was not always the case; the specific variants
identified in MCAH in EYS or rs118149920 on chromosome 13 are unlikely to be the causative
variants but are likely to be in linkage disequilibrium with actual causative variants that could be
on chromosomes of Native American ancestry, especially since the G allele at rs118149920 is
absent in European and African populations, but common in Native American and Asian

populations.

The validity of the identified regions in the current study of hemolysis in the RBC-Omics
cohort is supported by four observations: a) the biological plausibility of the identified SNPs, with
most in proteins known to cause RBC disorders such as dehydrated hereditary stomatocytosis
(PIEZO1) (41), spherocytosis (ANK1, SPTA1, SLC4A1 (23, 43), ellipto-poikilocytosis (SPTA1) (44),
xerocytosis (PIEZO1) (30), alpha-thalassemia(HBB) (31), and spontaneous and severe non-
spherocytic hemolytic anemia (HK1) (45); b) some of the SNPs have been associated with
laboratory complete blood cell count measurements, such as reticulocyte counts (SPTA1 and
PIEZO1) (46), and other complete blood count indices (G6PD) (47); c) MetaXcan (Table 2) finds
that the variation in a number of GWA significant genes contain eQTL for those genes and that
the genes’ expression are associated with hemolysis measures; and d) the consistency of GWA
findings with significant SNPs that modulate the severity of in vivo hemolysis in patients with SCD
(Table 4).

There were a number of variants identified in RBC antioxidant enzymes. For example, the

finding that genetic variations in the GPX4 gene modulated oxidative hemolysis is of interest



because this enzyme has been linked to key regulatory pathways in erythropoiesis including
erythroblast enucleation and reticulocyte maturation (48-50). With regard to antioxidant activity,
GPX4 neutralizes bioactive lipid hydroperoxides to lipid alcohols, thereby preventing iron
dependent cell death or ferroptosis (51, 52). Metabolomics studies of the RBC storage lesion have
demonstrated the formation and accumulation of inflammatory bioactive lipids (oxylipins; e.g.
12-hydroxyeicosatetraenoic acid) during cold storage (53, 54). Therefore, genetic mutations that
compromise RBC GPX4 function may contribute to transfusion-related oxidative injury and
inflammatory reactions. There were also significant associations between X-linked G6PD A- (the
V68M variant) and both in vitro oxidative hemolysis and the in vivo severity of hemolytic anemia
in patients with sickle cell disease. The enzyme G6PD controls the pentose phosphate pathway
dependent generation of reduced NADPH, necessary for reduction of intracellular glutathione.
G6PD A- (V68M) is common in African Americans; approximately 11% of African American men
are hemizygous for this SNP. The enzyme activity of G6PD A- in erythrocytes is moderately
decreased, 10-23% of normal activity. Hemizygotes do not have chronic hemolysis but can
undergo acute hemolysis if exposed to oxidant stress (32). The finding of more marked hemolysis
in G6PD A- hemizygous and homozygous sickle cell disease persons under basal circumstances in
this study would reflect the ongoing oxidative stress that sickle cell erythrocytes experience (55).
As mentioned in the introduction, this variant has also been shown to directly relate to post-
transfusion RBC recovery (16), highlighting the potential relevance of our GWAS findings to
transfusion medicine outcomes.

Polygenic scores were developed for oxidative and osmotic hemolysis in several of the
ancestral groups (Table 3) that were able to predict far more of the variance in hemolysis than
any single SNP or gene locus alone. The application of Non-Hispanic Whites-developed PGS to
other ancestry groups has enabled the calculation of a PGS when there is not sufficient power to
develop an ancestry-specific PRS (56), although the transferability of PRS scores across ancestry
groups should be viewed with caution (56-58). For example, in African Americans the correlation
for PGS with oxidative hemolysis with an ancestry specific PRS was 0.259 but with the Non-
Hispanic Whites PRS was only 0.103. When possible, ancestry specific PGS scores should be

developed and used appropriately. PGS will be useful for leveraging the combined genetic effect



on individuals and can be combined with other clinical and omics data to gain insights into the
pathways leading to RBC function. All individuals in the cohort have some combination of alleles
across the loci contribution to the PGS score. For the top 50 loci identified in the Non-Hispanic
Whites PRS score for osmotic hemolysis, no one, across all racial groups, contains minor alleles
at fewer than 7 of the loci or more than 34. Thus, genetic variation contributes to variation in
oxidative and osmotic hemolysis in all individuals.

We were unable to identify a true replication cohort for the in vitro hemolysis measures
of the RBC-Omics cohorts since this is the first such study to explore stress hemolysis as a
guantitative trait in a large donor population. Instead, we chose to test whether the RBC-Omics
results generalize to in vivo levels of anemia and hemolysis in the Walk-PHaSST and PUSH SCD
cohorts. We found that several variants and regions associated with in vitro hemolysis measures
in the REDS-III RBC-Omics donor population were also significant for in vivo hemolysis measures
within the SCD WALK-PhASST and PUSH cohorts, such as HBA2, HBB, GLRX, AQP1, SEC14L4 (Table
4). These observations suggest that the in vitro stress measurements identified known and new
variants that under the stress of human disease may modulate RBC biology. Such findings could
lead to identifying rare variants that may modulate the outcomes of many hemolytic diseases.
Consistent with this hypothesis, one of the variants identified, the A-G6PD deficiency, has been
recently shown to reduce post-transfusion RBC recovery (16).

We propose that the identification of genetic variables that modulate the stability of RBCs
in storage after response to stressors and the functional integrity of RBCs after transfusion could
advance donor selection and storage policies and improve transfusion outcomes. Identification
and removal of genetically susceptible “fragile” RBC donors/units that rapidly degrade in storage
and selection of profiled “super donor” blood components that might be stable for longer periods
of storage or survive longer after transfusion could provide for a precision transfusion medicine
strategy, more advanced than current random sampling of donors and transfusion of RBC units
irrespective of donor genotypes, recipient disease status or short- or long-term transfusion
requirements.

Further studies are needed to understand the manner in which the genetic variation leads

to changes in expression, protein, epigenome, metabolome and to understand the interaction



network that led to interindividual differences in hemolysis (59, 60). For example, we have
studied the metabolomic changes induced by the G6PD A- variant associated with oxidative
hemolysis and identified significant effects on the NADPH and glutathione-dependent
detoxification pathways of oxidized lipids (61), which could lead to alterations in the dynamics of
the RBC membrane.

The genetic information developed in this study is being used in new studies of donor-
blood component-recipient outcomes to evaluate the consequences of some of the reported
gene variants on transfusion efficacy in patients (62, 63). Additional effort is aimed at evaluating
non-genetic factors (64, 65) that influence RBC recipient outcomes. Current studies are underway
to advance the field of precision transfusion medicine via the development of a transfusion-

specific microarray that would provide enhanced tools for the screening of blood donors.



METHODS

RBC-Omics Cohort:

The REDS-1II RBC-Omics cohort donor recruitment and study design are described in detail
in Endres-Dighe et al (25). Briefly, 13,403 whole blood donors over the age of 18 were recruited
from December 2013 to December 2015 at four REDS-III blood centers. All subjects were healthy
allogeneic blood donors who passed screening and were not anemic. Samples were excluded
because of duplicate enrollment, low call rate (< 97%), sample swap, if blood donation quantity
was not sufficient, and if markers of infectious disease were reactive. We analyzed only one
relative per family, selected based on having the most complete data. The final informative

sample size was 12,353. Institutional review board approvals were obtained at all institutions.

Evaluation of Donor Predisposition to In vitro Hemolysis:

Stored (39-42 days) leukocyte-reduced RBCs were evaluated for spontaneous (cold
storage) and two stress hemolysis assays including osmotic fragility and oxidative hemolysis using
2'-azobis(2-amidinopropane) dihydrochloride (AAPH) as detailed elsewhere (2, 66). Each of the
hemolysis measures is a quantitative trait on the range from 0% to 100% (osmotic mean = 28%,

oxidative mean = 36%, and storage = 0.4%) (2).

Genotyping:

Samples were genotyped on a Transfusion Medicine microarray (TM-Array) (26) that
contained a total 879,000 SNPs (genotype coverage of >90% for SNPs with Minor Allele
Frequency (MAF) > 5%) for Non-Hispanic White, Hispanics, African Americans, and Asians. The
data from this study is available in dbGAP as accession phs001955.v1.p1 (67). We used PLINK (68)
to perform quality control for genotyped data to eliminate potential biases. Individuals for whom
calculated genetic sex and self-reported gender differed as well as individuals with more than 3%
missing genetic data were excluded. SNPs with genotype missing rates higher than 3% or failing
a Hardy-Weinberg Equilibrium (HWE) validation (p<1E-4) in any ancestry group were excluded

from the study. 811,782 SNPs passed these steps and were used for the imputation.



Imputation:

Statistical phasing was conducted by Shape-IT (69). Imputation was then conducted for
each 2 Mb interval with 1Mb flanking regions on each side using Impute2 (70) and 1000 Genomes
Project Phase 3 as reference haplotypes. Imputation results were further filtered by using an
INFO score > 0.8 before conducting association analyses (70). The final high-quality dataset had
8.1 million SNPs at >5% MAF and 14 million SNPs at >1% MAF. We ran GWA analysis in all ancestry

groups for the 14 million SNPs.
Ancestry:

Ancestry analysis was conducted in the RBC-Omics cohort with 1000 Genomes Phase 3
samples (Figure 1A, supplemental figures 1-3). Ancestry principle components (PCs) were
calculated using Bioconductor package SNPRelate (71) in the entire data set and separately for
participants within each genetic ancestry group. The RBC-Omics subjects were then divided into
seven ancestry groups: non-Hispanic White, African American, East Asian, South Asian, Caribbean
Island Hispanic (CIH), Mexican/Central American Hispanic (MCAH), and Others, which includes

multi-racial people, Alaska/Hawaiian/Native Americans, and Pacific islanders for GWAS analyses.
GWA Study of Common Genetic Variation:

Association analyses were conducted using the software ProbABEL (72). In previous
studies, we determined that sex, age, ancestry, and donation frequency were associated with the
levels of storage, osmotic, and oxidative hemolysis and were thus were used as covariates as well
as the first 10 ancestry PCs in our genetic analyses (2, 73). The distributions of osmotic and
oxidative hemolysis were normally distributed, but storage hemolysis was skewed, thus we used

log-transformed storage hemolysis values (supplemental figure 10).

We conducted two types of analysis: The first was an analysis of all subjects, called ‘ALL
Ancestries’ in the Tables and Figures. In the second, we conducted individual ancestry GWA
analyses for Non-Hispanic Whites, East Asians, South Asians, CIH, MCAH, and African Americans.
A GWA analysis for this study is a multivariable linear model with p-value threshold of 5x10®

defined as statistically significant for all GWA analyses (Table 1). Conditional GWA analysis



verified whether any of the significant loci were independent by incorporating the SNPs with the
smallest p-value in a region as a covariate in the GWA model and testing the region 50 kb on each
side of this SNP. Linkage disequilibrium score (LDSC) regression (74) was used to estimate the

SNP-based heritability (h?) of both osmotic and oxidative hemolysis.
Bioinformatic Analyses:

HaploReg v 4.1 (75) was used to annotate the genes nearest to the index SNPs. Version
1.3 of LocusZoom (76) was used, with 1000 Genome Phase 3 linkage disequilibrium (LD)
estimation. MetaXcan was implemented to infer gene expression patterns based on genotyped
and imputed SNPs from the REDS-RBC-Omics in 922 whole blood expression profiles from the
Depression Gene Network (Table 2) (71). MetaXcan uses a combination of linear and multivariate
linear models with a Bonferroni (based on number of genes) correct p-value of < 0.05 being the
significance cut-off. FUMA (77) was used to explore the biological pathways and enriched gene-
set related to osmotic and oxidative hemolysis using the p-values from the GWA results for all
subject analyses. The curated gene-sets and go-terms tested were from the Molecular Signatures

Database (MSigDB) in GSEA (78).
Polygenic Score for Hemolysis:

Polygenic scores (PGS) provide a quantitative metric of the magnitude of an individual’s
inherited factors on a trait based on the cumulative impact of many common polymorphisms
(79). Several methods for calculating PGS exist including linkage disequilibrium (LD) pruning, p-
value thresholding, and LDPred (80), which were applied to calculate PGS for oxidative, osmotic,
and storage hemolysis. Models were built in two-thirds of the samples selected at random
without reference for various p-value and linkage disequilibrium prunes that were validated
independently in the remaining third. The 2/3 and 1/3 split was chosen as an intermediate of the
possible splits suggested by different machine learning approaches (81). The set of LD pruning
and p-value thresholding (supplemental figures 6-9) model that was provided the best estimate
as measured by the r2 between the hemolysis measure in the left out 1/3 and the PRS model built

in the 2/3 was LD Pruning (r?<0.2) and p-value thresholding (P<107). This set of thresholds was



then used in the entire dataset to estimate the final PGS (Table 3). All markers in the final PGS

had a p-value of <107’.

In vivo Studies in Sickle Cell Disease Cohorts WALK-PHaSST and PUSH Cohorts:

The SNPs that were genome wide significant from the REDS-III cohort were tested in the
Treatment of Pulmonary Hypertension and SCD with Sildenafil Therapy (WALK-PHaSST dbGAP
accession PHS001513.v1.p1) and Pulmonary Hypertension and Hypoxic Response in SCD (PUSH
dbGAP accession PHS001682.v1.p1). This included 232 SNPs in 27 loci common in SCD cohorts
(MAF >0.05) and imputed with r?>0.8, all with p values less than 5x10® in REDS-III cohort. We
evaluated the association of SNPs with a mathematical measure of the severity of in vivo
hemolysis at steady state (baseline not during a vaso-occlusive event). The end point used is the
first factor of a previously validated principal component (PC) measure of severity of steady state
hemolysis in SCD patients (21). The PC is derived from clinically available standard lab measures
that reflect RBC hemolysis. These measures include log transformed serum lactic acid
dehydrogenase, aspartate aminotransferase, and total bilirubin, as well as the square root—
transformed percent reticulocytes, and venous hemoglobin levels (21). These measures were
adjusted for clinical site of blood collection and were standardized. This estimate of the severity
of hemolytic anemia has been previously validated in patients with sickle cell disease and shown
to significantly correlate with plasma hemoglobin and plasma RBC microparticles, as well as
associate with clinical measures that modulate the intensity of hemolysis (fetal hemoglobin level
and a-thalassemia) (21, 82). Genetic association of the severity of hemolysis by PCA adjusted for
age, sex, hemoglobin genotype severity (SS and S-B° versus SC and S-B+), cohort, use of
hydroxyurea validated by Hb F level, recent transfusion, and population stratification. Recent
transfusion was defined by hemoglobin A level >50% in Walk-PHaSST and transfusion within the
past two months in PUSH. Results between in vitro and in vivo hemolysis were considered
consistent if the initial GWA p-value was significant (p < 5x10%) and the p-value for the
association in the two SCD cohorts was significant (p<0.05). We also show combined meta-
analysis p-values for all results in Table 4.

The Walk-PHaSST study has 429 analyzable informative patients at least 12 years of age

from nine U.S. Centers and one UK Center (83, 84). The PUSH study was conducted at four tertiary



medical centers in the United States and contains 282 analyzable patients 3 to 20 years of age
(82). These SCD samples were genotyped on the Illlumina Human 610-Quad SNP Array, which
covers 588,451 genome-wide SNPs. Sample and SNP quality control was described previously
(85). Genotypes were phased (85) and imputed (86) to 1000 Genomes Phase 3 data using African
reference population samples. PCs of autosomal SNPs were estimated using the GCTA software

(86).

Study approvals:

RBC-Omics was conducted under regulations applicable to all human subject research
supported by federal agencies. The Data Coordinating Center (RTI International, Rockville, MD)
of REDS-IIl was responsible for the overall compliance of human subjects to regulator protocols,
including institutional review board approval from each participating blood center, from the
REDS-IIl Central Laboratory (Vitalant, San Francisco, CA) and the Data Coordinating Center.
Approval of the Walk-PHaSST study protocol (clinical trial # NCT00492531) was obtained from
local institutional review boards or ethics committees, and written informed consent was

obtained from all study subjects in accordance with the Declaration of Helsinki.
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Figure 1: Ancestry of RBC-Omics population and Manhattan plots. Figure 1A: First two principal component (PC) plot of the extended RBC-Omics
population overlain on the 1000 Genomes Phase 3 samples. Individuals are labeled by genetic ancestry (AFR: African American, EAS: East Asian, SAS:
South Asian, EUR: Non-Hispanic White, AMR: admixed American, CIH: Caribbean Island Hispanics, MCAH: Mexican and Central American Hispanics,
OTH: Other/multi ancestry) overlain by ancestry groups from 1000 Genomes v3. Figure 1B—D: Manhattan plots summarizing the mega analysis
results for osmotic hemolysis (n = 12,215, lambda = 1.003, Figure 1B), oxidative hemolysis (n = 10,007, lambda = 1.048, Figure 1C), and storage
hemolysis (n = 12,177, lambda = 1.002, Figure 1D). Each point corresponds to a -log10 (p-value) from a multi-variant linear regression model’s p-
value for a SNP. The black horizontal line represents an accepted p-value level of genome-wide significance (p = 5X10%). Circles represent non-coding
variants, and triangles are coding variants.

A Population { B 0
* 1000G AFR . z
0.020 + 10000 AMR 5 25 3 - g
10006 EAS 3 5 2 g8 3o
* 1000G EUR — f g % £5
0.015) 3 tonoashs a 20 2 37 £8 ®
RBCOmics AFR o g 3 S8 59 98.83
0.010 - RBCOMIcs EAS 0 15 - =3 a-2cz 23 2RES
RBCOmics EUR o 8 a §E EE =< EE a3
N RBCOmics MCAH ' o S EX 32 i 2 o
& 0.005 - rgcomics cin 10| & Eg =5 =z 55 ;g y
* RBCOMics OTH sonin X W H : 2 . ©
0.000 * RBCOmics SaS - _. A 5 | t H 3 ‘
i ﬁa m i:"r e 2, i ;
-0.005 o | 1 | | | |
-0.02 -0.01 1 5 10 15 20 X
PC1 Position (by chromosome)
E @
C . 8 D g g
g 3 8 3 B
15- x & 9 .
— [c] i F
o s . .
= 3 3 i £ 6
— g g S
w 10 g : 24 a0
- A L % s
5
2
0- T T t t T 0 f f n " n
1 3 10 15 20X 1 5 10 15 20 X

Position (by chromosome) Position (by chromosome)



Figure 2: Box plots of various hemolysis levels by genotype for GWA-significant non-synonymous (except HBA2) variants by ancestry group. Osmotic
hemolysis: Figure 2A, Osmotic SPTAI rs857725/Lys1693GIn; Figure 2B, Osmotic HBA2 chr16:223678; Figure 2C, Osmotic HBB rs334/Gul7Val (Hb S).
N=12,219 for all osmotic analyses. Oxidative hemolysis: Figure 2D, Oxidative SEC14L4 (AX-83171224/rs9606739) Arg112Gly; Figure 2E, Oxidative
G6PD (rs1050828) Val68Met is on the X chromosome, therefore male (M) and female (F) sample members are displayed separately. N=10,007 for all
oxidative analyses. Spontaneous (Storage) hemolysis: Figure 2F, Storage TMC8 (rs7208422) Asn306lle. Minor allele homozygotes are in shades of red,
heterozygotes in green, and reference allele homozygotes in shades of blue. N=12,219 for all storage analyses. Ancestry groups AFR: African

Americans, EUR: Non-Hispanic Whites, EAS: East Asians, SAS: South Asians, CIH: Caribbean Island Hispanics, MCAH: Mexican/Central American
Hispanics, and OTH: Other.
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Figure 3: LocusZoom and box plots for two non-overlapping genome-wide significant loci in ANK1. Figure 3A: LocusZoom plots centered on
rs4737010 in ANK1. Figure 3B: LocusZoom plot rs34664882 in ANK1. In each plot, each point represents a SNP passing quality control in the linear
regression analysis of imputed dosage plotted with its p value as a function of genomic position (GRCh38 Assembly). The lead SNP is represented by
the purple symbol. The color coding of all other SNPs indicates LD with the lead SNP (estimated by Phase Il HapMap CEU r? values): red, r> > 0.8; gold,
0.6 <r*<0.8; green, 0.4 <r*<0.6; cyan, 0.2 <r* < 0.4; blue, r* < 0.2; gray, r> unknown. Recombination rates are estimated from 1000 Genomes
Phase 3 data. Figure 3C: Box plots of osmotic hemolysis measure by genotype and genetic ancestry group for rs4737010. Figure 3D: Box plots of
osmotic hemolysis measure by genotype and genetic ancestry group for rs34664882. Ancestry groups AFR: African Americans, EUR: Non-Hispanic
Whites, EAS: East Asians, SAS: South Asians, CIH: Caribbean Island Hispanics, MCAH: Mexican/Central American Hispanics, and OTH: Other.
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Table 1: Genome-wide significant results for hemolysis in all samples or within individual ancestry groups. Results are presented for the single most-
significant SNP under a GWA peak. Directly genotyped SNPs that are also GWA significant are presented as well. Information includes chromosome
location, RS IDs for markers, the p-value, population(s) in which the SNP was significant, the nucleotide for the minor allele, the minor allele frequency
in the non-Hispanic White population, the r? for imputation accuracy, the sample size of the most GWA-significant population, calculated beta, nearest
gene(s) to the most significant SNP (# represents no close gene), and any functional information on the SNPs. The r? is a measure of the imputation
accuracy. Minor allele frequencies in various populations based on TOPMED frequencies (* missing/not mapped in TOPMED release 8). If r? =1, the

marker was directly genotyped. INT —intronic, NSM — non-synonymous mutation.

GWA-
Chr Position | Nearest Gene | Rsid Hemolysis p-Value | Significant x::loe r r2 l::s Z‘;?“:::;ZL MAF N“:Q:e I:Ial:: MAF Sx:h ToMp“AnFED
Populations African | American | Asian | European | Asian Freeze 8
1 | 158586966 | SPTAL rs2022003 Osmotic 1.01E-22 | All, EAU 0.99 17 INT 022 033 043 030 | 0.21 029
1 | 158607935 | spTAl rs857725 Osmotic 8.75E-21 | All, EAU G 1 16 NSM 0.10 030 | 0.44 028 | 0.17 0.25
1| 195275704 | # rs17661899 Oxidative 3.54E-08 | MCAH G 0.98 6.0 | Nogene 0.05 0.09 | 0.00 0.16 | 0.04 0.07
1 | 246711077 | TFB2M rs35558093 Osmotic 3.87E-08 | EastAsian | A 0.99 212 INT 0.18 0.22 | 0.00 025 | 011 0.16
2 | 24029928 | MFSD2B rs55707417 Osmotic 1.07E-13 | All, EAU G 1.00 1.8 INT 0.05 0.08 | 0.05 0.14 | 0.16 0.09
3 | 34083520 | # rs148642995 | Osmotic 1.09E-08 ﬁi;i:fi:an T 0.89 112 NA 0.02 0.01 1 000 0.00 1 0.0 0.01
5 | 95166235 | GLRX rs72785409 Oxidative 1.156-12 | All, EAU c 0.98 1.5 INT 0.21 0.09 | 0.04 0.12 | 0.08 0.12
6 | 66045716 | EYS rs78484557 Osmotic 3.20E-09 | MCAH c 0.90 -25.7 INT 0.00 0.01 | 0.00 0.03 | 0.00 0.02
7 | 30954977 | AQP1 rs5883264 Osmotic 4.23E-10 | All, EAU GC 0.98 1.3 INT 031 0.18 | 0.01 0.16 | 0.13 0.17
7 | 50429442 | IKZF1 rs6976036 Osmotic 1.86E-08 | All, EAU T 1.00 0.9 INT 0.47 0.60 | 0.44 050 | 0.49 0.49
8 | 41630447 | ANK1 rs4737010 Osmotic 5.85E-28 | All, EAU A 0.97 1.9 INT 0.54 027 | 053 0.24 | 018 0.37
8 | 89839432 | # rs189900952 Storage 2.42E-08 | All, EAU G 0.67 0.002 | No Gene 0.00 0.02 | 0.12 0.00 | 0.01 0.02
9 | 91408347 | MIR4289 chr9:91408347 | Osmotic 6.44E-10 | All, EAU c 0.96 23 NA * * * * *
10 | 71099109 | HK1 rs72805692 Osmotic 4.90E-11 | All, EAU A 0.99 1.8 INT 0.002 0.07 | 0.00 0.11 | 0.02 0.04
11 | 5248232 | HBB rs334 Osmotic 3.66E-10 ﬁi;i:fi:an A 0.82 8.2 NSM 0.10 0.01 1 000 0.00 1 0.0 0.03
11 9762274 | SWAP70 rs360153 Osmotic 1.28E-10 | All, EAU T 1.00 1.0 INT 0.48 052 1 0.38 0.60 | 0.51 0.50
11 | 100493995 | ARHGAP42 rs717662 Osmotic 4.00E-09 | All, EAU C 0.97 1.5 INT 0.01 0.06 | 0.27 011} 0.09 0.11
12 | 112061723 EAR:X:;E?Z/ rs77684561 Osmotic 2.24E-13 | All, EAU C 0.97 1.5 INT 015 015 035 017\ 0.22 0.21




13 | 76938832 | # rs118149920 Osmotic 9.74E-09 | MCAH T 0.93 -12.5 INT 0.00 0.09 | 0.08 0.01 | 0.06 0.04
All, EAU, *
16 223678 | HBA2 chr 16:223678 | Osmotic 2.90E-14 | African a-/del | 0.80 4.4 INT
American
16 226229 | HBA2 chr 16:226229 | Osmotic 1.06E-12 | East Asian a-/del | 0.90 -17.9 INT 0.00 0.00 | 0.02 0.00 | 0.00 0.00
16 | 88856084 | PIEZO1 rs551118 Osmotic 4.04E-14 | All, EAU C 0.91 1.3 INT 0.74 0.50 | 0.62 059 | 0.60 0.62
17 | 42304644 (UBZZ/;C“AI rs7222349 Osmotic 3.62E-08 | All, EAU G 1.00 -1.0 INT 0.96 0451 0.75 0321 031 0:55
17 | 76130575 | TMCS; TMC6 | rs7208422 Storage 1.34E-08 | All T 1.00 | -0.004 NSM 0.71 0.59 | 0.42 049 | 0.1 0.56
19 1103230 | GPX4 rs8178962 Oxidative 3.80E-14 | All A 0.96 1.1 INT 0.62 058 | 0.28 0.45 | 042 0.49
19 | 17252151 | MYO9B rs35365035 Osmotic 9.88E-15 | All, EAU T 1.00 1.2 INT 0.74 043 | 0.36 0411 035 0.49
22 | 30891859 | SEC14L4 rs9608944 Oxidative 9.85E-10 | All 1.00 1.1 INT 0.15 0.29 | 0.04 023 | 0.14 0.20
23 | 153764217 | G6PD rs1050828 Oxidative 266E-17 | Al African o 1.00 3.8 NSM 0.10 001 ) 0.00 0.00 ) 0.00 0.04

American




Table 2: MetaXcan analysis of genes whose expression is modeled to be associated with osmotic and oxidative hemolysis. Presented is the gene
name, chromosome location of the gene, Bonferroni (BF) corrected p-value, predicted performance (r?) of the models of the gene’s expression,
predicted performance g-value of the model, number of SNPs in the gene used to estimate the gene’s expression level, and whether the gene is

under one of the genome-wide significant peaks.

Gene Name Hemolysis Chromosome Location BF Q-Value Number of SNPs | Under GWA
p-Value Hit?
PFN4 Osmotic chr2:24,338,241-24,346,347 5.0E-04 0.04 1.23E-08 8 | Yes
MFSD2B Osmotic chr2:24,232,951-24,286,191 1.3E-02 0.08 1.27E-17 28 | Yes
ESYT2 Osmotic chr7:158,523,686-158,622,944 4.5E-02 0.40 3.92E-102 49 | Yes
C80rf40(SMIM19) | Osmotic chr8:42,396,298-42,409,603 7.9E-03 0.26 1.73E-61 31 | No
SLC20A2 Osmotic chr8:42,273,993-42,397,069 3.4E-02 0.23 1.28E-53 24 | No
SWAP70 Osmotic chr11:9,685,624-9,774,538 1.8E-02 0.08 5.51E-17 35 | Yes
NAA25 Osmotic chr12:112,464,493-112,546,826 1.6E-06 0.03 6.09E-07 17 | Yes
SH2B3 Osmotic chr12:111,843,752-111,889,427 1.1E-04 0.04 1.06E-09 21 | Yes
FAM109A Osmotic chr12:111,798,455-111,806,925 1.0E-03 0.06 1.13E-14 18 | Yes
TMEM116 Osmotic chri2:112,369,086-112,451,023 1.4E-02 0.16 3.33E-37 30 | Yes
SLC4A1 Osmotic chri7:42,325,753-42,345,509 9.7E-04 0.01 1.14E-03 7 | Yes
C170rf59(BORCS6) | Oxidative chrl7: 8,091,651-8,093,564 2.7E-02 0.02 4.90E-05 27 | No
GPX4 Oxidative chr19: 1,103,936-1,106,787 3.2E-06 0.31 8.49E-76 74 | Yes



Table 3: Ancestry and cross-ancestry polygenic risk scores. Summary of correlation of PRS score calculated in ancestry-specific groups with each
hemolysis measure in the entire ancestry-specific group. The ancestry groups are defined by principal component analysis based on genetic data
(Figure 1). **The correlation within ancestry is calculated between the polygenic risk scores trained within each ancestry and the measured osmotic
or oxidative hemolysis in each ancestry group. NA -no PRS could be calculated that was different from 0. *** The correlation from non-Hispanic
white (EAU) is calculated between the polygenic risk score trained in this group and the measured osmotic or oxidative hemolysis within each
ancestry group.

Genetically Sample | Correlation with | Correlation | Correlation with | Correlation
Defined Size Osmotic with EAU Oxidative with EAU
Ancestry* hemolysis ** Osmotic hemolysis** Oxidative
Non-Hispanic 0.221 0.221 0.0834 0.0834
White (EAU) 7,757

African American | 1,052 NA 0.117 0.259 0.103
East Asian 1,112 0.180 0.134 NA 0.0126
South Asian 265 NA 0.184 NA 0.125
Caribbean Island | 497 NA 0.182 NA 0.0635
Hispanics

Mexican Central

American 459 0.251 0.184 0.263 0.0901
Hispanics

Other 598 NA 0.208 NA 0.0855




Table 4: Testing of osmotic, oxidative, and storage hits from the REDS-IIl RBC-Omics full data in the combined Walk-PHaSST and PUSH cohorts.
Significant SNPs with nominal P value <0.05 in the SCD study were pruned so that linkage disequilibrium r? <0.3 in SCD cohorts. Information includes
RS IDs for markers, the nearest genes, chromosome location, the nucleotide for the minor allele, the minor allele frequency from the REDS-III RBC-
Omics full data and from the combined Walk-PHaSST and PUSH cohorts, the r? for imputation accuracy, and p-value and beta estimation of the
association between minor allele and hemolysis trait. Given different measures of hemolysis the directions of the betas are not necessarily consistent
between the in vivo and in vitro measures. RBC-Omics n = 12,219 for oxidative hemolysis and 10,017 for osmotic hemolysis. SCD n = 711 (Walk-
PHaSST n 429; PUSH n = 282).

Nearest Ivsi id h . Minor REDS-I SCD
Gene Hemolysis RSi chr Position Allele MAF r2 ZeNtF? p-Value MAF r2 ZeNtls p-Value
GLRX oxidative rs10067881 5 95162475 A 0.10 | 0.99 1.5 9.02E-12 | 0.065 | 0.91 | -0.36 0.0211
AQP1 osmotic rs73305784 7 30990948 A 0.17 | 0.99 1.2 4.48E-08 | 0.13 | 098 | 0.24 0.0350
Several osmotic rs7967238 12 112378371 A 0.17 | 0.92 -1.4 9.13E-10 0.31 | 093 | 0.19 0.0241
Several osmotic rs10850001 12 112553032 A 0.44 | 0.95 1.0 6.80E-10 | 0.11 | 0.98 | -0.26 0.0297
HBA2 osmotic | chr 16:223678 | 16 223678 C 0.024 | 0.80 -4.4 1.27E-14 | 0.16 | 0.84 | -0.54 8.08E-07
PIEZO1 osmotic rs34383297 16 88845444 CcT 0.47 | 0.86| 0.98 1.02E-08 | 0.39 | 0.87 | 0.17 0.0338
SEC14L4 oxidative rs9606739 22 30891294 C 019 | 1.0 1.0 3.07E-09 | 0.13 | 099 | 0.27 0.0138
G6PD oxidative rs78751796 23 153416537 A 0.017 | 0.49 2.5 2.08E-08 | 0.11 | 0.83 | 0.25 0.0210
G6PD oxidative | rs115202723 23 153677778 A 0.036 | 0.93 1.8 1.98E-08 | 0.25 | 0.94 | 0.18 0.0119
G6PD oxidative rs28844711 23 153726824 T 0.032 | 0.83 2.2 6.50E-11 | 0.24 | 091 | 0.29 8.96E-05
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