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ABSTRACT 

The evolutionary pressure of endemic malaria and other erythrocytic pathogens has shaped 

variation in genes encoding erythrocyte structural and functional proteins, influencing responses 

to hemolytic stress during transfusion and disease. We sought to identify such genetic variants 

in blood donors by conducting a genome-wide association study (GWAS) of 12,353 volunteer 

donors, including 1,483 African Americans, 1,477 Asians, and 960 Hispanics, whose stored 

erythrocytes were characterized by quantitative assays of in vitro osmotic, oxidative, and cold-

storage hemolysis.  GWAS revealed 27 significant loci (p<5×10-8), many in candidate genes known 

to modulate erythrocyte structure, metabolism, and ion channels, including SPTA1, ALDH2, 

ANK1, HK1, MAPKAPK5, AQP1, PIEZO1, and SLC4A1/Band 3. GWAS of oxidative hemolysis 

identified variants in antioxidant enzymes including GLRX, GPX4, G6PD, and a novel golgi-

transport protein SEC14L4. Genome wide significant loci were also tested for association with the 

severity of steady state (baseline) in vivo hemolytic anemia in patients with sickle cell disease, 

with confirmation of identified SNPs in HBA2, G6PD, PIEZO1, AQP1 and SEC14L4. Many of the 

identified variants, such as those in G6PD, have previously been shown to impair erythrocyte 

recovery after transfusion, associate with anemia, or cause rare Mendelian human hemolytic 

diseases. Candidate SNPs in these genes, especially in polygenic combinations, may affect RBC 

recovery after transfusion and modulate disease severity in hemolytic diseases, such as sickle cell 

disease and malaria.   



	

INTRODUCTION 

Blood transfusion is one of the most common procedures during hospital stays, with more 

than 36,000 red blood cell (RBC) transfusions performed daily in the United States. Clinically, RBC 

transfusions are largely considered to be homogeneous. However, a growing number of studies 

have evaluated the potential impact of unique donor characteristics, such as sex, age and body 

mass index, on RBC storage integrity (1-3), post-transfusion recovery and survival of RBCs, and 

consequent clinical outcomes (4-7). In addition, the U.S. donor population is ethnically diverse, 

with hundreds of functionally and immunologically relevant RBC single nucleotide 

polymorphisms (SNPs) (8, 9). 

Studies evaluating inbred mouse strains demonstrated strong heritable determinants of 

RBC susceptibility to canonical in vitro stressors such as cold storage hemolysis, osmotic 

hemolysis, and oxidative hemolysis; importantly, these in vitro responses also correlated with 

post-transfusion RBC recovery and function (4, 10, 11). In humans, in vitro hemolysis of donor 

RBCs in response to osmotic or oxidative stress is a reproducible and heritable trait that can be 

further modulated by factors such as donation history, ancestry, age, and sex (12, 13). Human 

studies of RBC recovery and survival following blood bank storage have demonstrated variability 

among donors that is reproducible over time, suggesting donor specific factors such as sickle cell 

trait (7) and glucose-6-phosphate dehydrogenase (G6PD) deficiency (14-16), can reduce post-

transfusion RBC recovery (17). Indeed, in a recent study, the post transfusion RBC recovery was 

evaluated in 10 volunteers with G6PD deficiency using chromium-51 cell labeling. Recovery was 

78.5% in G6PD-deficient subjects versus 85.3% for transfusion in 27 control subjects without 

G6PD (P = 0.0009) (16).  

Genetic variability also contributes to the intensity of hemolysis observed in Mendelian 

hemolytic diseases, such as sickle cell anemia. In patients with homozygous hemoglobin (Hb) SS 

disease, there is a significant variability in the intensity of steady state or baseline hemolysis (18-

21).  Co-inheritance of a- and b-thalassemia and mutations modulating the expression of fetal 

hemoglobin (HbF) influence hemoglobin levels and hemolysis in patients with sickle cell disease 

(21, 22).  Furthermore, the variability in severity of hemolysis influences clinical outcomes (23), 

promoting vasculopathy and the development of end-organ complications, such as pulmonary 



	

hypertension, cutaneous leg ulceration and chronic kidney injury. We and others have 

demonstrated that cell-free hemoglobin released during hemolysis in the setting of sickle cell 

disease and transfusion of aged stored blood is toxic, driving nitric oxide depletion, oxidative 

injury, heme-mediated inflammation, and iron overload (19-21, 23, 24).  

These findings inform a hypothesis that rare and common genetic variants modulate 

various characteristics of erythrocytes leading to altered susceptibility to hemolysis that may 

influence erythrocyte storage in blood banks, transfusion outcomes, and potentially the severity 

of hemolytic diseases. Considering this hypothesis, the aim of this study was to identify genes 

that modulate hemolysis in cold storage and hemolytic disorders by conducting a genome-wide 

association (GWA) study in RBC donors enrolled in the National Heart, Lung, and Blood Institute 

(NHLBI) RBC-Omics project (2, 25). We tested the associations between in vitro measures of stress 

hemolysis in cold stored RBCs (spontaneous storage hemolysis, osmotic fragility, and oxidative 

hemolysis) and high-density GWA SNPs (26) to discover candidate loci that regulate the function 

of human RBCs and their resilience to stress. This GWA cohort of 12,353 volunteer donors was 

enriched for groups with African, Hispanic, and Asian ancestry.  Collected and stored RBCs were 

characterized by quantitative assays for in vitro osmotic, oxidative and cold-storage hemolysis. 

Consistent with the anticipated genetic variability in donor RBCs, our analysis identified 27 GWA 

significant loci (p < 5×10-8), many in candidate genes known to modulate erythrocyte structure, 

metabolism, and ion channels.  We further verified whether the SNPs identified from our in vitro 

hemolytic stress phenotyping have relevance to hemolytic disease by analyzing their association 

with in vivo measurements of the severity of steady-state (outpatient) hemolytic anemia (low 

hemoglobin values and high indices of RBC hemolysis) in two cohorts of sickle cell disease (SCD) 

patients.   

These studies suggest that the identification of genetic variables that modulate the 

stability of RBCs in storage, response to stressors, and the functional integrity of RBCs after 

transfusion could advance donor selection criteria and procedures and storage policies. 

Identification and removal of genetically susceptible RBC donors/units that rapidly degrade in 

storage (exclusion of “fragile” RBC donors/units) and selection of profiled “super donors” that 

might be stable for longer periods of storage or survive longer after transfusion could provide for 



	

a precision transfusion medicine strategy, more advanced than current random sampling of 

donors and transfusion of RBC units irrespective of recipient disease status or short- or long-term 

transfusion requirements. In addition, the variants could provide information about risk and 

severity of hemolytic anemia in patients with hemolytic diseases, such as sickle cell, thalassemia 

and malaria, as well as advance the discovery of proteins and enzymes that modulate RBC 

function.  

  



	

RESULTS 

 

Population Ancestry of REDS-III RBC-Omics cohort 

The RBC-Omics cohort included a diverse group of U.S. blood donors born in many (n=71) 

countries. Initially, groups were divided into continent ancestry groups; however, we have 

followed recent recommendations to divide the Hispanic (27, 28) and Asian ancestry groups into 

multiple subgroups based upon country of birth. Donors of Hispanic ancestry were divided into 

two groups: Mexican and Central American Hispanics (Supplemental Figures 1 and 2) and 

Caribbean Island Hispanics (Supplemental Figures 1 and 3). Donors of Asian ancestry were divided 

into East Asians and South Asians to reflect the diversity of these RBC-Omics subpopulations (27, 

28). In total the REDS-III RBC-Omics populations (Figure 1A) were divided into seven ancestry 

groups that included non-Hispanic Whites (n = 7,586), East Asians (n = 1,049), South Asians 

(n = 257), Mexican and Central American Hispanics (n = 456), Caribbean Island Hispanics (n = 489), 

African Americans (n = 1,046) and “Other” participants (n = 1,336). “Other” participants is a 

heterogeneous group including all individuals that did not cluster within the other groups, but 

included people who self-identified as Native Americans, Native Hawaiians, Native Alaskans, 

multiple races, or were from countries like Iran and the Philippines. We also considered the entire 

RBC-Omics as a single group referred to as ALL Ancestries. 

 

Genome Wide Association Studies of Osmotic, Oxidative, and Storage Hemolysis in Mega 

Analysis 

The SNP-based heritability from LDScore regression for osmotic hemolysis was 0.348 

(SE=0.062), and for oxidative hemolysis was 0.156 (SE=0.073). The heritability score for storage 

hemolysis was not different from zero. Genome wide analysis of 12,353 subjects from the REDS-

III RBC-Omics cohort was conducted between 14.1 million genotyped and imputed SNPs for 

osmotic (Figure 1B), oxidative (Figure 1C), and cold storage hemolysis (Figure 1D). GWA analyses 

using ALL Ancestries samples identified 14, 4, and 2 genome-wide significant regions that were 

associated with osmotic, oxidative, and spontaneous cold storage hemolysis, respectively (Table 

1). Q-Q plots (Supplemental Figure 4) did not exhibit any p-value inflation.  



	

Genome wide analysis of osmotic hemolysis in the entire data set (ALL Ancestries) 

revealed that the genome-wide significant variants were in or close to several logical candidate 

genes known to modulate RBC structure and function, such as spectrin alpha chain, erythrocytic 

1 (SPTA1/Band 1; p<1.01E-22), Ankyrin 1 (ANK1/Band2.1; p<5.85E-28), Aquaporin 1 (AQP1; 

p<4.23E-10), and Solute Carrier Family 4 Member 1 (SLC4A1/Band 3; p<3.62E-08) (Table 1). In 

addition, a number of novel GWA significant variations were found in metabolic enzymes 

(Hexokinase 1 - HK1; p<4.90E-11), stress kinases (MAPKAPK5; p<2.24E-13), ion channels (Piezo 

type mechanosensitive ion channel component 1; PIEZO1; p<4.04E-14), and other proteins, such 

as Myosin IXB (MYO9B; p<9.88E-15). Supporting the internal validity of these findings, many of 

these SNPs are in proteins known to cause RBC disorders such as spherocytosis (23), elliptocytosis 

(29), xerocytosis (30), and alpha-thalassemia (31).   

GWA analysis of oxidative hemolysis identified genome wide significant SNPs in glucose-

6-phosphate dehydrogenase (G6PD; p<2.66E-17), SEC14 Like 4 (SEC14L4; p<9.85E-10), 

glutaredoxin (GLRX; p<1.15E-12) and glutathione peroxidase 4 (GPX4; p<3.80E-14). G6PD, GLRX, 

and GPX4 are all known to have roles in protecting cells from oxidative damage. Analysis of 

storage hemolysis (Figure 1D) identified only two genome wide significant loci; one on 

chromosome 8 distant more than 500 Kb from the nearest genes, and another on chromosome 

17 (TMC8; P< 1.34E-08).  

 

Ancestry-Specific GWA Results 

  Individual principal component analysis (PCA) defined ancestry group GWA revealed a 

high degree of overlap with the ALL Ancestries analysis; however, seven additional genome-wide 

significant loci were observed in genes such as EYS (P<3.20E-09), HBB (P<3.66E-10), HBA2 

(P<2.90E-14), and G6PD  (P<2.66E-17) within specific ancestry groups (Table 1) and in only some 

cases (G6PD and HBA2) were the results significant in the ALL Ancestries analysis. Several loci 

such as GPX4 and SEC14L4 were only significant when considered with ALL Ancestries groups 

together. Only studying hemolysis in ancestry specific and in combined analysis enabled the 

discovery of all 27 of these loci.  

 



	

Identification and Bioinformatics Analysis of Variation 

We identified 12 directly genotyped genome-wide significant (p<5X10-8) non-

synonymous variants (NSVs) for hemolysis measures in the entire population or in the ancestry 

specific groups, predicted using SIFT or PolyPhen2. SPTA1 contains a NSV rs857725 (Lys1693Gln 

p<8.75E-21, Figure 2A). Notably, the marker for alpha-thalassemia (Figure 2B) deletion 

(chr16:223678) and the HbS variant modulated osmotic, oxidative, and spontaneous storage 

hemolysis (7). In HBB, the HbS variant (rs334, Glu7Val, p<3.66E-10) was significantly associated 

with osmotic hemolysis in the African American ancestry group (Figure 2C). For oxidative 

hemolysis, SEC14L4 AX-83171224/rs9606739 (Arg124Gly, p<3.07E-09, Figure 2D) and G6PD 

rs1050828 (Val68Me, p<2.66E-17, Figure 2E) were significant NSVs, whereas for spontaneous 

storage hemolysis, TMC8 rs7208422 (Asn306Ile p<1.23E-08, Figure 2F) was GWA significant.  

Chromosome 8 had two non-overlapping genome-wide significant loci for osmotic 

hemolysis within ANK1 (Figure 3A-D). The first locus is centered on rs4737010 (Figure 3A), and 

the second is 87 kb away and centered on the NSV rs34664882 (Ala114Val; Figure 3B). 

PolyPhen2and SIFT suggested that rs34664882 is deleterious. The SNP appears to have a large 

quantitative effect on osmotic hemolysis across multiple ancestry groups, accounting for 3.2% of 

the variation in osmotic hemolysis in the combined data set. The second GWA-significant locus 

near ANK1 is centered on rs4737009, which is in the canonical binding motif for the MAZ and 

STAT5A transcription factors (Supplemental Figure 5). It is likely that both rs34664882 and 

rs4737009 are independent and functionally consequential mutations for osmotic hemolysis.  

Conditional GWA showed these loci (rs34664882 and rs4737009) are fully independent and each 

is genome wide significant conditional on the other locus. Additional conditional GWA suggested 

there may be two or more independent locus at SEC14L4 and PIEZO1 (data not shown). 

Within G6PD, the rs1050828 Val68Met variant associated with oxidative hemolysis in this 

study is a common class III variant, also referred to as G6PD A-. Individuals with class III G6PD 

variants are susceptible to acute hemolytic anemia when their RBCs are exposed to oxidant stress 

(32). G6PD deficiency is a chromosome X linked disorder. Figure 2E shows that female 

heterozygotes have intermediate phenotypes for oxidant-induced hemolysis between the female 

homozygote groups, and the few (n=4) females A- homozygotes are similar to the male 



	

hemizygote groups. This supports the observation that heterozygotes for many disorders 

potentially have altered or intermediary phenotypes (33). 

Pathway and gene-set enrichment analysis identified three Bonferroni corrected 

significant groups for osmotic hemolysis:  Spectrin associated cytoskeleton (𝑃"#$ =

6.77 × 10,-), Steiner erythrocyte membrane genes (𝑃"#$ = 2.58 × 10,1), and Nikolsky breast 

cancer 19p13 amplicon (𝑃𝑏𝑜𝑛 = 0.028). For oxidative hemolysis, there were no gene sets 

significantly enriched after the Bonferroni correction.  

 

Inference of Differential Expression 

MetaXcan was used to infer expression patterns for all genes based on the genotypes that 

have been identified by GTEX as eQTLs. The inferred gene expression was correlated with 

spontaneous storage, osmotic, and oxidative hemolysis in the RBC-Omics cohort. Thirteen genes 

were predicted to be significantly (p<0.05) differentially expressed and significantly (p<0.05) 

associated with osmotic (n=11) or oxidative (n=2) hemolysis but not spontaneous storage 

hemolysis (n=0) (Table 2). Of these, ten were situated within one of the genome-wide significant 

regions, and two others were close (<700 kb). Most of the genes (SLC4A1, SWAP70, MFSD2B) 

found by MetaXcan were kinases, channels, and metabolic genes whose mechanisms could be 

affected by changes in gene expression (34-36). MetaXcan did not identify RBC membrane 

structural genes, such as ANK1 and SPTA1, which is consistent with the previous observations 

that disease causative variations in genes coding for structural genes tend to be to gain or loss of 

function mutations, as opposed to changes in gene expression levels (37-39). The most significant 

SNP in GLRX (rs72785409; p=6.14E-48) is an eQTL for GLRX in whole blood based upon 15 cohorts 

in the eQTLGen database (40).  

 

Polygenic Scores 

We modeled the polygenic scores (PGS) by using data from 2/3 of the population, 

whereas data from the remaining third was used for validation. We found the pruning and 

thresholding model in osmotic hemolysis at p<10-7 and r2<0.4 to validate better than the best 



	

LDPred score (correction of best LD Pruning = 0.173 versus best LDPred model = 0.0904; 

Supplemental Figures 6-9). According to these data for osmotic and oxidative hemolysis, pruning 

and thresholding is a more precise method of developing PGS scores than LDPred. 

Table 3 highlights the correlation of each of the three hemolysis PGS within each ancestry 

group with the observed hemolysis measures. Within non-Hispanic White samples, the 

correlation with osmotic hemolysis was 0.221, which explained more of the variability in osmotic 

hemolysis than any single marker. The best model for oxidative hemolysis was in African 

American and Mexican/Central American Hispanics (MCAH) samples, where the PGS correlation is 

approximately 0.260. Some ancestry groups did not yield PGS scores because of small sample 

sizes or lack of markers with a p-value less than 10-7 when split for cross validation. To develop 

predictors within these groups, hemolysis measures by ancestry group were correlated with the 

non-Hispanic White PGS score. This revealed that an ancestry specific PGS score was more precise 

than those developed in other ancestry groups, even if the latter sample size is larger. Therefore, 

when possible, PGS should be developed in ancestry-appropriate groups; if not applicable, scores 

from other ancestry groups can be used but will give diminished precision.  

Unlike single gene disorders where only a few people contain causal loci, for polygenic 

traits such as hemolysis everyone has a combination of alleles which increase or decrease 

hemolysis across all identified loci. For example, for the top 50 loci identified in the non-Hispanic 

White PRS score for osmotic hemolysis, all RBC-Omic donors are heterozygous for between 7 and 

34 of the loci (mean±SD = 18.3±4.6). Thus, genetic factors modulated osmotic and oxidative 

hemolysis in all individuals. 

 

Genetic Analysis of In vivo Hemolysis in the WALK-PhASST and PUSH SCD Cohorts 

To test the hypothesis that the genetic findings obtained from in vitro stress hemolysis 

perturbations of cold-stored RBCs from healthy blood donors may also be relevant to the in vivo 

severity of steady-state hemolytic anemia in human diseases, the genome-wide significant SNPs 

identified in the 27 loci for each hemolysis GWA were then tested in two cohorts of patients with 

SCD (Walk-PHaSST and PUSH). Note that there were 232 significant SNPs within these 27 loci. 

The same SNPs were tested for association using an in vivo measure of intensity of steady-state 



	

hemolytic anemia as a quantitative trait in the SCD patient cohorts. Considering our small sample 

size of SCD cohorts, we restricted our analysis to the 1000 SNPs that were common (MAF >0.05) 

in SCD cohorts and were imputed with good quality (r2 >0.8).  Results between in vitro and in vivo 

hemolysis were considered consistent if the initial GWA p-value was significant at the genome 

level (p<5X10-8) and the p-value for the association in the two SCD cohorts was also significant 

(p<0.05). 

Consistent results were found in seven regions, including four regions for osmotic 

hemolysis GWA and three of four regions from the oxidative hemolysis GWA (p<0.05; Table 4). 

Significant results were found for osmotic hemolysis on chromosomes 7 (AQP1), 12 (several 

genes), and 16 (HBA2, PIEZO1). Oxidative hemolysis was concordant for three of the four 

genome-wide significant loci including on chromosome 5 (GLRX), 22 (SEC14L4), and X (G6PD). 

Even using more conservative assessments, the HBA2 and G6PD loci were significant in the sickle 

cell cohorts with Bonferroni testing correction. 

  



	

DISCUSSION 

This study is the first genome-wide evaluation of in vitro RBC stress hemolysis in cold-

stored samples from blood donors, with secondary assessment of GWA significant findings on 

the in vivo severity of baseline (steady-state) hemolytic anemia in SCD patients. Increased 

hemolysis is a hallmark of several diseases, including SCD, and is associated with worse 

transfusion outcomes, such as poor RBC recovery and increased rates of post-transfusion sepsis.  

This notion is supported by recent murine studies demonstrating mouse strain-specific 

susceptibility to RBC cold storage injury that correlate with post-transfusion RBC recovery and 

function (4, 7, 11). In addition to limiting storage time and reducing post-transfusion RBC 

recovery, hemolysis drives endothelial dysfunction and vascular injury. We and others have 

demonstrated that cell-free hemoglobin released during hemolysis in the setting of SCD and 

transfusion of aged stored blood is toxic, driving nitric oxide depletion, oxidative injury, heme-

mediated inflammation, and iron overload (19-21, 23, 24).  

We identified twenty loci that were genome-wide significant in all sample analysis 

(p<5x10-8) for at least one of the hemolysis measures (Table 1). Many of the identified variants 

were concentrated in proteins known to cause human RBC disorders characterized RBC fragility 

such as dehydrated hereditary stomatocytosis (PIEZO1) (41, 42), spherocytosis ANK1, SPTA1, 

SLC4A1 (23, 43), ellipto-poikilocytosis (SPTA1) (44), xerocytosis (PIEZO1) (30), alpha-thalassemia 

(HBB) (31), and spontaneous and oxidant stress–induced hemolytic anemia (HK1 and G6PD) (16, 

45). Providing additional validity, many of the implicated SNPs have been associated with 

laboratory complete blood cell count measurements, such as reticulocyte counts (SPTA1 and 

PIEZO1) (46), and other complete blood count indices (G6PD) (47). Consistent with relevance of 

our in vitro quantitative measures of stress hemolysis, the identified SNPs from the RBC donor 

GWAS cohort in alpha-thalassemia, G6PD, PIEZO-1, Aquaporin-1, SEC14 Like 4 (SEC14L4), and 

glutaredoxin (GLRX) were found to GWA significantly associate with hemoglobin and hemolytic 

lab indices in the blood of SCD patients.  

In addition to genes known to alter RBC function and hemolytic propensity and promote 

disorders (e.g., spherocytosis and xerocytosis), we identified a number of genes not previously 

known to impact RBC function including MYO9B. We also identified seven loci, including HBB, 



	

HBA, G6PD and EYS2, that were genome-wide significant in at least one non-Hispanic white 

ancestry group (African American, East Asian, South Asian, Caribbean Island Hispanic (CIH), 

Mexican/Central American Hispanic (MCAH), and Others, which includes multi-racial people, 

Alaska/Hawaiian/Native Americans, and Pacific islanders (Table 1) highlighting the importance of 

studying diverse populations to provide a more comprehensive evaluation of genetic factors 

which affect RBC hemolysis. The number of discoveries in the specific ancestry groups is fewer 

than in the non-Hispanic white population in part due to the lower power from reduced sample 

sizes in these populations. For some of the loci such as G6PD and HBB in African Americans, the 

effect is likely due to known variation in these genes such as the A- or HbS variant that are mostly 

absent in non-Hispanic white populations. This was not always the case; the specific variants 

identified in MCAH in EYS or rs118149920 on chromosome 13 are unlikely to be the causative 

variants but are likely to be in linkage disequilibrium with actual causative variants that could be 

on chromosomes of Native American ancestry, especially since the G allele at rs118149920 is 

absent in European and African populations, but common in Native American and Asian 

populations. 

The validity of the identified regions in the current study of hemolysis in the RBC-Omics 

cohort is supported by four observations: a) the biological plausibility of the identified SNPs, with 

most in proteins known to cause RBC disorders such as dehydrated hereditary stomatocytosis 

(PIEZO1) (41), spherocytosis (ANK1, SPTA1, SLC4A1 (23, 43), ellipto-poikilocytosis (SPTA1) (44), 

xerocytosis (PIEZO1) (30), alpha-thalassemia(HBB) (31), and spontaneous and severe non-

spherocytic hemolytic anemia (HK1) (45); b) some of the SNPs have been associated with 

laboratory complete blood cell count measurements, such as reticulocyte counts (SPTA1 and 

PIEZO1) (46), and other complete blood count indices (G6PD) (47); c) MetaXcan (Table 2) finds 

that the variation in a number of GWA significant genes contain eQTL for those genes and that 

the genes’ expression are associated with hemolysis measures; and d) the consistency of GWA 

findings with significant SNPs that modulate the severity of in vivo hemolysis in patients with SCD 

(Table 4). 

There were a number of variants identified in RBC antioxidant enzymes.  For example, the 

finding that genetic variations in the GPX4 gene modulated oxidative hemolysis is of interest 



	

because this enzyme has been linked to key regulatory pathways in erythropoiesis including 

erythroblast enucleation and reticulocyte maturation (48-50). With regard to antioxidant activity, 

GPX4 neutralizes bioactive lipid hydroperoxides to lipid alcohols, thereby preventing iron 

dependent cell death or ferroptosis (51, 52). Metabolomics studies of the RBC storage lesion have 

demonstrated the formation and accumulation of inflammatory bioactive lipids (oxylipins; e.g. 

12-hydroxyeicosatetraenoic acid) during cold storage (53, 54). Therefore, genetic mutations that 

compromise RBC GPX4 function may contribute to transfusion-related oxidative injury and 

inflammatory reactions. There were also significant associations between X-linked G6PD A- (the 

V68M variant) and both in vitro oxidative hemolysis and the in vivo severity of hemolytic anemia 

in patients with sickle cell disease.  The enzyme G6PD controls the pentose phosphate pathway 

dependent generation of reduced NADPH, necessary for reduction of intracellular glutathione. 

G6PD A- (V68M) is common in African Americans; approximately 11% of African American men 

are hemizygous for this SNP. The enzyme activity of G6PD A- in erythrocytes is moderately 

decreased, 10-23% of normal activity. Hemizygotes do not have chronic hemolysis but can 

undergo acute hemolysis if exposed to oxidant stress (32).  The finding of more marked hemolysis 

in G6PD A- hemizygous and homozygous sickle cell disease persons under basal circumstances in 

this study would reflect the ongoing oxidative stress that sickle cell erythrocytes experience (55). 

As mentioned in the introduction, this variant has also been shown to directly relate to post-

transfusion RBC recovery (16), highlighting the potential relevance of our GWAS findings to 

transfusion medicine outcomes.  

Polygenic scores were developed for oxidative and osmotic hemolysis in several of the 

ancestral groups (Table 3) that were able to predict far more of the variance in hemolysis than 

any single SNP or gene locus alone. The application of Non-Hispanic Whites-developed PGS to 

other ancestry groups has enabled the calculation of a PGS when there is not sufficient power to 

develop an ancestry-specific PRS (56), although the transferability of PRS scores across ancestry 

groups should be viewed with caution (56-58). For example, in African Americans the correlation 

for PGS with oxidative hemolysis with an ancestry specific PRS was 0.259 but with the Non-

Hispanic Whites PRS was only 0.103. When possible, ancestry specific PGS scores should be 

developed and used appropriately. PGS will be useful for leveraging the combined genetic effect 



	

on individuals and can be combined with other clinical and omics data to gain insights into the 

pathways leading to RBC function. All individuals in the cohort have some combination of alleles 

across the loci contribution to the PGS score. For the top 50 loci identified in the Non-Hispanic 

Whites PRS score for osmotic hemolysis, no one, across all racial groups, contains minor alleles 

at fewer than 7 of the loci or more than 34. Thus, genetic variation contributes to variation in 

oxidative and osmotic hemolysis in all individuals.  

We were unable to identify a true replication cohort for the in vitro hemolysis measures 

of the RBC-Omics cohorts since this is the first such study to explore stress hemolysis as a 

quantitative trait in a large donor population. Instead, we chose to test whether the RBC-Omics 

results generalize to in vivo levels of anemia and hemolysis in the Walk-PHaSST and PUSH SCD 

cohorts. We found that several variants and regions associated with in vitro hemolysis measures 

in the REDS-III RBC-Omics donor population were also significant for in vivo hemolysis measures 

within the SCD WALK-PhASST and PUSH cohorts, such as HBA2, HBB, GLRX, AQP1, SEC14L4 (Table 

4). These observations suggest that the in vitro stress measurements identified known and new 

variants that under the stress of human disease may modulate RBC biology. Such findings could 

lead to identifying rare variants that may modulate the outcomes of many hemolytic diseases.  

Consistent with this hypothesis, one of the variants identified, the A-G6PD deficiency, has been 

recently shown to reduce post-transfusion RBC recovery (16). 

We propose that the identification of genetic variables that modulate the stability of RBCs 

in storage after response to stressors and the functional integrity of RBCs after transfusion could 

advance donor selection and storage policies and improve transfusion outcomes. Identification 

and removal of genetically susceptible “fragile” RBC donors/units that rapidly degrade in storage 

and selection of profiled “super donor” blood components that might be stable for longer periods 

of storage or survive longer after transfusion could provide for a precision transfusion medicine 

strategy, more advanced than current random sampling of donors and transfusion of RBC units 

irrespective of donor genotypes, recipient disease status or short- or long-term transfusion 

requirements.  

Further studies are needed to understand the manner in which the genetic variation leads 

to changes in expression, protein, epigenome, metabolome and to understand the interaction 



	

network that led to interindividual differences in hemolysis (59, 60). For example, we have 

studied the metabolomic changes induced by the G6PD A- variant associated with oxidative 

hemolysis and identified significant effects on the NADPH and glutathione-dependent 

detoxification pathways of oxidized lipids (61), which could lead to alterations in the dynamics of 

the RBC membrane.  

The genetic information developed in this study is being used in new studies of donor-

blood component-recipient outcomes to evaluate the consequences of some of the reported 

gene variants on transfusion efficacy in patients (62, 63). Additional effort is aimed at evaluating 

non-genetic factors (64, 65) that influence RBC recipient outcomes. Current studies are underway 

to advance the field of precision transfusion medicine via the development of a transfusion-

specific microarray that would provide enhanced tools for the screening of blood donors.  

  



	

METHODS 

RBC-Omics Cohort:  

            The REDS-III RBC-Omics cohort donor recruitment and study design are described in detail 

in Endres-Dighe et al (25). Briefly, 13,403 whole blood donors over the age of 18 were recruited 

from December 2013 to December 2015 at four REDS-III blood centers. All subjects were healthy 

allogeneic blood donors who passed screening and were not anemic. Samples were excluded 

because of duplicate enrollment, low call rate (< 97%), sample swap, if blood donation quantity 

was not sufficient, and if markers of infectious disease were reactive. We analyzed only one 

relative per family, selected based on having the most complete data. The final informative 

sample size was 12,353. Institutional review board approvals were obtained at all institutions.  

Evaluation of Donor Predisposition to In vitro Hemolysis:  

            Stored (39-42 days) leukocyte-reduced RBCs were evaluated for spontaneous (cold 

storage) and two stress hemolysis assays including osmotic fragility and oxidative hemolysis using 

2'-azobis(2-amidinopropane) dihydrochloride (AAPH) as detailed elsewhere (2, 66). Each of the 

hemolysis measures is a quantitative trait on the range from 0% to 100% (osmotic mean = 28%, 

oxidative mean = 36%, and storage = 0.4%) (2). 

Genotyping:  

             Samples were genotyped on a Transfusion Medicine microarray (TM-Array) (26) that 

contained a total 879,000 SNPs (genotype coverage of >90% for SNPs with Minor Allele 

Frequency (MAF) > 5%) for Non-Hispanic White, Hispanics, African Americans, and Asians.  The 

data from this study is available in dbGAP as accession phs001955.v1.p1 (67). We used PLINK (68) 

to perform quality control for genotyped data to eliminate potential biases. Individuals for whom 

calculated genetic sex and self-reported gender differed as well as individuals with more than 3% 

missing genetic data were excluded. SNPs with genotype missing rates higher than 3% or failing 

a Hardy-Weinberg Equilibrium (HWE) validation (p<1E-4) in any ancestry group were excluded 

from the study. 811,782 SNPs passed these steps and were used for the imputation. 



	

Imputation:  

             Statistical phasing was conducted by Shape-IT (69). Imputation was then conducted for 

each 2 Mb interval with 1Mb flanking regions on each side using Impute2 (70) and 1000 Genomes 

Project Phase 3 as reference haplotypes. Imputation results were further filtered by using an 

INFO score > 0.8 before conducting association analyses (70). The final high-quality dataset had 

8.1 million SNPs at >5% MAF and 14 million SNPs at >1% MAF. We ran GWA analysis in all ancestry 

groups for the 14 million SNPs. 

Ancestry:  

             Ancestry analysis was conducted in the RBC-Omics cohort with 1000 Genomes Phase 3 

samples (Figure 1A, supplemental figures 1-3). Ancestry principle components (PCs) were 

calculated using Bioconductor package SNPRelate (71) in the entire data set and separately for 

participants within each genetic ancestry group. The RBC-Omics subjects were then divided into 

seven ancestry groups: non-Hispanic White, African American, East Asian, South Asian, Caribbean 

Island Hispanic (CIH), Mexican/Central American Hispanic (MCAH), and Others, which includes 

multi-racial people, Alaska/Hawaiian/Native Americans, and Pacific islanders for GWAS analyses.  

GWA Study of Common Genetic Variation:  

             Association analyses were conducted using the software ProbABEL (72). In previous 

studies, we determined that sex, age, ancestry, and donation frequency were associated with the 

levels of storage, osmotic, and oxidative hemolysis and were thus were used as covariates as well 

as the first 10 ancestry PCs in our genetic analyses (2, 73). The distributions of osmotic and 

oxidative hemolysis were normally distributed, but storage hemolysis was skewed, thus we used 

log-transformed storage hemolysis values (supplemental figure 10). 

We conducted two types of analysis: The first was an analysis of all subjects, called ‘ALL 

Ancestries’ in the Tables and Figures. In the second, we conducted individual ancestry GWA 

analyses for Non-Hispanic Whites, East Asians, South Asians, CIH, MCAH, and African Americans. 

A GWA analysis for this study is a multivariable linear model with p-value threshold of 5x10-8 

defined as statistically significant for all GWA analyses (Table 1). Conditional GWA analysis 



	

verified whether any of the significant loci were independent by incorporating the SNPs with the 

smallest p-value in a region as a covariate in the GWA model and testing the region 50 kb on each 

side of this SNP. Linkage disequilibrium score (LDSC) regression (74) was used to estimate the 

SNP-based heritability (ℎ6) of both osmotic and oxidative hemolysis. 

Bioinformatic Analyses:  

             HaploReg v 4.1 (75) was used to annotate the genes nearest to the index SNPs. Version 

1.3 of LocusZoom (76) was used, with 1000 Genome Phase 3 linkage disequilibrium (LD) 

estimation. MetaXcan was implemented to infer gene expression patterns based on genotyped 

and imputed SNPs from the REDS-RBC-Omics in 922 whole blood expression profiles from the 

Depression Gene Network (Table 2) (71). MetaXcan uses a combination of linear and multivariate 

linear models with a Bonferroni (based on number of genes) correct p-value of < 0.05 being the 

significance cut-off. FUMA (77) was used to explore the biological pathways and enriched gene-

set related to osmotic and oxidative hemolysis using the p-values from the GWA results for all 

subject analyses. The curated gene-sets and go-terms tested were from the Molecular Signatures 

Database (MSigDB) in GSEA (78).  

Polygenic Score for Hemolysis:  

             Polygenic scores (PGS) provide a quantitative metric of the magnitude of an individual’s 

inherited factors on a trait based on the cumulative impact of many common polymorphisms 

(79). Several methods for calculating PGS exist including linkage disequilibrium (LD) pruning, p-

value thresholding, and LDPred (80), which were applied to calculate PGS for oxidative, osmotic, 

and storage hemolysis. Models were built in two-thirds of the samples selected at random 

without reference for various p-value and linkage disequilibrium prunes that were validated 

independently in the remaining third. The 2/3 and 1/3 split was chosen as an intermediate of the 

possible splits suggested by different machine learning approaches (81). The set of LD pruning 

and p-value thresholding (supplemental figures 6-9) model that was provided the best estimate 

as measured by the r2 between the hemolysis measure in the left out 1/3 and the PRS model built 

in the 2/3 was LD Pruning (r2<0.2) and p-value thresholding (P<10-7). This set of thresholds was 



	

then used in the entire dataset to estimate the final PGS (Table 3). All markers in the final PGS 

had a p-value of <10-7. 

In vivo Studies in Sickle Cell Disease Cohorts WALK-PHaSST and PUSH Cohorts:   

             The SNPs that were genome wide significant from the REDS-III cohort were tested in the 

Treatment of Pulmonary Hypertension and SCD with Sildenafil Therapy (WALK-PHaSST dbGAP 

accession PHS001513.v1.p1) and Pulmonary Hypertension and Hypoxic Response in SCD (PUSH 

dbGAP accession PHS001682.v1.p1). This included 232 SNPs in 27 loci common in SCD cohorts 

(MAF >0.05) and imputed with r2>0.8, all with p values less than 5×10-8 in REDS-III cohort. We 

evaluated the association of SNPs with a mathematical measure of the severity of in vivo 

hemolysis at steady state (baseline not during a vaso-occlusive event). The end point used is the 

first factor of a previously validated principal component (PC) measure of severity of steady state 

hemolysis in SCD patients (21). The PC is derived from clinically available standard lab measures 

that reflect RBC hemolysis. These measures include log transformed serum lactic acid 

dehydrogenase, aspartate aminotransferase, and total bilirubin, as well as the square root–

transformed percent reticulocytes, and venous hemoglobin levels (21). These measures were 

adjusted for clinical site of blood collection and were standardized. This estimate of the severity 

of hemolytic anemia has been previously validated in patients with sickle cell disease and shown 

to significantly correlate with plasma hemoglobin and plasma RBC microparticles, as well as 

associate with clinical measures that modulate the intensity of hemolysis (fetal hemoglobin level 

and a-thalassemia) (21, 82). Genetic association of the severity of hemolysis by PCA adjusted for 

age, sex, hemoglobin genotype severity (SS and S-β0 versus SC and S-β+), cohort, use of 

hydroxyurea validated by Hb F level, recent transfusion, and population stratification. Recent 

transfusion was defined by hemoglobin A level >50% in Walk-PHaSST and transfusion within the 

past two months in PUSH. Results between in vitro and in vivo hemolysis were considered 

consistent if the initial GWA p-value was significant (p < 5×10-8) and the p-value for the 

association in the two SCD cohorts was significant (p<0.05). We also show combined meta-

analysis p-values for all results in Table 4. 

The Walk-PHaSST study has 429 analyzable informative patients at least 12 years of age 

from nine U.S. Centers and one UK Center (83, 84). The PUSH study was conducted at four tertiary 



	

medical centers in the United States and contains 282 analyzable patients 3 to 20 years of age 

(82). These SCD samples were genotyped on the Illumina Human 610-Quad SNP Array, which 

covers 588,451 genome-wide SNPs. Sample and SNP quality control was described previously 

(85). Genotypes were phased (85) and imputed (86) to 1000 Genomes Phase 3 data using African 

reference population samples. PCs of autosomal SNPs were estimated using the GCTA software 

(86). 

 

Study approvals:  

             RBC-Omics was conducted under regulations applicable to all human subject research 

supported by federal agencies. The Data Coordinating Center (RTI International, Rockville, MD) 

of REDS-III was responsible for the overall compliance of human subjects to regulator protocols, 

including institutional review board approval from each participating blood center, from the 

REDS-III Central Laboratory (Vitalant, San Francisco, CA) and the Data Coordinating Center. 

Approval of the Walk-PHaSST study protocol (clinical trial # NCT00492531) was obtained from 

local institutional review boards or ethics committees, and written informed consent was 

obtained from all study subjects in accordance with the Declaration of Helsinki.  
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Figure 1: Ancestry of RBC-Omics population and Manhattan plots. Figure 1A: First two principal component (PC) plot of the extended RBC-Omics 
population overlain on the 1000 Genomes Phase 3 samples. Individuals are labeled by genetic ancestry (AFR: African American, EAS: East Asian, SAS: 
South Asian, EUR: Non-Hispanic White, AMR: admixed American, CIH: Caribbean Island Hispanics, MCAH: Mexican and Central American Hispanics, 
OTH: Other/multi ancestry) overlain by ancestry groups from 1000 Genomes v3. Figure 1B–D: Manhattan plots summarizing the mega analysis 
results for osmotic hemolysis (n = 12,215, lambda = 1.003, Figure 1B), oxidative hemolysis (n = 10,007, lambda = 1.048, Figure 1C), and storage 
hemolysis (n = 12,177, lambda = 1.002, Figure 1D). Each point corresponds to a -log10 (p-value) from a multi-variant linear regression model’s p-
value for a SNP. The black horizontal line represents an accepted p-value level of genome-wide significance (p = 5X10-8). Circles represent non-coding 
variants, and triangles are coding variants.  

 

  



 

Figure 2: Box plots of various hemolysis levels by genotype for GWA-significant non-synonymous (except HBA2) variants by ancestry group. Osmotic 
hemolysis: Figure 2A, Osmotic SPTA1 rs857725/Lys1693Gln; Figure 2B, Osmotic HBA2 chr16:223678; Figure 2C, Osmotic HBB rs334/Gul7Val (Hb S). 
N=12,219 for all osmotic analyses. Oxidative hemolysis: Figure 2D, Oxidative SEC14L4 (AX-83171224/rs9606739) Arg112Gly; Figure 2E, Oxidative 
G6PD (rs1050828) Val68Met is on the X chromosome, therefore male (M) and female (F) sample members are displayed separately. N=10,007 for all 
oxidative analyses. Spontaneous (Storage) hemolysis: Figure 2F, Storage TMC8 (rs7208422) Asn306Ile. Minor allele homozygotes are in shades of red, 
heterozygotes in green, and reference allele homozygotes in shades of blue. N=12,219 for all storage analyses.  Ancestry groups AFR: African 
Americans, EUR: Non-Hispanic Whites, EAS: East Asians, SAS: South Asians, CIH: Caribbean Island Hispanics, MCAH: Mexican/Central American 
Hispanics, and OTH: Other. 

 

  



 

Figure 3: LocusZoom and box plots for two non-overlapping genome-wide significant loci in ANK1. Figure 3A: LocusZoom plots centered on 
rs4737010 in ANK1. Figure 3B: LocusZoom plot rs34664882 in ANK1. In each plot, each point represents a SNP passing quality control in the linear 
regression analysis of imputed dosage plotted with its p value as a function of genomic position (GRCh38 Assembly). The lead SNP is represented by 
the purple symbol. The color coding of all other SNPs indicates LD with the lead SNP (estimated by Phase II HapMap CEU r2 values): red, r2 ≥ 0.8; gold, 
0.6 ≤ r2 < 0.8; green, 0.4 ≤ r2 < 0.6; cyan, 0.2 ≤ r2 < 0.4; blue, r2 < 0.2; gray, r2 unknown. Recombination rates are estimated from 1000 Genomes 
Phase 3 data. Figure 3C: Box plots of osmotic hemolysis measure by genotype and genetic ancestry group for rs4737010. Figure 3D: Box plots of 
osmotic hemolysis measure by genotype and genetic ancestry group for rs34664882. Ancestry groups AFR: African Americans, EUR: Non-Hispanic 
Whites, EAS: East Asians, SAS: South Asians, CIH: Caribbean Island Hispanics, MCAH: Mexican/Central American Hispanics, and OTH: Other. 

 
 



 

Table 1: Genome-wide significant results for hemolysis in all samples or within individual ancestry groups. Results are presented for the single most-

significant SNP under a GWA peak. Directly genotyped SNPs that are also GWA significant are presented as well. Information includes chromosome 

location, RS IDs for markers, the p-value, population(s) in which the SNP was significant, the nucleotide for the minor allele, the minor allele frequency 

in the non-Hispanic White population, the r2 for imputation accuracy, the sample size of the most GWA-significant population, calculated beta, nearest 

gene(s) to the most significant SNP (# represents no close gene), and any functional information on the SNPs. The r2 is a measure of the imputation 

accuracy.  Minor allele frequencies in various populations based on TOPMED frequencies (* missing/not mapped in TOPMED release 8).  If r2 = 1, the 

marker was directly genotyped. INT – intronic, NSM – non-synonymous mutation.  

 

Chr Position Nearest Gene Rsid Hemolysis p-Value 
GWA-
Significant 
Populations 

Minor 
Allele r2 beta 

SNP 
Functional 
Annotation MAF 

African 

MAF 
Native 

American 

MAF 
East 

Asian 
MAF 

European 

MF 
South 
Asian 

MAF 
TOPMED 
Freeze 8  

1 158586966 SPTA1 rs2022003 Osmotic 1.01E-22 All, EAU A 0.99 1.7 INT 0.22 0.33 0.43 0.30 0.21 0.29 

1 158607935 SPTA1 rs857725 Osmotic 8.75E-21 All, EAU G 1 -1.6 NSM 0.10 0.30 0.44 0.28 0.17 0.25 

1 195275704 # rs17661899 Oxidative 3.54E-08 MCAH G 0.98 -6.0 No gene 0.05 0.09 0.00 0.16 0.04 0.07 

1 246711077 TFB2M rs35558093 Osmotic 3.87E-08 East Asian A 0.99 -21.2 INT 0.18 0.22 0.00 0.29 0.11 0.16 

2 24029928 MFSD2B rs55707417 Osmotic 1.07E-13 All, EAU G 1.00 -1.8 INT 0.05 0.08 0.05 0.14 0.16 0.09 

3 34083520 # rs148642995 Osmotic 1.09E-08 
African 
American T 0.89 -11.2 NA 

0.02 0.01 0.00 0.00 0.00 0.01 

5 95166235 GLRX rs72785409 Oxidative 1.15E-12 All, EAU  C 0.98 1.5 INT 0.21 0.09 0.04 0.12 0.08 0.12 

6 66045716 EYS rs78484557 Osmotic 3.20E-09 MCAH C 0.90 -25.7 INT 0.00 0.01 0.00 0.03 0.00 0.02 

7 30954977 AQP1 rs5883264 Osmotic 4.23E-10 All, EAU GC 0.98 -1.3 INT 0.31 0.18 0.01 0.16 0.13 0.17 

7 50429442 IKZF1 rs6976036 Osmotic 1.86E-08 All, EAU T 1.00 0.9 INT 0.47 0.60 0.44 0.50 0.49 0.49 

8 41630447 ANK1 rs4737010 Osmotic 5.85E-28 All, EAU A 0.97 -1.9 INT 0.54 0.27 0.53 0.24 0.18 0.37 

8 89839432 # rs189900952 Storage 2.42E-08 All, EAU G 0.67 0.002 No Gene 0.00 0.02 0.12 0.00 0.01 0.02 

9 91408347 MIR4289 chr9:91408347 Osmotic 6.44E-10 All, EAU C 0.96 -2.3 NA * * * * * * 

10 71099109 HK1 rs72805692 Osmotic 4.90E-11 All, EAU A 0.99 1.8 INT 0.002 0.07 0.00 0.11 0.02 0.04 

11 5248232 HBB rs334 Osmotic 3.66E-10 
African 
American A 0.82 -8.2 NSM 

0.10 0.01 0.00 0.00 0.00 0.03 

11 9762274 SWAP70 rs360153 Osmotic 1.28E-10 All, EAU T 1.00 -1.0 INT 0.48 0.52 0.38 0.60 0.51 0.50 

11 100493995 ARHGAP42 rs717662 Osmotic 4.00E-09 All, EAU C 0.97 -1.5 INT 0.01 0.06 0.27 0.11 0.09 0.11 

12 112061723 BRAP/ALDH2/ 
MAKKAPK5 

rs77684561 Osmotic 2.24E-13 All, EAU C 0.97 1.5 INT 0.15 0.15 0.35 0.17 0.22 0.21 



 

13 76938832 # rs118149920 Osmotic 9.74E-09 MCAH T 0.93 -12.5 INT 0.00 0.09 0.08 0.01 0.06 0.04 

16 223678 HBA2 chr 16:223678 Osmotic 2.90E-14 
All, EAU, 
African 
American 

α-/del 0.80 -4.4 INT 
* * * * * * 

16 226229 HBA2 chr 16:226229 Osmotic 1.06E-12 East Asian α-/del 0.90 -17.9 INT 0.00 0.00 0.02 0.00 0.00                 0.00 

16 88856084 PIEZO1 rs551118 Osmotic 4.04E-14 All, EAU C 0.91 -1.3 INT 0.74 0.50 0.62 0.59 0.60 0.62 

17 42304644 UBTF/SLC4A1 
(Band 3) 

rs7222349 Osmotic 3.62E-08 All, EAU G 1.00 -1.0 INT 0.96 0.45 0.75 0.32 0.31 0.55 

17 76130575 TMC8; TMC6 rs7208422 Storage 1.34E-08 All T 1.00 -0.004 NSM 0.71 0.59 0.42 0.49 0.51 0.56 

19 1103230 GPX4 rs8178962 Oxidative 3.80E-14 All A 0.96 -1.1 INT 0.62 0.58 0.28 0.45 0.42 0.49 

19 17252151 MYO9B rs35365035 Osmotic 9.88E-15 All, EAU T 1.00 1.2 INT 0.74 0.43 0.36 0.41 0.35 0.49 

22 30891859 SEC14L4 rs9608944 Oxidative 9.85E-10 All G 1.00 1.1 INT 0.15 0.29 0.04 0.23 0.14 0.20 

23 153764217 G6PD rs1050828 Oxidative 2.66E-17 All, African 
American 

T 1.00 3.8 NSM 0.10 0.01 0.00 0.00 0.00 0.04 

 

  



 

 

Table 2: MetaXcan analysis of genes whose expression is modeled to be associated with osmotic and oxidative hemolysis. Presented is the gene 
name, chromosome location of the gene, Bonferroni (BF) corrected p-value, predicted performance (r2) of the models of the gene’s expression, 
predicted performance q-value of the model, number of SNPs in the gene used to estimate the gene’s expression level, and whether the gene is 
under one of the genome-wide significant peaks. 

Gene Name Hemolysis Chromosome Location BF  
p-Value 

r2 Q-Value Number of SNPs Under GWA 
Hit? 

PFN4 Osmotic  chr2:24,338,241-24,346,347 5.0E-04 0.04 1.23E-08 8 Yes 
MFSD2B Osmotic  chr2:24,232,951-24,286,191 1.3E-02 0.08 1.27E-17 28 Yes 
ESYT2 Osmotic  chr7:158,523,686-158,622,944 4.5E-02 0.40 3.92E-102 49 Yes 
C8orf40(SMIM19) Osmotic  chr8:42,396,298-42,409,603 7.9E-03 0.26 1.73E-61 31 No 
SLC20A2 Osmotic  chr8:42,273,993-42,397,069 3.4E-02 0.23 1.28E-53 24 No 
SWAP70 Osmotic  chr11:9,685,624-9,774,538 1.8E-02 0.08 5.51E-17 35 Yes 
NAA25 Osmotic  chr12:112,464,493-112,546,826 1.6E-06 0.03 6.09E-07 17 Yes 
SH2B3 Osmotic  chr12:111,843,752-111,889,427 1.1E-04 0.04 1.06E-09 21 Yes 
FAM109A Osmotic  chr12:111,798,455-111,806,925 1.0E-03 0.06 1.13E-14 18 Yes 
TMEM116 Osmotic  chr12:112,369,086-112,451,023 1.4E-02 0.16 3.33E-37 30 Yes 
SLC4A1 Osmotic  chr17:42,325,753-42,345,509 9.7E-04 0.01 1.14E-03 7 Yes 
C17orf59(BORCS6) Oxidative  chr17: 8,091,651-8,093,564 2.7E-02 0.02 4.90E-05 27 No   
GPX4 Oxidative  chr19: 1,103,936-1,106,787 3.2E-06 0.31 8.49E-76 74 Yes 

 

  



 

Table 3: Ancestry and cross-ancestry polygenic risk scores. Summary of correlation of PRS score calculated in ancestry-specific groups with each 
hemolysis measure in the entire ancestry-specific group. The ancestry groups are defined by principal component analysis based on genetic data 
(Figure 1). **The correlation within ancestry is calculated between the polygenic risk scores trained within each ancestry and the measured osmotic 
or oxidative hemolysis in each ancestry group. NA -no PRS could be calculated that was different from 0. *** The correlation from non-Hispanic 
white (EAU) is calculated between the polygenic risk score trained in this group and the measured osmotic or oxidative hemolysis within each 
ancestry group. 

Genetically 
Defined 
Ancestry* 

Sample 
Size 

Correlation with 
Osmotic 
hemolysis ** 

Correlation 
with EAU 
Osmotic 
PGS*** 

Correlation with 
Oxidative 
hemolysis** 

Correlation 
with EAU 
Oxidative 
PGS*** 

Non-Hispanic 
White (EAU) 7,757 

0.221 0.221 0.0834 0.0834 

African American 1,052 NA 0.117 0.259 0.103 
East Asian 1,112 0.180 0.134 NA 0.0126 
South Asian 265 NA 0.184 NA 0.125 
Caribbean Island 
Hispanics 

497 
 

NA 0.182 
 

NA 0.0635 
 

Mexican Central 
American 
Hispanics 

459 
 

 
0.251 0.184 

 

 
0.263 0.0901 

 
Other 598 NA 0.208 NA 0.0855 

 

 

 

 

 

 



 

Table 4: Testing of osmotic, oxidative, and storage hits from the REDS-III RBC-Omics full data in the combined Walk-PHaSST and PUSH cohorts. 
Significant SNPs with nominal P value <0.05 in the SCD study were pruned so that linkage disequilibrium r2 <0.3 in SCD cohorts. Information includes 
RS IDs for markers, the nearest genes, chromosome location, the nucleotide for the minor allele, the minor allele frequency from the REDS-III RBC-
Omics full data and from the combined Walk-PHaSST and PUSH cohorts, the r2 for imputation accuracy, and p-value and beta estimation of the 
association between minor allele and hemolysis trait. Given different measures of hemolysis the directions of the betas are not necessarily consistent 
between the in vivo and in vitro measures. RBC-Omics n = 12,219 for oxidative hemolysis and 10,017 for osmotic hemolysis. SCD n = 711 (Walk-
PHaSST n 429; PUSH n = 282). 

Nearest 
Gene Hemolysis RSid Chr Position Minor 

Allele 

REDS-III SCD 

MAF r2 beta 
SNP p-Value MAF r2 beta 

SNP p-Value 

GLRX oxidative rs10067881 5 95162475 A 0.10 0.99 1.5 9.02E-12 0.065 0.91 -0.36 0.0211 
AQP1 osmotic rs73305784 7 30990948 A 0.17 0.99 1.2 4.48E-08 0.13 0.98 0.24 0.0350 

Several osmotic rs7967238 12 112378371 A 0.17 0.92 -1.4 9.13E-10 0.31 0.93 0.19 0.0241 
Several osmotic rs10850001 12 112553032 A 0.44 0.95 1.0 6.80E-10 0.11 0.98 -0.26 0.0297 
HBA2 osmotic chr 16:223678 16 223678 C 0.024 0.80 -4.4 1.27E-14 0.16 0.84 -0.54 8.08E-07 

PIEZO1 osmotic rs34383297 16 88845444 CT 0.47 0.86 0.98 1.02E-08 0.39 0.87 0.17 0.0338 
SEC14L4 oxidative rs9606739 22 30891294 C 0.19 1.0 1.0 3.07E-09 0.13 0.99 0.27 0.0138 

G6PD oxidative rs78751796 23 153416537 A 0.017 0.49 2.5 2.08E-08 0.11 0.83 0.25 0.0210 
G6PD oxidative rs115202723 23 153677778 A 0.036 0.93 1.8 1.98E-08 0.25 0.94 0.18 0.0119 
G6PD oxidative rs28844711 23 153726824 T 0.032 0.83 2.2 6.50E-11 0.24 0.91 0.29 8.96E-05 
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