

Supplemental Figure 1. Populations of PMN and MON in mice infected with LCMV. The percentage and total cell numbers of CD11b⁺ myeloid cells, monocytes and neutrophils in spleens of LCMV-Arm and LCMV-C13 infected mice. N= 3-5. * - p<0.05, ** - p<0.01; from control in two-sided unpaired Student's t-tests.

Supplemental Figure 2. Populations of PMN and MON in tumor-bearing mice. The percentage and total cell numbers of $CD11b^+$ myeloid cells, monocytes and neutrophils in spleens and tumors of EL4 and LLC-bearing mice (as indicated). N= 4-12. Top panels – P values were calculated in one-way ANOVA test with correction for multiple comparisons. Bottom panels – p values were calculated two-sided unpaired Student's t-tests. P values <0.05 are shown on the graphs.

A. Monocytes in LCMV infection

relative to b-actin

relative to b-actin

relative to b-actin

B. Neutrophils in LCMV infection

Sec61a

01-010

0

Armora and

Arm C1301A

Haive

oo

Naive

Armolisal

Erp72

0

Ŷ

Armolisal

Supplemental Figure 3. Expression of transcripts associated with the ER stress response in myeloid cells from LCMV infected mice. Monocytic (A) and neutrophilic cells (B) were sorted from spleens of naïve, LCMV-Arm and LCMV-C13-infected mice. Gene and protein expression of key molecules associated with the ER stress response pathways were measured by qRT-PCR and Western blots, respectively. The results of 3 independent experiments are shown. +Thg depicts total splenocytes stimulated with 500 nm thapsigargin for 4 h as a positive control.

Supplemental Figure 4. Suppressive activity of myeloid cells in LCMV infected mice with deletion of key molecules of the ER stress response pathways. A. The deletion efficiency of the floxed exons of the target genes in sorted monocytes and neutrophils from spleens of LLC-bearing mice was assessed by qRT-PCR. For CHOP KO mice, total splenocytes were isolated from naïve mice and were stimulated with Thapsigargin for 4 h. **B.** Mice with deletions in the specified key molecules of different ER stress response pathways were infected with LCMV-C13. Monocytes and neutrophils cells were sorted from spleens on day 14 and their suppressive activity was measured in co-cultures with activated OT.1 splenocytes. The representative results of 1 out of 2 independent experiments are shown. n=3.

Supplemental Figure 5. Deletion efficiency of *Ifn* γ *r*2 in monocytes and neutrophils. The deletion efficiency of the floxed exon of the target gene in sorted monocytes and neutrophils from spleens of LLC-bearing IFN- γ R2^{Δ Myel} and IFN- γ R2^{fl/fl} mice was assessed by qRT-PCR. Results of individual mice are shown.

Supplemental Table 1. List of antibodies used in the study

			Reactive			
Name	clone	Source	Species	Catalog Number	Dilution	Marker/Applications
Antibody						
CD45	30-F11	BD Biosciences	mouse	553081	1:200	Flow cytometry
CD11b	M1/70	BD Biosciences	mouse	552850	1:200	Flow cytometry
Ly6C	AL-21	BD Biosciences	mouse	560595 1:200		Flow cytometry
Ly6G	1A8	BD Biosciences	mouse	5514601:200		Flow cytometry
CD16/32	2.4G2	BD Biosciences	mouse	553142	1:200	Fc block
XBP1s	D2C1F	Cell Signaling Technology	mouse	127829	1:1000	WB
СНОР	D46F1	Cell Signaling Technology	mouse	5554	1:1000	WB
Anti-rabbit IgG (secondary HRP						
antibody)	polyclonal	Cell Signaling Technology	rabbit	7074S	1:2000	WB
b actin	13E5	Cell Signaling Technology	mouse	5125S 1:2000		WB
IFNg	XMG1.2	Biolegend	mouse	5058101:100		Flow cytometry
IFNg capture antibody	AN18	Mabtech	mouse	3321-3-250	1:70	ELISPOT
IFNg detection antibody	R4-6A2	Mabtech	mouse	3321-6-250	1:1000	ELISPOT
CD8	53-6.7	BioXcell	mouse	BE0004-1	N/A	in vivo depletion
IL-6R	15A7	BioXcell	mouse	BE0047	N/A	in vivo blockage
Isotype control	2A3	BioXcell	mouse	BE0089	N/A	in vivo isotype control

Supplemental Table 2. Sequences of the primers used in this study.

Gene	Forward primer (5'->3')	Reverse primer (5'->3')
Actin	CCTTCTTGGGTATGGAATCCTGT	GGCATAGAGGTCTTTACGGATGT
Nos2	TGTGGCTGTGCTCCATAGTT	CTGGAGGGACCAGCCAAATC
Arg1	AACACGGCAGTGGCTTTAACC	GGTTTTCATGTGGCGCATTC
Ptges	GCACACTGCTGGTCATCAAG	ACGTTTCAGCGCATCCTC
IL-10	GCAGGACTTTAAGGGTTACTTGG	CACCTTGGTCTTGGAGCTTATTAA
Nox2	CAGTGCTGACCCAAGGAGTT	GGGAACTGGGCTGTGAATGA
Tgfb	AGCTGCGCTTGCAGAGATTA	ATTCCGTCTCCTTGGTTCAGC
Xbp1 spliced	AAGAACACGCTTGGGAATGG	CTGCACCTGCTGCGGAC
Atf6	GACGAGGTGGTGTCAGAG	GACAGCTCTTCGCTTTGGAC
Erp72	GCCAACGACATCACCAACGA	TCTCTGTTGCCACCCTCAAAT
Dnajb11	CGCAGAACCTGAGCACCTTC	CAGTCCCGATGAGGTACAGCA
Sec61a	CTATTTCCAGGGCTTCCGAGT	AGGTGTTGTACTGGCCTCGGT
Erdj5	AGCGTTTCCAATTTTCCATAAATT	CCCCAGTGTCAAACTGTACCA
Chop	CTGCCTTTCACCTTGGAGAC	CGTTTCCTGGGGATGAGATA
Atf4	ATGGCCGGCTATGGATGAT	CGAAGTCAAACTCTTTCAGATCCATT
Ire1a deleted exons 16-17	CTCAACATTGTTCACAGAGACCTG	GCTTCTTGCAGAGGCCAAAG
Atf6 deleted exons 8-9	CTTGTCAGTCGCGCAAGAAG	CACACAGACAGCTCTTCGCT
Ifngr2 deleted exon 3	ACCTTCCAGCAATGACCCAA	TACAGTTCGGCTCCAGCAAC