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Introduction
Traumatic brain injury (TBI) is a major cause of death and dis-
ability in adults across all age groups, with more than 50 million 
TBIs occurring worldwide each year (1). The social and economic  
burden of TBI has placed it at the forefront of public attention, 
yet decades of costly research has yielded limited clinical success, 
owing to the poor understanding of TBI’s heterogeneity and com-
plexity. There are currently an estimated 3.17 to 5 million people 
in the United States living with a chronic TBI-related disability (2). 
Management of TBI involves both treatment of the acute insult 
and prevention and treatment of secondary sequelae, which are 
potential druggable targets. The lack of FDA-approved clinical 
interventions emphasizes the urgent need to identify and develop 
novel therapeutic targets for TBI patients.

TBI has profound effects on the gastrointestinal (GI) tract. 
Notably, TBI survivors are more likely to succumb to digestive 
disorders than healthy age-matched cohorts (3). The brain-gut 
axis is a bidirectional pathway that is critical for central nervous 
system (CNS) and GI homeostasis and regulates diverse functions 
including visceral pain, intestinal barrier function, gut motility, 
and neurobehavior (4). TBI induces a stress response that impacts 
the well-documented autonomic nervous system (ANS) control 
of GI function (5). Activation of the systemic immune system fol-
lowing TBI could play a major role in subsequent GI dysfunction, 
and the effects of TBI may be amplified further by psychological 
distress, which is known to exacerbate GI symptoms (6). Gut-to-

brain communication is equally important, as sensory information 
arising from the gut lumen coordinates function across different 
regions of the gut. Changes in the gut microbiome are common in 
neurodegenerative disorders, spurring mechanistic studies on the 
role of specific microbiota and their microbial products (7). There 
is also an expanding appreciation of the impact of secondary GI 
challenges on chronically injured TBI patients that worsen long-
term morbidity and mortality.

This article reviews the clinical and translational studies that 
define our understanding of the role of the brain-gut axis in TBI- 
induced effects on the gut and delineates current gaps in our knowl-
edge. There is a need for an integrated assessment of how changes 
in the gut affect the progression of acute to chronic TBI. Thus, the 
mechanisms proposed to subserve brain-gut communications are 
discussed here with consideration of their therapeutic potential.

TBI pathophysiology and long-term 
consequences
TBI is defined as a blow to the head or body resulting in a disrup-
tion of normal brain function. Major causes of TBI include falls, 
motor vehicle accidents, domestic violence (e.g., intimate partner 
violence), sports-related injuries, and explosive blasts in combat 
zones (2). TBI is classified as mild, moderate, or severe, based on 
the Glasgow Coma Scale, which assigns scores to eye, verbal, and 
motor responses to yield a clinical score from 3 to 15 (mild: 13–15; 
moderate: 9–12; severe: 3–8) (8, 9). The majority of diagnosed 
TBIs are estimated to be mild (10), comprising approximately 70% 
of cases. Even when mild, TBI often results in chronic disabilities 
that have long-lasting effects on patient health and quality of life 
(11, 12). Long-term TBI-induced impairments in motor and cogni-
tive function and social behavior, development of mood disorders, 
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abnormal sleep patterns, and personality 
changes contribute to decreased quality of 
life and overall life expectancy, resulting in 
an estimated annual global financial bur-
den of over US$400 billion in health care 
costs (1). Severe TBI is a major risk factor 
for neurodegeneration, dementia, stroke, 
and epilepsy (13), and is associated with an 
increased long-term mortality rate com-
pared with rates for the general population 
(12). These neurodegenerative risks also 
occur in milder forms of TBI, especially 
after repetitive injuries (e.g., concussions) 
(13). Thus, TBI is not a single static injury 
event, but should be considered a chronic 
and progressive disease with serious long-
term consequences.

The neurological consequences of TBI 
depend on injury severity, location, fre-
quency, sex, age, genetics, and individual 
comorbidities. Thus, the heterogeneity of 
TBI injury reflects both the direct mechan-
ical damage that results from the injury 
itself (primary injury) and the delayed 
molecular cascades that ensue (second-
ary injury) (Figure 1). Primary injury  
is characterized by the displacement of, 
and mechanical damage to, brain tissue, 
including contusion, vasculature damage, 
hemorrhages, alterations in cerebral blood 
flow and blood-brain barrier (BBB) perme-
ability, and disruptions in metabolism. The 
ensuing secondary injury involves com-
plex, multifactorial biochemical processes  
that are initiated within minutes of the 
primary mechanical injury and persist for 
days, months, and even years following the 
primary insult, contributing to and exacer-
bating neuroinflammation, neurodegener-
ation, and neurological deficits. Secondary 
injury processes include the continued 
flux of intracellular ions (Ca2+, Na+, K+) and 
release of excitotoxic neurotransmitters 
(e.g., glutamate). Additionally, cytoplas-
mic and nuclear proteins released from 
injured cells act as damage-associated 
molecular patterns (DAMPs), which are 
potent stimulators of central and systemic 
immune responses. The disruption of the 
BBB allows for the infiltration of periph-
eral immune cells, including leukocytes, 
into brain parenchyma. These infiltrating 
immune cells secrete chemokines and 
cytokines that mobilize and activate resi-
dent glial cells such as microglia and astro-
cytes, and perpetuate the infiltration of 
peripheral immune cells (14).

Figure 1. Innate immune responses in brain and periphery following traumatic brain injury. (i) 
Depending on the severity of traumatic brain injury (TBI), the primary mechanical injury consists of 
meningeal contusion, axonal shearing, and cerebrovascular injury that leads to meningeal and neuronal 
cell death and activation of microglia and astrocytes. (ii) Neuronal injury and glial activation generate 
chemokines, cytokines, and reactive oxygen species (ROS) and release of damage-associated molec-
ular patterns (DAMPs), eliciting an inflammatory response. (iii) When exposed to DAMPs, phagocytic 
microglia clear debris and produce neurotrophic factors. (iv) Chronic stimulation of these pathways 
induces secondary injury via recruitment of leukocytes, which initially facilitate clearance of tissue 
debris but then contribute to progression of inflammation and blood-brain barrier (BBB) breakdown. (v) 
The ensuing cytotoxic edema and impaired BBB function increase intracranial pressure (ICP) and lead to 
reduced cerebral blood flow (CBF), amplifying hypoxia to disrupt energy supply in the brain. This causes 
further neuronal loss and a feed-forward cycle of neuroinflammation and neurodegeneration. (vi) These 
progressive pathological changes lead to neurological dysfunction and deficits in motor, cognitive, and 
affective function. TBI also alters the autonomic nervous system (ANS), which is hard-wired to monitor 
and modulate DAMPs, thereby producing extracerebral and peripheral innate immune responses. (vii) 
Sympathetic ANS activation results in peripheral release of catecholamines (epinephrine/norepineph-
rine; E/NE), which suppress systemic immune responses. The vagus stimulates splenic T lymphocytes 
and inhibits proinflammatory responses of macrophages, via the cholinergic antiinflammatory pathway 
(CAP) that dampens systemic inflammation. (viii) The release of catecholamines and glucocorticoids via 
the hypothalamic-pituitary-adrenal (HPA) axis modulates systemic immune cell function after TBI. (ix) 
TBI can also disrupt systemic cellular defense mechanisms.
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duction and release of proinflammatory molecules including reac-
tive oxygen species (ROS) and cytokines (16). Sustained reactive 
astrogliosis progresses to the formation of a glial scar, which acts 
to inhibit axonal regeneration, resulting in dysfunction of axonal 
end bulbs that impairs functional recovery. Chronic astrogliosis 
also contributes to BBB breakdown by excessive production and 
release of matrix metalloproteinases (17–19). These chronic sec-
ondary injury processes in TBI patients potentially extend the 

Activation of microglia and reactive astrogliosis are initially  
beneficial during the acute phase following TBI, supporting 
phagocytosis of cellular debris and promoting tissue repair and 
remodeling. However, prolonged propagation of this neuroinflam-
matory response is deleterious (15). Sustained neuroinflammation 
results in further tissue damage and neurodegeneration, thereby 
impairing, or potentially worsening, neurological recovery from 
TBI. Chronic activation of microglia results in the persistent pro-

Table 2. Brain injury parameters for selected referenced preclinical papers

Reference Model Injury  
location

Reported  
severity

Injury  
parameters

Species Strain Sex Age/weight

Das et al. (14) FPI Lateral Moderate 2.0–2.2 atm Rat Sprague-Dawley Male 250–300 g
Simon et al. (15) CCI Lateral Moderate 3 mm impactor, 5 m/s velocity,  

1.5 mm depth, 50 ms dwell
Mouse C57BL/6J Male AdultA

Severe 3 mm impactor, 6 m/s velocity,  
1.8 mm depth, 50 ms dwell

Loane et al. (16) CCI Lateral Moderate-to-severe 3.5 mm impactor, 6 m/s velocity,  
2 mm depth, 400 ms dwell

Mouse C57BL/6J Male 3 mo, 20–25 g

Ekmark-Lewén et al. (17) FPI Midline Moderate NA Mouse C57BL/6J Male 21–29 g
Menzel et al. (18) CCI Lateral NA 3 mm impactor, 8 m/s velocity,  

1 mm depth, 150 ms dwell
Mouse C57BL/6J; WT, 

Grn–/–
NA 16–20 wk

Henry et al. (20) CCI Lateral Moderate-to-severe 3.5 mm impactor, 6 m/s velocity,  
2 mm depth, 400 ms dwell

Mouse C57BL/6J Male 10–12 wk

Bansal et al. (44, 95) WD Lateral NA 250 g rod, 2 cm height Mouse BALB/c Male 20–24 g
Feighery et al. (45) CCI Frontal NA 3.5 mm impactor, 1.5 m/s velocity,  

2.62 mm deformation
Rat Sprague-Dawley Male 300–350 g

Hang et al. (46) WD Lateral Severe 4 mm diameter, 5 mm depth,  
1000 g/cm impact energy

Rat Wistar Male 220–250 g

Zhang et al. (47) WD Lateral Moderate 20 g weight, 30 cm height Rat Sprague-Dawley Male 3–4 mo, ~200 g
Y. Ma et al. (48) WD Lateral NA 3 mm diameter/18 g rod, 16 cm height Mouse C57BL/6 Male 8–9 wk, 18–24 g
E. Ma et al. (49) CCI Lateral Moderate 3.5 mm impactor, 6 m/s velocity,  

2 mm depth, 400 ms dwell
Mouse C57BL/6J Male 8–10 wk, 20–25 g

Zhao et al. (68) CCI Lateral Moderate 3 mm impactor, 6 m/s velocity,  
1.5 mm depth

Mouse C57BL/6J Male 8–10 wk

Ritzel et al. (71) CCI Lateral Moderate 3.5 mm impactor, 6 m/s velocity,  
2 mm depth, 400 ms dwell

Mouse C57BL/6 Male 10–12 wk

Schwulst et al. (72) WD Lateral, closed 
head

NA 3 mm diameter/333 g rod, 3 cm height, 
0.06 J impact energy

Mouse C57BL/6 Male 12–14 wk

Fenn et al. (73) FPI Midline Moderate 2.0–2.1 atm Mouse BALB/c Male 3 mo
Hang et al. (74, 82) WD Lateral Mild 4 mm diameter/40 g rod,  

25 cm height, 5 mm depth
Rat Wistar Male 220–250 g

Muccigrosso et al. (75) FPI Midline Moderate 10 ms pulse, 0.2 atm/670–720 mV Mouse BALB/c Male 3 mo
Utagawa et al. (76) FPI Lateral Moderate 1.8–2.2 atm Rat Sprague-Dawley Male 280–340 g
Valiyaveettil et al. (79) Blast Prone, 

perpendicular
Repeated; severe Prone/perpendicular,  

20.6 psi blast overpressure three times, 
1- to 30-min intervals

Mouse C57BL/6J Male 8–10 wk, 22–26 g

Dash et al. (93) CCI Lateral Moderate Rats: 5 m/s, 2.5 mm depth Rat Sprague-Dawley Male 275–300 g
Mice: 3.0 m/s velocity, 1.0 mm depth Mouse C57BL/6; WT 

and Chrna7–/– 
(129S7)

Male 25–30 g

Zhou et al. (94) Explosive Open head NA Charge: 50 ± 5 mg black powder,  
28 × 8 mm2

Rabbit New Zealand Male 2.0–2.5 kg

Li et al. (176) WD Lateral NA 20 g weight,  
20 cm height

Mice C57CB/6 Male 6–8 wk, 18–22 g

Hanscom et al. (181) CCI Lateral Moderate-to-severe 3.5 impactor diameter, 6 m/s velocity,  
2 mm depth, 400 ms dwell

Mouse C57BL/6Nrl Male 9 wk

atm, atmospheres; CCI, controlled cortical impact; Chrna7–/–, nicotinic acetylcholine receptor α7 subunit deficit; FPI, fluid percussion injury; Grn–/–, granulin 
deficient; J, joules; NA, not available; WD, weight drop. AExact age/weight not provided.
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intolerance (33) and GI dysmotility (34) that affect the processes  
of nutrient and drug absorption essential for recovery (Figure 2). 
About 50% of severe TBI patients experience feeding intoler-
ance, particularly in the first week after injury, which is correlated 
with injury severity (33). While the incidence of diarrhea in TBI 
patients in intensive care units (ICUs) ranged from 10.5% to 74% 
(33, 35, 36) and positively contributed to length of hospitalization 
(35), diarrhea may not be a specific result of TBI, as it has a high 
incidence in critically ill patients receiving enteral nutrition. Other  
GI-related outcomes experienced by TBI patients include gast-
roparesis (34, 37) and impaired lower esophageal function (38), 
which also contribute to food intolerance. Consistent with clinical 
findings, experimental models of TBI showed decreased intesti-
nal smooth muscle contractility and delayed GI transit between 1 

therapeutic window for clinical intervention (20, 21). Ongoing 
secondary injury processes may also contribute to the develop-
ment of comorbidities. TBI-related comorbidities and/or subse-
quent peripheral challenges can, in turn, exacerbate these second-
ary injury processes, worsening TBI-related long-term outcomes. 
Experimental models of TBI have been developed with the goal 
of investigating the mechanisms of primary and secondary injury 
sequelae (Tables 1 and 2 and refs. 22–27).

TBI impacts gut physiology and function
TBI has critical effects on other organ systems, including the GI 
tract (28, 29), that impact morbidity and mortality (30–32). The 
few studies in patients that chronicle GI symptoms following TBI 
are focused primarily on inpatient complications involving food 

Figure 2. TBI induces significant changes in gut function. The secondary sequelae of TBI in the gut include (i) mucosal damage associated with increased 
permeability and (ii) malabsorption of nutrients and electrolytes. Enhanced mucosal permeability mobilizes gut defenses, which include increased 
numbers of activated enteric glial cells culminating in (iii) reactive gliosis and generation of products that promote barrier function and epithelial repair. 
TBI-induced dysautonomia is characterized by sympathetic dominance, which in combination with the (iv) local release of proinflammatory mediators 
from resident and recruited immune cells inhibits smooth muscle contraction. These early TBI-induced effects on GI motility include (v) gastroparesis 
leading to food intolerance. Dysmotility also promotes (vi) changes in microbial composition and (vii) microbial products and metabolites. Compromised 
barrier function facilitates their passage across the mucosa, leading to activation of (vii) vagal and (ix) spinal afferents that are fundamental to (x) gut-
brain communication. A secondary gut challenge such as enteric infection or inflammation prolongs the effects of i–xi and contributes to (xi) levels of 
circulating inflammatory mediators. Long-lasting systemic inflammation, dysautonomia, and dysbiosis contribute to the chronicity of TBI-induced effects 
on the gut as well as the increased susceptibility of TBI patients to GI disorders. IECs, intestinal epithelial cells; TJ, tight junctions; AJ, adherens junctions; 
DS, desmosomes; GJ, gap junctions; GC, goblet cells; EEC, enteroendocrine cells; EGC, enteric glial cells; rEGC, reactive EGC; MM, muscularis mucosae; Th1, T 
helper cells; CM, circular muscle; EN, enteric neurons; LM, longitudinal muscle.
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and 7 days after injury (39). The hierarchical neural control of GI 
motility, particularly of the upper GI tract, involves modulation 
by the ANS and enteric nervous system (ENS). Both systems are 
negatively impacted by TBI and likely contribute to the early GI 
dysmotility in hospitalized TBI patients.

Mucosal barrier dysfunction is often cited as a major out-
come of TBI that contributes to long-term sequelae (Figure 2). An 
effective barrier requires an intact epithelial cell layer connect-
ed by intercellular junctional protein complexes composed of 
tight junctions, adherens junctions, and desmosomes that allow 
selective passage of luminal contents (40). Regulation of barrier 
homeostasis entails a complex interaction among epithelial cells, 
immune cells, and enteric glial cells (41). Mucus is also a compo-
nent of the barrier, as its close association with gut epithelial cells 
provides a physical barrier to limit direct contact with pathogenic  
microbiota or other deleterious agents (42). Clinical data on 
mucosal barrier function following TBI are sparse and limited 
to ICU patients. Using lactulose/mannitol absorption ratios to 
assess gut permeability in TBI patients, impaired barrier func-
tion was observed at 4 days after injury, but not earlier, and was 
correlated with severity of disease and long-term prognosis (43). 
Data from experimental rodent models show that TBI results in 
increased mucosal permeability concomitant with microscop-
ic changes that are variable and depend, in part, on the experi-
mental model, the species, and the time after the initial injury 
(44–49). In rats, impaired barrier function was associated with 
microscopic changes within hours after injury, including edema, 
villous shortening, epithelial shedding, and inflammatory infil-
trate (45–47, 50). In murine models of TBI, enhanced ileal perme-
ability was observed at 6 hours (44) and at 3 and 7 days after injury 
and was associated with villous shortening (48). Others reported 
no change in jejunal permeability or morphology at 24 hours or 
28 days after TBI (49), suggesting there may be differences in the 
effects of TBI along the length of the intestine.

There is less information on the impact of TBI on colonic  
function. Moreover, the extent to which early changes in gut func-
tion facilitate progression from acute to chronic TBI is unclear. TBI 
had no effect on colonic mucosal injury or permeability at 6 hours 
after injury (45). In contrast, at 28 days after injury there were 
changes in morphology consistent with a colonic response to an 
inflammatory challenge (49). Coincidently, at 28 days after TBI, 
paracellular permeability was enhanced in the colon, but not in the 
small intestine (49), supporting both temporal and regional differ-
ences in the gut response to TBI. The importance of these chronic 
effects, particularly in the colon with its concentration of micro-
biota, is underscored by the observation that TBI patients who 
survived longer than a year after injury were 12 times more likely 
to die of complications of sepsis and 2.5 times more likely to die 
of digestive disease–related conditions compared with healthy, 
age-matched cohorts of the general population (3). Thus, the GI 
tract likely plays a key role in the long-lasting sequelae of TBI that 
impact patient health and quality of life.

Mechanisms of TBI-induced alterations in  
brain-gut communication
Systemic immune dysfunction. TBI initiates a systemic stress 
response associated with activation of the hypothalamic- 

pituitary-adrenal (HPA) axis and the sympathetic branch of the 
ANS, resulting in the release of glucocorticoids and catechol-
amines, respectively (51–55). Catecholamine release into the cir-
culation remained elevated for 14 days after injury and was pro-
portional to the severity of injury (56). While this response may 
acutely compensate for TBI effects, a prolonged stress response 
is associated with numerous deleterious effects, leading to organ 
dysfunction including GI dysmotility, hypertension, and cardiac 
dysfunction, among others (52, 53, 57, 58).

In addition to the increased release of corticoids and cate-
cholamines, TBI induces a systemic immune response, which can 
progress to systemic immune response syndrome (SIRS), releas-
ing immune mediators of inflammation (cytokines, chemokines) 
into the circulation (59–63). Systemic inflammation can persist 
for months in patients suffering mild (59) and severe TBI (63–65). 
In prospective cohort studies, TBI patients had elevated serum 
IL-1β, IL-6, IL-8, IL-10, and TNF-α levels over the first year after 
injury when compared with age-matched healthy controls (64). 
A subacute systemic cytokine load score identified individuals at 
risk for unfavorable outcomes following TBI, and was predictive 
of global outcomes at 6 and 12 months (65). Higher proinflam-
matory burden with IL-6, relative to the antiinflammatory marker 
IL-10, was shown to be relevant to global TBI recovery. Moreover, 
the acute-phase cytokine load score predicted cognitive perfor-
mance in moderate-to-severe TBI patients (66), such that IL-1β, 
TNF-α, sIL-6R, RANTES, and MIP-1β were negatively associated 
with cognition. Thus, there is a significant correlation between 
circulating cytokines and chemokines and worsened patient out-
comes. Once in circulation, these immune mediators exert del-
eterious effects on other peripheral organ systems (61, 67, 68). 
Although not identical to the cytokine storm induced during 
TBI and SIRS, cytokine release syndrome, which is associated 
with the sudden release of large amounts of cytokines, results in 
peripheral organ dysfunction (69).

Preclinical studies indicate that TBI results in acute and chronic  
changes in peripheral immune function, prominently skewing 
toward widespread immunosuppression in the innate and adap-
tive arms of systemic immunity acutely after TBI, and then trans-
forming to a hyperinflammatory and dysfunctional state during 
chronic recovery periods (70–72). Notably, neuroinflammation 
has been linked also to activation of systemic immune responses.  
Preclinical studies show that peripheral injections triggering a 
systemic immune response (e.g., LPS, IL-1β) at acute and chronic 
time points following experimental TBI induced microglial acti-
vation and exacerbated TBI-related neuropathology and neuro-
logical outcomes (73–76). It is proposed that intestinal inflamma-
tion promotes neuroinflammation through an activated systemic 
immune response. Proinflammatory factors released from circu-
lating, activated immune cells in response to an enteric challenge 
could increase BBB permeability, allowing access of circulating 
immune cells and mediators to the brain that serve to activate 
microglia and trigger a neuroinflammatory response (77). Addi-
tionally, deficits in the cholinergic system in the brain following 
TBI have been reported (78, 79), which may be affected further by 
the sustained systemic immune response.

Autonomic and enteric nervous system dysfunction. The GI tract 
is innervated by all three divisions of the ANS: the parasympa-
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thetic nervous system, the sympathetic nervous system, and the 
intrinsic ENS that is embedded in the wall of the gut. The affer-
ents for these systems are located strategically all along the gut, 
including mucosal surfaces, and fibers project to dorsal root gan-
glia (vagal) or terminate in the spinal cord (spinal), transmitting 
high- and low-threshold mechano- and chemosensitive informa-
tion (80). Sensory information from the gut is also transmitted by 
visceral afferents, which are associated with, but distinct from, 
the ANS. Importantly, visceral afferents can be sensitized by gut 
inflammation (81) and may be affected by elevated levels of intes-
tinal TNF-α and IL-6 in the first week following experimental TBI 
(82). The incidence of ANS dysfunction at 14 days after injury was 
reported to be 8% in patients with moderate to severe TBI (83). 
Dysautonomia plays a critical role in both the acute and the long-
term pathology of TBI (84), and is associated with worse outcomes 
and increased mortality (83).

The parasympathetic vagus nerve innervates almost the entire 
length of the gut from the esophagus to the mid colon and plays 
a key role in coordinating function between different regions of 
the gut. Preganglionic efferent fibers originate from the nucleus  
ambiguus and the dorsal motor nucleus of the vagus and pass 
uninterrupted to synapse on target cells such as the postganglionic  
neurons in the ENS plexuses located in the muscularis externa 
(Auerbach’s plexus) and submucosa (Meissner’s plexus). Although 
stimulation of the parasympathetic nerves has both excitatory and 
inhibitory actions on secretomotor gut function, the vagus is pri-
marily a sensory nerve composed of approximately 80%–90% 
afferent fibers. Information carried from the gut to the CNS is crit-
ical to orchestration of the reflex activity in response to physiolog-
ical meal-related mechano- and chemosensory stimuli, as well as 
to neuropeptides released from enteroendocrine cells in the gut. 
The vagus can also respond to nociceptive signals (81). Following 
TBI, the vagal afferents provide a mechanistic pathway for inflam-
matory mediators, microbiota, or microbial products to modulate 
CNS function via the brain-gut axis (Figure 2).

Sympathetic nerves comprise about 50% afferent fibers.  
Spinal afferents primarily transmit nociceptive information from 
the GI tract and are activated by gut inflammation and injury (81). 
Preganglionic efferent fibers synapse first in one of three prever-
tebral ganglia (celiac, superior, or inferior mesenteric ganglia), 
and postganglionic adrenergic fibers synapse on a variety of cells, 
including ENS neurons, sphincters, and blood vessels. Stimula-
tion of sympathetic nerves plays a critical role in the regulation of 
blood flow to the gut and generally inhibits GI secretomotor func-
tion. TBI increases sympathetic activity early after injury, instigat-
ing a stress response leading to a sympathetic storm (51, 52, 54, 84, 
85). The exaggerated catecholamine release likely contributes to 
GI dysmotility including gastroparesis and food intolerance.

Both the parasympathetic and sympathetic systems are toni-
cally active, and imbalance of the input motivates the dysautono-
mia that impacts GI dysfunction (86). Heart rate variability (HRV) 
is a noninvasive determinant of baseline autonomic function 
(tone). It is used to ascertain the balance of sympathetic and vagal 
tone as an expression of the total amount of variations of both 
instantaneous heart rate and RR (beat-to-beat) intervals, which are 
the intervals between normal QRS complexes. The principal com-
ponents of HRV are a high frequency (HF), reflective of basal vagal 

tone, and a low frequency (LF) related to sympathetic tone. The 
ratio of these frequencies (LF/HF) is considered a clinical index of 
ANS regulation of target organs. Decreased HRV, indicating sym-
pathetic dominance, is reported in patients with all levels of TBI 
(87). Importantly, correction of dysautonomia in TBI patients is an 
emerging therapeutic target with early administration of propran-
olol having beneficial effects on TBI in a prospective randomized 
clinical trial (88). Propranolol’s potential beneficial effects on sec-
ondary GI sequelae are untested.

The vagus plays a key role in the intestinal mucosal response 
to injury and inflammation via the excitatory cholinergic reflex. 
The vagal antiinflammatory pathway is initiated by intestinal 
inflammation and involves vagal efferent activation of the ENS 
close to resident macrophages in the gut (89) or the spleen (90). In 
the gut, acetylcholine released by the ENS binds to the choliner-
gic nicotinic acetylcholine α7 receptors located on macrophages, 
leading to inhibition of proinflammatory cytokine release (91). 
Vagotomized mice exhibit a worsening of injury and inflamma-
tion, demonstrating a tonic vagal activation in response to intes-
tinal damage (92). The severity of TBI-induced secondary injury 
including BBB permeability, systemic inflammation, and microg-
lial activation was exacerbated in α7 receptor–knockout mice (93). 
In this same study, systemic administration of the proinflamma-
tory cytokines IL-1β and TNF-α aggravated BBB permeability, 
thereby linking peripheral inflammation to TBI outcomes. Vagal 
nerve stimulation reduces systemic inflammation in preclinical 
TBI models (94, 95) and is currently undergoing clinical testing in 
patients with mild TBI and posttraumatic stress disorder (96, 97). 
Thus, restoration of vagal tone to improve TBI-induced dysau-
tonomia, through direct electrical stimulation or pharmacological 
modulation using vagomimetic agents (98, 99), reversible cholin-
esterase inhibitors (99–101), or drugs targeting activity or expres-
sion of muscarinic/nicotinic acetylcholine receptors or β-adren-
ergic receptors (99, 102, 103), is a viable therapeutic target.

The ENS is the “little brain in the gut” that independently 
integrates intrinsic input from the gut lumen with extrinsic sig-
nals from the parasympathetic and sympathetic nerves (104). The 
extrinsic nerve fibers have little direct access to individual secre-
tomotor cells in the gut, so the ENS acts as a “gatekeeper.” Syn-
aptic connections between sensory neurons, interneurons, and 
motor neurons in the ENS coordinate input to provide effector 
functions appropriate for each region of the gut. The bidirectional  
communication between the CNS and ENS is the foundation of 
the brain-gut axis, and the ANS is central to this interaction. The 
CNS and ENS share a similar rich repertoire of neurotransmitters 
such as acetylcholine and norepinephrine that are implicated in 
acute and chronic dysfunction after TBI (105). Norepinephrine is 
the postganglionic neurotransmitter in the sympathetic nervous 
system and inhibits ENS neuron release of acetylcholine. Acetyl-
choline is the major neurotransmitter at preganglionic neurons 
in both the parasympathetic and sympathetic systems and plays 
a major role in the control of cognitive function including learn-
ing, memory (106), and attention (107). It is a viable therapeu-
tic target, as decreased cholinergic activity in CNS regions was 
observed in both TBI patients (108) and preclinical models with 
impaired cognitive behavior associated with the loss of choliner-
gic neurotransmission (78).
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Gut microbiota in the brain-gut axis. The GI tract, especially the 
colon, contains the largest concentration of microbiota, a diverse 
mixture of primarily bacteria, but also viruses, fungi, and yeasts. 
The human intestinal microbiota contains approximately 1000 
bacterial species dominated by four phyla: Firmicutes, Bacteroide-
tes, Proteobacteria, and Actinobacteria, comprising greater than 
95% of resident bacteria in healthy adults (128). The microbiota 
influence the CNS via neural, vascular, and even lymphatic path-
ways, as part of the bidirectional brain-gut axis (28, 129–131). The 
primarily sensory vagus nerve serves as a direct, rapid pathway 
through which the gut microbiota can affect brain function (132–
134). In the gut, microbial products bind to receptors on vagal affer-
ents in the gut mucosa, providing information about changes in 
the composition and pathogenicity of the microbiome (135). CNS 
input influences ENS activity to affect gut microbiome composi-
tion and diversity by modulating intestinal motility, transit, barri-
er integrity, and secretion of factors into the lumen that influence 
microbial gene expression and function (136–141). Alterations in 
the gut microbiome composition favoring pathogenic bacteria over 
commensal bacteria have deleterious effects on both the CNS and 
the GI tract. Abnormal motility induces changes in the microbiota, 
setting up a positive-feedback loop between dysbiosis and dysmo-
tility, and the detrimental impact on clinical outcomes is evident in 
chronic GI inflammatory pathologies such as IBD (142, 143).

The gut is the largest immune organ in the body and contains 
an abundance of resident immune cells, including innate lym-
phoid cells, macrophages, and dendritic cells, that, with entero-
cytes, provide the first line of defense in detecting alterations in 
the microbiome. These cells generate cytokines and chemokines 
to recruit and activate additional immune cells as part of innate 
and adaptive immune responses. The immune system in the gut 
plays an important role in maintaining the symbiotic relation-
ship between the host and commensal bacteria (144). Commen-
sal microbial metabolites such as methane and short-chain fatty 
acids, as well as secondary metabolites like tryptamine and bile 
acid metabolites, modulate GI functions. TBI significantly alters 
the gut microbiome (Table 3), decreasing commensal bacteria 
and increasing the presence of pathogenic bacteria, thereby pro-
moting disease progression (145–148). TBI-induced paracellular 
permeability likely facilitates translocation of pathogenic prod-
ucts that disrupt normal brain-gut communication (Figure 2). 
Dysbiosis can persist in patients for years after the initial brain 
trauma (146), and reduced diversity in severely injured TBI 
patients is predictive of survival (149). The microbiome is exqui-
sitely sensitive to changes in diet (150). As TBI patients often 
require nutritional support while in the ICU (151), these critically 
injured patients likely experience acute changes in microbiome as 
a result of food intolerance and dysmotility. Long-term follow-up 
studies indicate that TBI patients may continue to exhibit altered 
eating behaviors, including anorexia as well as hyperphagia (152), 
and overall are at greater risk of obesity (153). There is evidence 
of a causal link between microbiota composition and microbial 
metabolites associated with lean and obese body weights (154, 
155). Thus, the dysbiosis induced during the primary TBI injury is 
compounded by the multifactorial processes during the second-
ary injury, all of which may be exacerbated further by changes in 
nutrition or food psychology.

A major component of the ENS are enteric glial cells (EGCs), 
which outnumber neurons by at least 4:1 (109). EGCs resemble 
their CNS counterparts, astrocytes, in morphology and expression 
of common markers such as S100B (110, 111), the precursor pro-
tein SOX10 (112), and the activation marker glial fibrillary acidic 
protein (GFAP). EGCs also have unique markers like proteolipid 
protein 1 (113) and lack the astrocyte marker aldehyde dehydroge-
nase 1 family member L1 (114). Marker expression changes with 
their location in the GI tract, and they respond strongly to envi-
ronmental cues, such that EGCs remain glial cells in the gut but, 
under certain in vitro conditions, can be rederived into ENS neu-
rons (115) and can function as astrocytes when transplanted into 
the CNS (116, 117). EGCs occupy two somewhat discrete areas in 
the GI tract, one within the myenteric plexus and one beneath the 
epithelium. The role of myenteric EGCs has expanded beyond pro-
viding a support for neurons, with EGC-derived products playing 
an active role in neurotransmission (118). The location of the muco-
sal EGC population impacts neuro-epithelial interactions, and 
mucosal EGC production of S-nitrosoglutathione directly affects 
epithelial permeability (119). Interestingly, vagal nerve stimulation 
activates α7-nicotinic receptors on EGCs and improves intestinal 
barrier integrity following severe injury (120).

In experimental models, TBI induces astrogliosis that pro-
vides a physical support for the cells within the injured area as 
well as a source of trophic factors and immune mediators that 
promote tissue remodeling and neurogenesis (121, 122). While 
astrogliosis is beneficial in repairing local damage and disruption 
of the BBB, chronic reactivity is associated with TBI-induced neu-
roinflammation leading to persistent deficits in patients attrib-
utable to impaired neural recovery (123). Like astrocytes in the 
CNS, EGCs can have both beneficial and deleterious effects. Glial 
cell–derived neurotrophic factor (GDNF) is necessary for main-
tenance of enteric neurons (124), and upregulation of GDNF has 
an antiinflammatory role supporting epithelial proliferation and 
turnover in inflammatory bowel disease (IBD) patients as well as 
preservation of mucosal integrity (125). In contrast, production of 
TGF-β1 results in inhibition of cell proliferation, thereby impair-
ing restitution of barrier function after injury (125). In ulcerative 
colitis, upregulation of S100B and increased numbers of activat-
ed EGCs contribute to the increased levels of nitric oxide (126) 
that drive chronic changes in gut secretomotor function (127). TBI 
transiently decreases activated glial cells in the colon, but not the 
small intestine, at 24 hours after injury, followed at 28 days after 
injury by an increased number of activated mucosal EGCs (Fig-
ure 2 and ref. 49). Despite the anatomical connection between 
the CNS and ENS, the nature and extent of any communication 
between CNS astrocytes and ENS glial cells are unknown. It is 
also unclear whether astrocytes preferentially influence myenter-
ic or mucosal EGCs. As inflammation alters the number and activ-
ity of EGCs in the gut, TBI-induced GI gliosis could be mediated 
by local events; however, TBI-induced EGC proliferation and  
activation in the colon occurred in the presence of increased 
colonic permeability, but in the absence of overt inflammation 
(49). Thus, TBI induces a region-specific reactive gliosis in the gut 
that may be part of a local neuroprotective response to impaired 
mucosal barrier function and may also contribute to the long-
term secondary sequelae in the gut (49).
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festation of experimental-TBI-induced gut injury is translocation 
of bacteria-derived endotoxin, which may promote systemic 
inflammation, leading to CNS neuroinflammation and neurode-
generation (46). Indeed, neuroinflammation is exacerbated by 
systemic administration of LPS following experimental TBI (74), 
contributing to a more pronounced TBI-induced cognitive decline 
(75). Notably, depletion of the gut microbiota following experi-

In preclinical TBI studies (145, 146, 156–158), acute changes 
at the species and genus levels (158), as well as alterations in α- 
diversity with increased numbers of Proteobacteria and decreased 
Firmicutes, were correlated significantly with the severity of TBI 
(159). There is avid interest in the impact of changes in gut micro-
biota composition on neuroinflammation, neurological develop-
ment, cognition, affect, and behavior (160–165). An early mani-

Table 3. Effect of TBI on the microbiome

Reference Species (sex, age/weight) TBI method Sampling/microbiome 
manipulation

Study time  
range

Microbiome outcomes

Ma et al. (48) C57BL/6 mice, male, 8–9 
weeks

Weight drop LA via oral gavage at 0, 1, 3, 
and 7 DPI; cecum contents

3 and 7 DPI TBI decreased Epsilonproteobacteria and 4C0d-2 and 
increased Alphaproteobacteria, Actinobacteria, and 

Gammaproteobacteria; reversed by LA administration; 
Brucellaceae, Planococcaceae, unclassified 

Burkholderiales, Comamonadaceae, Rikenellaceae, 
Streptococcaceae, Methylobacteriaceae, Bacteroidaceae, 

Porphyromonadaceae, Pseudonocardiaceae, Moraxellaceae, 
and Pseudomonadaceae increased and Helicobacteraceae 

decreased at 3 DPI; reversed by LA administration
Urban et al. (146) TBI patients at 2 study sites; 

TBI group: 21 males, 1 female; 
control group: 13 males, 5 

females; age: 34–71 years old

Type of TBI 
incurred not 

reported

Stool samples 27–502 MPI Shift in microbial community and increased α-diversity 
in chronic TBI patients; phylum-level changes: chronic TBI 
increased Actinobacteria, Firmicutes, and Verrucomicrobia 

and decreased Bacteriodetes; family-level changes: 
chronic TBI increased Ruminococcaceae (Unc03qxR) 
and Ruminococcaceae (Unc02cwq) and decreased 
Prevotellaceae; species-level changes: chronic TBI 

increased Bacteroides thetaiotaomicron and decreased 
Prevotella copri, Prevotella spp., and Sutterella spp. Chronic 

TBI decreased serum l-threonine, l-tryptophan, l-α-
amino-n-butyric acid, l-sarcosine. Chronic TBI patients: 

postmeal hypoaminoacidemia positively correlated 
with Prevotellaceae and negatively correlated with 

Ruminococcaceae (Unc82785 and Unc02cqw).
Celorrio et al. (148) C57BL/6J mice, male, 6–8 

weeks
Controlled 

cortical impact
VNAM in drinking water 2 

weeks pre-/1 week post-TBI; 
fecal pellets

7 DPI and 3–90 DPI VNAM administration reduced bacterial richness and 
diversity; depletion of Lactobacillus, Clostridium, and 

Bacteroides; Atopobium and Ruminococcus increased in the 
TBI-control mice at 7 DPI compared with baseline

Angoa-Pérez et al. 
(156)

C57BL/6J mice, male, 8 weeks Repeated weight 
drop

Cecum contents 0–90 DPI α-Diversity unchanged; time-dependent change in 
β-diversity; Decreased and increased relative abundance of 

phyla Firmicutes and Bacteroidetes at 0 DPI
Simon et al.(157) C57BL/6J, specific pathogen–

free, male
Controlled 

cortical impact
AMNV via drinking water; pre-/
post-TBI administration; fecal 

pellets

14 days pre-TBI and 
0–3 DPI

AMNV treatment increased Enterococcaceae pre- and post-
TBI compared with baseline and also depleted bacteria 

present in cecum lumen at 3 DPI
Treangen et al. (158) C57BL/6J mice, male, 9 weeks Controlled 

cortical impact
Fecal pellets 1 day pre-TBI and 

1 DPI
Genus-level changes 1 DPI: Relative abundance of 

Lactobacillus decreased, Marvinbryantia and Clostridia 
increased; species-level changes at 1 DPI: relative 
abundance of Lactobacillus gasseri; Ruminococcus 

flavefaciens, and Eubacterium ventriosum decreased vs. 
baseline levels; Eubacterium sulci and Marvinbryantia 

formatexigens increased; TBI reduced relative abundance 
of Lactobacillus gasseri at 1 DPI vs. sham; TBI also resulted 
in a loss of L. gasseri, johnsonii, and taiwanensis bacteria 

with L. rogosae constituting 99% of the Lactobacillus genus 
at 1 DPI

Nicholson et al. (159) Sprague-Dawley rats, male, 
200–250 g

Controlled 
cortical impact

Fecal pellets 2 HPI and 1–7 DPI α-Diversity significantly reduced at 3 DPI; transient shifts 
in β-diversity and microbial profile at 1 and 3 DPI; TBI 

decreased Firmicutes and Deferribacteres and increased 
Bacteroidetes and Verrucomicrobia at 1 DPI

DPI, days postinjury; HPI, hours postinjury; MPI, months postinjury; AMNV, ampicillin, metronidazole, neomycin, vancomycin; LA, Lactobacillus 
acidophilus; VNAM, vancomycin, neomycin, ampicillin, metronidazole.
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mental TBI with an antibiotic cocktail ameliorated TBI-induced 
neurological outcomes, improving fear-based cue learning and 
reducing lesion volume (157). Additionally, dietary short-chain 
fatty acids are rapidly absorbed and have antiinflammatory effects 
on microglia (166) and improve neurological recovery after isch-
emic brain injury (167).

Thus, early changes in motility in TBI patients are likely accom-
panied by changes in microbiota. The dysbiosis, in turn, directly 
and indirectly contributes to TBI-induced outcomes including 
loss of barrier integrity, chronic activation of local and systemic 
immune responses, and dysmotility. These effects increase sus-
ceptibility to sepsis (168–171), impair cognitive function, worsen 
neuropathology and neuroinflammation, and increase the risk of 
neurodegenerative diseases (135, 160, 161, 172–175). Preclinical 
studies, however, demonstrated that antibiotic-induced depletion 
of gut microbiota prior to TBI aggravated outcomes, implicating 
a protective effect of specific microbiota or microbial products 
in TBI (148). The benefits of manipulating the microbiota in TBI 
are supported by studies showing that pretreatment with Lactoba-
cillus acidophilus or Clostridium butyricum (176) attenuated TBI- 
induced neurological effects, neuroinflammation, and neuropa-
thology (48). The therapeutic potential of gut microbiota in TBI is 
the focus of several recent reviews (177–179).

Secondary GI challenges and TBI outcomes. GI infections and 
inflammation activate both local and systemic immune responses 
that become chronic as a result of persistent barrier dysfunction 
and intestinal inflammation (180). There is heightened attention 
to the brain-gut axis in an effort to unravel the impact of secondary 
challenges on CNS function, particularly in TBI patients. Of inter-
est, then, is that in preclinical models, mild-to-moderate TBI did 
not alter the efficacy or efficiency of the host immune response 
to enteric pathogenic bacterial infection (49) nor did it aggravate 
the severity of injury or delay mucosal repair following acute coli-
tis (181). Enteric challenge following experimental TBI, however, 
dramatically influenced gut-to-brain communication. A proposed 
scenario involves increased circulating microbial products and 
proinflammatory cytokines released from activated enteric and 
systemic immune cells in response to infection, increasing BBB 
permeability (77). This in turn can facilitate access of circulating 
immune cells and mediators to the CNS, activating microglia and 
triggering neuroinflammation (77). Severe TBI patients, however, 
exhibit repressed host immune response such that normally non-
pathogenic strains of E. coli bacteria can trigger infections (182). 
This weakened cell-mediated immune response after TBI may 
contribute to the high incidence of infections in long-term TBI 
patients (183, 184).

Enteric pathogen-induced inflammation is implicated in the 
development of cognitive dysfunction and increased risk of neu-
rodegenerative diseases in patients (185–188). Infection with E. 
coli resulted in deficits in working memory and fear-based reten-
tion memory for up to 7 days after enteric infection in rodents 
(189). Preclinical data thus support the association between 
clinical intestinal inflammation and neurodegenerative diseases  
reported in IBD patients, who have twice the risk of developing 
dementia (190). Similarly, TBI patients with persistent post-
traumatic neuroinflammation and progressive neurodegener-
ation have increased risk of dementia (191, 192). Recent stud-

Figure 3. Bidirectional interactions of the brain-gut axis and therapeu-
tic targets. The brain and gut communicate through direct (neural) and 
indirect (systemic) bidirectional pathways. The brain influences GI function 
through the ANS (sympathetic and vagal efferents), systemic circulation 
(blood vessels and lymph), and HPA axis. Signals from the gut, including 
nutrients, mechanical stimuli, and microbiota and their products and 
metabolites (e.g., short-chain fatty acids), modulate brain function via 
neural (ENS neurons, glial cells, vagal afferents, spinal afferents), immune 
(resident and recruited immune cells), and endocrine (hormones released 
by enteroendocrine cells) mechanisms. TBI-induced GI dysfunction or 
secondary enteric challenges worsen neurological outcomes by activating 
local and systemic immune responses that increase BBB permeability 
and infiltration of activated circulating immune cells and exacerbate 
ongoing astrocyte- and microglia-mediated neuropathology. The cells and 
pathways involved in these bidirectional signaling pathways provide viable 
targets for therapeutic intervention in TBI patients, particularly those with 
GI comorbidities. Treatments that potentially benefit both the brain and 
the gut in TBI patients include reduction of sympathetic activation or res-
toration of vagal tone; use of pre-/probiotics or fecal microbial transplant 
to correct gut dysbiosis; and suppression of local and systemic proin-
flammatory immune responses through approved immunosuppressors or 
emerging nanotherapeutics. EEC, enteroendocrine cells; EGC, enteric glial 
cells; ICC, interstitial cells of Cajal; SMC, smooth muscle cells.
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utes to the development and progression of pathological responses  
in each organ following TBI. Dysfunction in neural and systemic  
pathways of the brain-gut axis — including brain injury and inflam-
mation, changes in ANS, sympathetic stress, and immune cell 
function — and indirect communication via gut microbiota serve 
as mechanistic links that drive chronic TBI-related pathologies 
(Figure 3). Recognition of such brain-gut dysfunction will lead 
to a better appreciation of how other organ systems contribute to 
chronic TBI progression and recovery, which is essential to com-
prehend the full etiology of TBI. Furthermore, targeting mecha-
nisms of brain-gut communication could facilitate development 
of novel therapeutic interventions for TBI. Emerging therapeutic 
strategies being developed for clinical translation include those 
that target systemic inflammation and the cholinergic antiinflam-
matory pathway by vagal stimulation, those that correct dysau-
tonomia, and those that modulate the gut microbiome and micro-
bial metabolites. Given that long-term TBI survivors are more 
likely to die of digestive disease–related conditions (3), the mech-
anisms by which secondary enteric challenges or injuries contrib-
ute to the long-lasting sequelae of TBI are an important area of 
future investigation and should be taken into consideration when 
addressing patient care.
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ies showed that brain-injured mice subjected to acute colonic 
inflammation exhibited neurobehavioral deficits initiated at 
the time of inflammation that were maintained throughout the 
recovery period (181). Indeed, colonic inflammation signifi-
cantly exacerbated TBI-induced chronic deficits in fine motor 
coordination, declarative memory, spatial learning and memo-
ry, and social behavior (181). Importantly, both the magnitude 
and the severity of these inflammation-induced changes were 
similar in mild and moderate-to-severe TBI (181). Network- 
level gene analysis of the hippocampus of brain-injured mice 
with and without enteric inflammation strongly implicated 
genes associated with disease and neuroinflammation, and a 
downregulation of genes associated with neuronal structure, 
plasticity, transmission, and connectivity (181).

The mechanisms of these brain-gut pathological interactions 
may be linked to the effects of systemic inflammation on TBI neu-
ropathology and ANS activity that are compounded by the impact 
of gut inflammation on TBI-induced dysautonomia. Experimental 
TBI resulted in an acute and transient increase in HRV in moder-
ate-to-severe TBI, but subsequent enteric inflammation led to a 
persistent dominance of sympathetic tone regardless of TBI sever-
ity (181). This dysautonomia arises perhaps by the simultaneous 
inputs from the damaged brain and gut and is maintained by sys-
temic inflammation and other unidentified mechanisms, impair-
ing the conditions needed to resolve TBI-related neurological 
outcomes. These preclinical findings are consistent with literature 
regarding sickness behavior (193, 194), in which changes in brain 
energy metabolism and neuroinflammation induced by systemic 
inflammation result in alterations in cognitive function and affect 
(195). The enhanced risk of neurodegenerative and neuropsychi-
atric diseases following enteric challenge in TBI patients has yet to 
be determined and remains critically unexplored.

Conclusion
Substantial advances have been made in the understanding of 
bidirectional communication along the brain-gut axis that contrib-
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