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Introduction
Advanced cancers of the gastrointestinal (GI) tract are highly 
resistant to chemotherapy, radiotherapy, and biologicals (1). 
Even new immunotherapies benefit only a subset of patients 
with colorectal cancer (CRC) (2). Thus, CRC and gastric can-
cer remain, respectively, the second and third leading causes 
of global cancer mortality (3, 4). Although CRC incidence and 
mortality decreased substantially in the United States over the 
past 30 years, increasing incidence and mortality in persons 
younger than 50 years are concerning (5, 6). Moreover, the 
COVID-19 pandemic adversely impacted cancer screening, 
thereby upstaging newly diagnosed lesions (7–9). In the United 
States, the incidence of esophageal and pancreatic ductal ade-
nocarcinomas, both commonly diagnosed at advanced stages, is 
increasing; esophageal adenocarcinoma and pancreatic ductal 
adenocarcinoma (PDAC), respectively, cause more than 16,000 
and 47,000 deaths yearly (5, 10). Five-year survival rates for 
advanced esophageal, gastric, pancreatic, and colorectal can-
cers are all less than 20% (5, 11). Clearly, developing more effec-
tive ways to detect and manage these cancers is a high priority 
— gut-brain interactions impacting GI cancer development and 
progression provide a largely untapped reservoir of novel diag-
nostic, prognostic, and therapeutic opportunities.

Abundant evidence implicates the central nervous system 
(CNS) in GI cancer progression. Chronic behavioral stress is linked 
to increased cancer risk by mechanisms involving neuroendocrine 

signaling (12). In preclinical models, stress-induced adrenergic 
signaling promotes PDAC progression (13, 14), in part by inducing 
matrix metalloproteinases (MMPs). MMPs degrade extracellular 
matrix, facilitating tumor expansion and metastasis (15); these 
effects are attenuated by β-adrenergic blockade (16). In murine 
and human studies, pharmacological inhibition of β-adrener-
gic signaling and chemical denervation of the pancreas improve 
chemo therapeutic efficacy (17).

Recent attention focused on cancer cell heterogeneity and 
the role of the tumor microenvironment in modulating tumor 
growth, invasion, and dissemination. Nonetheless, the spotlight 
has shone primarily on cancer, stromal, and immune cells (18), 
with less attention paid to neurons and glial cells (19). While 
the CNS can modulate disease, the GI tract possesses a unique 
intrinsic nervous system, the enteric nervous system (ENS), 
sometimes called the “second brain” or “little brain,” which, 
alone or in coordination with the CNS, modulates the diverse 
functions of the gut in health and disease (20). ENS neurons 
and glial cells are anatomically poised to transmit information 
multidirectionally to normal and neoplastic GI mucosal cells, 
stromal cells, immunocytes, and the brain. These complex 
interactions are further complicated by input from enteroen-
docrine cells sprinkled throughout the GI tract and by the gut 
microbiome. GI cancers profit from a landscape uniquely com-
bining neuronal postsynaptic, endocrine, and paracrine signal-
ing with diverse cell-cell contacts and access to key metabolites 
(Figure 1 and ref. 21).

In this Review, we analyze published findings, experimental 
models, and approaches used to uncover the mechanisms where-
by the gut-brain axis modulates GI cancer development and pro-
gression. We consider how neoplastic cells advance their survival 
and progression by hijacking neurotransmitters, growth factors, 
signaling molecules, and metabolites that normally maintain tis-
sue homeostasis and repair. In so doing, we identify potential ther-
apeutic targets and highlight unresolved questions that can direct 
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actions between cancers and the nervous system are highly con-
text-dependent. Thus, differences in the innervation of the esoph-
agus, stomach, pancreas, and colon influence crosstalk between 
neuronal, glial, and cancer cells. The unique proximity of intestinal 
cancers to the gut microbiome and other fecal contents, and the 
specialized gut immune system, add layers of complexity. Appre-
ciating the prominence of this tumor microenvironment generated 
interest in “ecological therapy,” wherein cells that nourish cancer 
cells are targeted to retard cancer growth (23).

future research. Focusing on cancers of the esophagus, stomach, 
pancreas, and colon, we leave in-depth analysis of the anatomi-
cal gut-brain interface and the role of the gut microbiome to other 
contributors to this Review series.

The GI neuron-cancer interface
There is growing interest in understanding the role neurons play 
in the genesis and growth of non-CNS cancers, particularly with 
respect to cancers of the GI tract (21, 22). Nonetheless, many inter-

Figure 1. The GI neuron-cancer interface. The ability of the gut-brain axis to modulate GI cancer progression is enhanced by the proximity and multidirec-
tional crosstalk between numerous elements; these complex interactions provide opportunities for therapeutic intervention. (i) Cancer cells release nerve 
growth factors that promote neuronal tropism toward the tumor, enhancing access to neurotransmitters, metabolites, and the neural scaffold. Advanced 
cancer stages correlate with increased neural density. (ii) Perineural invasion, associated with worse outcomes, provides a path for tumor spread, access 
to neurotransmitters, and shielding from immune attack. (iii) Vagal innervation stimulates cancer progression by muscarinic mechanisms and modulates 
immune function. (iv) Neurotransmitters, like acetylcholine, produced and released by neurons, cancer cells, immunocytes, and possibly gut bacteria 
stimulate tumor growth, invasion, and dissemination. (v) Fecal bile acids, modified by gut bacteria, modulate immune and cancer cell function by several 
mechanisms, including activation of cancer cell muscarinic receptors. (vi) Immunocyte function is modulated by neurotransmitters released from the ENS, 
and cancer, immune, and enteroendocrine cells. (vii) Disruption of the intestinal barrier in the cancer field permits translocation of microorganisms that 
modulate immune and neural function. (viii) In response to bacterial and neural input, enteroendocrine cells, sprinkled throughout the mucosa, release 
neurotransmitters and other bioactive molecules. (ix) Cancer cells display intratumor heterogeneity and overexpress receptors for neurotransmitters and 
bioactive molecules. (x) Subepithelial telocytes are a critical source of pro-proliferative signaling for the intestinal stem cell niche; despite their prominent 
location, a functional role for telocytes at the neuron-cancer interface remains to be established.
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where release of neurotrophic growth factors (e.g., NGF) by neo-
plastic cells and expression of their receptors on neurons correlates 
with nerve density and tumor aggressiveness (33), a mechanism 
replicated by NGF overexpression in murine PDAC models (17). In 
a transgenic mouse PDAC model, surgical denervation of celiac and 
superior mesenteric ganglia enhanced chemotherapeutic efficacy, 
supporting the importance of CNS input (17). The complexity and 
specificity of nerve-cancer interactions is highlighted by murine 
PDAC models wherein chemical denervation of the pancreas atten-
uates pancreatic intraepithelial neoplasia and progression (34–36), 
but surgical vagus nerve transection has opposite actions (37, 38).

Perineural invasion and neural scaffold. Although definitions 
vary, perineural invasion (PNI) is commonly defined as cancer 
invasion into any of the three layers of the nerve sheath, or can-
cer surrounding at least 33% of the neural circumference (39, 40); 
PNI impacts tumor growth, progression, and responses to therapy. 
PNI advances cancer progression by facilitating biochemical and 
physical interactions between neural, glial, and neoplastic cells 
that promote neural and cancer cell proliferation and stimulate 
cancers to spread along neural planes. Although PNI is associated 
with worse clinical outcomes for any GI cancer studied (41–44), 
regional factors such as neural density may selectively augment 
the importance of PNI for some cancers versus others (40).

The precise molecular mechanisms underlying PNI are uncer-
tain (40), although the release of nerve growth factors and cyto-
kines from cancer and immune cells into the tumor microenvi-
ronment is important (45). As illustrated in Figure 1, neurons in 
the cancer microenvironment can provide a physical scaffold for 
GI cancer invasion and metastasis (40, 46); cancer cell nests are 
reported near the myenteric plexus (47). Adherence to and migra-
tion along enteric neurons are facilitated by cancer cell expression 
of key surface molecules (e.g., L1CAM and N-cadherin) (Figure 2 
and ref. 46). Notably, retrograde traffic along ENS neurons may 
include gut bacteria (48), reflecting a perineural cancer scaffold 
that provides a hub for crosstalk between cancer cells, neurons, 
glial cells, immunocytes, and translocated microorganisms. Few, 
if any, experimental models reflect the multitude of interactions 
between cell types in this complex tumor microenvironment. No 
treatments currently target PNI.

Vagal innervation. Although highly context-dependent, vagal 
innervation is the most prominent way the CNS regulates GI neo-
plasia. Surgical interruption of the vagus (vagotomy) appears to 

Anatomical features facilitate interactions between neurons, 
immunocytes, gut microorganisms, and other constituents of this 
complex ecosystem, acting in concert to modulate GI cancer cell 
proliferation, survival, and invasion (Figure 1). The ganglia of the 
ENS are concentrated in myenteric (Auerbach) plexuses spanning 
the entire length of the GI tract, and submucosal (Meissner) plex-
uses in the small and large intestines (20, 22). Enteric glial cells are 
positioned in the muscularis propria and mucosa, especially at the 
base of normal intestinal crypts (24, 25). Beyond providing support 
for neurons, enteric glial cells, which outnumber neurons, partici-
pate actively in a variety of ENS functions, including those vital for 
neuron maintenance and survival (24). Like neurons, enteric glia 
express neurotransmitter receptors and transporters, and respond 
to neurotransmitters, largely by changes in intracellular calcium 
that modulate cell function (26). Enteric neurons and glia are clas-
sified by their roles in regulating cellular architecture, neurotrans-
mitter release, receptor activation, electrophysiological activity, 
and other functional characteristics; single-cell sequencing may 
modify classification based on molecular or genetic features (27). 
Figure 1 illustrates the broad framework of neural–GI cancer inter-
actions in the context of the colon cancer microenvironment — 
features shared by cancers of the esophagus, stomach, and pan-
creas (Table 1). Figure 2 zooms in on key interactions between GI 
cancer cells and the gut neural/glial cell network.

Nerve growth factors. Nerve growth factors, or neurotrophins, 
comprise a highly homologous family of precursor proteins cleaved 
to active peptides including nerve growth factor (NGF) (28), brain- 
derived neurotrophic factor (BDNF), glial cell line–derived neuro-
trophic factor (GDNF), and neurotrophin-3 and neurotrophin-4 (NT-
3 and NT-4) (Table 2 and refs. 29, 30). These proteins stimulate nerve 
development and survival through diverse signaling mechanisms; for 
example, binding of NGF to tropomyosin tyrosine receptor kinase 
fusion proteins stimulates receptor homodimerization, autophos-
phorylation of the tyrosine kinase domain, and activation of PI3K, 
Ras, phospholipase C (PLC), and other downstream effectors (31).

Early-stage cancers release neurotrophins that stimulate local 
neuronal growth and increased nerve density, features correlated 
with more aggressive cancers (30, 32). These effects are bidirec-
tional; cancers release neurotrophins that encourage neurogenesis, 
axonogenesis, and neural migration, while neurons and glial cells 
release neurotransmitters that stimulate tumor growth and invasion 
(Figure 2). This was studied extensively in the genesis of PDAC, 

Table 1. Key features of neuron–cancer cell interactions shared by GI cancers

Features GI cancer References
Esophageal Gastric Pancreatic Colon

Neurotrophins expressed by cancer cells     17, 30, 32, 33, 113, 116, 119
Perineural invasion by cancer cells     33, 40–47, 113–120, 130, 131
Vagal innervation affects cancer progression    ? 37, 38, 50, 51, 112
Cancers produce and release neurotransmitters ?  ?  61–66
Cancers overexpress neurotransmitter receptors ?    50, 60–64, 68, 137
Nerves alter immune function in cancer microenvironment ? ?   22, 38, 84–92
Neurons provide metabolites to cancers ? ?  ? 109

, feature reported; ?, presence of feature not reported.
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sion of M1 and M3 muscarinic receptors 
(M1R and M3R) with conflicting actions on 
cancer progression. Lastly, a liver-brain-gut 
neural arc identified by retrograde tracing 
of hepatic vagal branches may modulate 
immune responses to CRC (52).

Neurotransmitters and their receptors on 
cancer cells. For decades, traditional neu-
rotransmitters, like acetylcholine (ACh), were 
considered to derive primarily if not uniquely 
from neurons. Over the past 15 years, grow-
ing interest has focused on non-neuronal 
neurotransmitter production and release 
from cancer and immune cells in the tumor 
microenvironment (53–55) and bacteria in the 
gut microbiome (56–59). In this regard, most 
work pertains to effects of ACh on muscarin-
ic receptors expressed by GI cancers (Figure 
3 and refs. 60, 61). Human gastric (62, 63) 
and colon (64) cancer cells express choline 
acetyltransferase (ChAT) and synthesize and 
release ACh. Normal pancreatic stellate cells 
produce ACh (65) and pancreatic cancer cells 
express choline transporters (66), a surrogate 
marker of ACh production. Yet, to our knowl-
edge, ACh production by PDAC has not been 
proved. Cancer cell types that release ACh 
commonly overexpress M3R (64); M3R expres-
sion correlates with gastric cancer stage and 
metastasis (62–64). This, and the relatively 
low concentrations of ACh released by can-
cer cells, suggest that non-neuronal release 
of neurotransmitters by cancer, tuft (67), 
immune, and other cells in the tumor micro-
environment modulates cell function by auto-
crine and paracrine actions. Consistent with 
these observations, M3R deficiency in murine 
CRC models attenuates neoplasia (68, 69).

α2A-Adrenergic receptor activation in nor-
mal gut epithelial cells may stimulate EGFR 
transactivation and downstream MEK/ERK 
signaling, which enhances cell migration and 
wound healing (70, 71). Although adrenergic 
receptor activation was implicated in PDAC 
progression, compared with muscarinic neu-
rotransmitters, the role of adrenergic receptor 
agonists (e.g., epinephrine) in modulating GI 
cancer growth and progression remains rel-
atively unexplored (72). Gauging the impor-
tance of neurotransmitter release from neu-

rons and cancer, immune, enteroendocrine, and other cells in the 
tumor microenvironment is limited by the challenges of accurate 
spatial and temporal measurement of very low neurotransmitter con-
centrations. Moreover, when evaluating neurotransmitter effects in 
vitro, it is crucial to discriminate physiological from pharmacological 
(i.e., supraphysiological) neurotransmitter concentrations that may 
lack disease relevance.

reduce gastric cancer risk (49, 50); gastric neuronal density and 
cancer stage are correlated (50). In mice, surgical or pharmaco-
logical hemivagotomy attenuates proneoplastic Wnt signaling 
and reduces gastric tumor formation in the denervated stomach 
(50, 51). Notably, opposite effects are observed in murine PDAC 
models wherein vagotomy promotes neoplasia (38). As discussed 
below, this conundrum may be explained by differential expres-

Figure 2. Key interactions between a generic GI cancer cell and the neural/glial cell network in the 
tumor microenvironment. (i) Acetylcholine (ACh) production, mediated by choline acetyltransferase 
(ChAT), stimulates tumor growth, invasion, and dissemination. Relative quantities of ACh production by 
cancer cells versus neurons are uncertain. (ii) Serotonin released from ENS interneurons may stimulate 
colon cancer growth by currently obscure mechanisms. (iii) Epinephrine released from sympathetic neu-
rons stimulates the progression of GI cancer cells overexpressing α- and β-adrenergic receptors (βAR). 
(iv) In response to neurotransmitters, glial cells play a major role in modulating and supporting the 
neuron–cancer cell interface. Glial cells also produce and release tumor growth factors into the tumor 
microenvironment. (v) GABA stimulates cancer cell proliferation via overexpressed GABA receptors 
(GABAR). (vi) Nerve growth factors (NGF, GDNF, BDNF, neurotrophins) released from cancer cells interact 
with neuronal receptors (e.g., NTRK) to promote axonal growth and tropism toward the tumor. (vii) 
Cancer cells express surface molecules, L1 cell adhesion molecule (L1CAM) and N-cadherin, facilitating 
adherence and migration along enteric neurons. Homophilic interactions allow L1CAM on cancer cells 
to adhere to L1CAM expressed on neurons. (viii) Neurons release key metabolites (e.g., serine) into the 
tumor microenvironment or reprogram cancer cell metabolic pathways. (ix) ACh interaction with nicotin-
ic cholinergic receptors expressed on PDAC stimulates tumor progression. (x) Bidirectional interactions 
between glial and GI cancer cells involve cancer cell–derived interleukins that stimulate prostaglandin 
E2 (PGE2) biosynthesis and paracrine release by enteric glia. PGE2 stimulates tumor expansion via EP4 
receptor–mediated (EP4R-mediated) transactivation of EGFR.
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Gut microbiome. Intestinal barrier disruption encourages trans-
mural infiltration of bacteria and fungi comprising the gut micro-
biome (93). Cancers arising from GI epithelial cells at the host–gut 
microbiome interface break the single-layer barrier formed by 
tight junctions between normal epithelial cells (Figure 1 and refs. 
94, 95). Dysbiosis resulting from “barrier-breaking” effects of 
cancer can activate multiple signaling systems (96, 97). For exam-
ple, NF-ĸB and STAT3 pathways regulate the function of regional 
immune cells and neurons (98). Tumors hijack these developmen-
tal, wound healing, and antiinflammatory signaling programs to 
foster their own progression. Some bacterial metabolites, e.g., 
ACh and BAs, are GPCR agonists that can alter both neuron and 
cancer cell function (Figure 3 and refs. 99, 100). Mucosal micro-
bial biofilms from humans with CRC are carcinogenic in murine 
models (101), and some bacterial products (e.g., B. fragilis toxin) 
contribute to barrier-breaking effects of cancers (102).

Enteroendocrine cells. Sprinkled throughout the epithelial lining 
of the GI tract (Figure 1), enteroendocrine cells under neuronal, 
hormonal, and paracrine control synthesize and release a vari-
ety of neurotransmitters. Paracrine signaling by enteroendocrine 
cell–derived serotonin modulates the activity of neurons, immuno-
cytes, and cancer cells (103, 104). Whether serotonin release from 
enteroendocrine cells or neurons in the ENS advances or retards GI 
cancer progression remains uncertain; this is likely context- and con-
centration-dependent (Figure 2 and ref. 105). Similar to pulmonary 
epithelial neuroendocrine cells that produce and release ACh, which 
stimulates small cell lung cancer progression (106), neuroendocrine 
tumors such as pheochromocytomas may release neurotransmitters 
and growth factors that enhance GI cancer progression (107, 108).

The GI cancer microenvironment
Bile acids. Bile acids (BAs), produced in the liver, excreted into the 
intestinal lumen, and modified by bacteria in the gut microbiome, 
are recycled via enterohepatic circulation (73). BAs modulate the 
function of normal (74) and neoplastic (75) GI epithelial cells by 
interacting with Takeda G-coupled receptor 5 (TGR5; GPBAR1) and 
M3 muscarinic GPCRs (Figure 3 and refs. 75, 76). Long associated 
with CRC risk, BAs have pleiotropic effects including gut immune 
modulation (77) and functional interactions with muscarinic recep-
tors (78) overexpressed in CRC (79). These functional interactions 
mimic those of cholinergic neurotransmitters (e.g., ACh) and, 
among other actions, result in transactivation of EGFR and signal 
transduction that stimulates cancer cell proliferation, survival, and 
invasion (80, 81). Interestingly, chenodeoxycholic acid also inhibits 
the pro-oncogenic effects of Bacteroides fragilis toxin (82).

Gut immunocytes. By modulating lymphatic traffic, egress 
from lymph nodes, and T cell activation, CNS adrenergic nerve 
fibers suppress immune activity in highly innervated GI organs 
like the stomach and pancreas (83–85). This may limit immune 
surveillance and checkpoint inhibitor efficacy (86, 87); surgical or 
chemical denervation may improve the efficacy of immunothera-
py (83, 87). Neurons in the ENS also regulate the activity of enteric 
immunocytes (88–90) that synthesize and release non-neuronal 
ACh in the cancer microenvironment (Figure 3 and refs. 91, 92). 
Macrophages in the endoneurium release cytokines that facilitate 
PNI by attracting tumor cells to neurons (45). A recently identified 
neural arc connecting the brain and gut via the liver may modulate 
immune responses to GI cancers by a mechanism involving ACh 
neurotransmission (52).

Table 2. Neurotrophins implicated in GI cancer progression

Factors Receptors GI cancers Actions Potential clinical applications References
NGF Tropomyosin 

receptor kinase 
A (TrkA), p75 
neurotrophin 
receptor (p75NTR)

Esophageal, gastric, 
pancreatic, and 
colon cancers

NGF binding to TrkA promotes catecholamine-induced 
axonogenesis, angiogenesis via VEGF expression, cell 
proliferation and differentiation via PI3K/Akt and Ras/
MAPK, gastric tumorigenesis via ACh/M3R/YAP, and PDAC 
invasion via MAPK-induced overexpression of MMP2.  
In contrast, NGF binding to p75NTR is proapoptotic.

NGF interaction with p75NTR potentiates antiproliferative 
effects of 5-FU; by attenuating TrkA signaling, anti-NGF 
antibodies (e.g., tanezumab) may improve cancer-
induced bone pain; Trk inhibitors and anti-NGF antibodies 
may be effective against gastric adenocarcinomas and 
PDAC; pan-Trk inhibitors (e.g., larotrectinib, entrectinib) 
may be effective against cancers expressing Trk variants.

17, 28, 
30–33, 105, 
109, 113, 116, 
125

BDNF TrkB, p75NTR Esophageal, gastric, 
pancreatic, and 
colon cancers

BDNF binding to TrkB promotes axonogenesis and 
cancer cell proliferation, differentiation, migration, 
and invasion, and regulates VEGF/HO-1 expression.

BDNF/TrkB knockdown promotes apoptosis and 
inhibits CRC growth; BDNF expression is associated 
with bone metastases; in CRC, BDNF/TrkB signaling 
contributes to cetuximab resistance; Trk inhibitors may 
have efficacy against GI cancers.

17, 31, 33, 
105, 113, 127

GDNF RET Pancreatic and 
colon cancers

GDNF promotes PDAC invasion via PI3K/Akt- and  
MEK/ERK-mediated overexpression of MMP9;  
GDNF drives PDAC chemotaxis in perineural invasion.  
In contrast, RET appears to be a CRC tumor suppressor.

GDNF/RET-mediated perineural invasion contributes 
to PDAC-associated pain; RET-selective tyrosine kinase 
inhibitors (e.g., pralsetinib, selpercatinib) for cancers 
expressing RET variants are in phase I/II clinical trials.

31, 124, 133

NT-3 TrkC, p75NTR PDAC NT-3 activation of TrkC, a tumor suppressor, is 
antiapoptotic; reduced NT-3/TrkC axis activity 
correlates with CRC progression.

Trk inhibitors may be effective against PDAC. 31, 105, 113, 
127

NT-4 TrkB, p75NTR Pancreatic and 
colon cancers

NT-4 downregulates cancer cell autophagy via Atg5/
MAPK; in CRC, NT-4 promotes epithelial-mesenchymal 
transition and cell proliferation, migration, and invasion. 

NT-4 knockdown promotes autophagy and inhibits CRC 
growth; Trk inhibitors may be effective against PDAC.

31, 105, 159

ACh, acetylcholine; Atg5, autophagy-associated gene 5; BDNF, brain-derived neurotrophic factor; 5-FU, 5-fluorouracil; GDNF, glial cell line–derived neurotrophic 
factor; HO-1, heme oxygenase-1; M3R, M3 muscarinic acetylcholine receptor; NGF, nerve growth factor; NT, neurotrophin; YAP, yes-associated protein.
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Metabolites. Cancer cells have high metabolic requirements and 
limited blood supply. Intriguing work suggests neuronal axons can 
supply scarce amino acids and nutrients to GI cancer cells in this 
nutrient-depleted tumor microenvironment (109, 110). Banh and 
colleagues found that serine deprivation impaired PDAC growth but 
permitted the selective translation and secretion of NGF to increase 
neural density and provide PDAC cells with access to axon-derived 
serine (109). Rabben et al. found that gastric cancers are gluta-
mine-dependent; vagotomy induced a metabolic switch from glu-
taminolysis to oxidative phosphorylation and glycolysis (Warburg 
effect) (110). These studies uncover the provision of neuron- derived 
metabolites and neuron-induced metabolic reprogramming of GI 
cancer cells as potential therapeutic targets (Figure 2).

Interactions of specific GI cancers with gut 
neural networks
Organ-specific features of GI cancer–nervous system interactions 
are reported for the esophagus, stomach, pancreas, and colon. 
In most cases, distinguishing between generic and truly organ- 
specific features awaits further clarification.

Esophageal cancer. Esophageal cancers are composed of 
squamous cell carcinomas and adenocarcinomas; the impact of 
the gut-brain axis on esophageal cancer is evidenced by the surge 
in adenocarcinomas, once uncommon and now the most fre-

quent form of esophageal cancer in developed nations (111). Gas-
troesophageal reflux, due primarily to poorly understood defects 
in CNS (vagal parasympathetic and spinal sympathetic) and ENS 
control of lower esophageal sphincter pressure and esophageal 
motility, predisposes to preneoplastic Barrett’s epithelium and 
esophageal adenocarcinoma (112). Thus, although the impact of 
neurons and glia on esophageal cancer progression is less clear 
than their impact on progression of other GI cancers (Table 1), 
there is compelling evidence that the nervous system plays a cen-
tral role in the development of esophageal adenocarcinomas.

Among other mechanisms, neural innervation promotes 
esophageal tumor progression via neurotrophins and their recep-
tors (Table 2) (45, 113–115). Nerve bundles and neuropeptide- 
immunoreactive nerve fibers expressing neurotrophic receptor 
kinase 1 (NTRK1, also called TrkA), an NGF-binding receptor, 
are commonly observed in esophageal cancers that overex-
press NGF (113, 116); an esophageal cancer subtype expresses 
high levels of Trk-T1 neurotrophin receptor mRNA (114). Low- 
affinity p75 neurotrophin receptors (p75NTR), expressed in the 
stem cell population of normal esophageal epithelial cells, were 
detected in approximately half of 187 esophageal squamous cell 
carcinomas (113). RNAi knockdown of p75NTR expression in 
esophageal squamous cancer cells inhibited proliferation and 
induced apoptosis (117). Notably, NTRK gene fusions involving 

Figure 3. Muscarinic receptor activation in GI cancer. (A) Gastric adenocarcinoma. (i) ACh release from vagal efferents activates M3 muscarinic receptors (M3R); 
vagotomy attenuates neoplasia. (ii) Cancer cells express ChAT, key for non-neuronal ACh synthesis; resulting ACh levels and their autocrine and paracrine 
impact on tumor progression remain uncertain. M3R activation induces nerve growth factor (NGF) expression. (B) PDAC. (iii) Treating mice with bethanechol, 
a non–subtype-selective muscarinic receptor agonist, activates muscarinic receptors. (iv) M1R activation attenuates PDAC progression by undefined mecha-
nisms involving repressed EGFR signaling. (C) CRC. (v) M3R signaling transactivates EGFR; this is mediated by MMP7-mediated release of HB-EGF, an EGFR 
ligand. (vi) Concurrent activation of M3R and EGFR potentiates target gene expression. (vii) M3R activation selectively induces MMP1, MMP7, and MMP10 
expression. MMP1 and MMP7 facilitate cell invasion. MMP7 also catalyzes the release of EGFR ligands (e.g., HB-EGF). (viii) M1R expression and activation 
attenuate colon cancer progression by unknown mechanisms. (ix) Immunocytes and (x) gut flora provide additional sources of non-neuronal ACh. (D) Post-
M3R signaling alters gene expression and cancer cell function by impacting various signaling pathways. APC and/or β-catenin gene mutations free β-catenin 
from proteasomal destruction, promoting transcription of β-catenin target genes. M3R activation transactivates EGFR and augments β-catenin signaling. 
Resulting changes in downstream gene transcription stimulate cancer cell proliferation, survival, migration, invasion, and dissemination. Notably, induction of 
neurotrophin expression can promote neural growth and tropism, a feedback loop providing additional access to ACh and other neurotransmitters.
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NTRK1, NTRK2, or NTRK3 detected in a subset of esophageal, 
pancreatic, and colon cancers are targets for two FDA-approved 
TRK inhibitors, entrectinib and larotrectinib (118).

PNI in approximately half of esophageal squamous carcino-
mas identifies a clinical subset with a worse prognosis (43) and 
reduced survival (119). Meta-analysis identified PNI as a bio-
marker for advanced esophageal and esophagogastric junction 
cancers (120). PNI correlates with advanced TNM stage, poor 
cell differentiation (120), shorter disease-free survival, and 
increased rates of local recurrence (121), factors associated with 
overexpression of NGF (116).

Gastric cancer. The proximal two-thirds of the stomach is 
endowed with extensive vagal innervation (122) that regulates 
secretion of gastric acid and pepsinogen by cholinergic mechanisms 
(123). Epidemiological observations suggest a link between cholin-
ergic innervation and gastric neoplasia; neuronal density correlates 
with more advanced stages of gastric cancer (50), and vagotomy for 
peptic ulcer disease may reduce long-term cancer risk (49). Robust 
evidence for this association was provided by elegant murine studies 
showing reduced gastric neoplasia following surgical or pharmaco-
logical denervation along with improved responses to chemotherapy 
and prolonged survival (50), findings confirmed by others (51). In 

these murine models, vagotomy attenuated nuclear translocation 
of β-catenin and expression of several Wnt/β-catenin target genes, 
including Ccnd1, Axin2, Myc, Lgr5, and Cd44 (50), providing a plau-
sible mechanism underlying the benefits of denervation.

As for other GI cancers (68, 69), M3R deficiency or inhibition 
suggests a prominent role for this receptor subtype (50, 51). Gas-
tric cancer cells express ChAT, synthesize and release ACh, and 
overexpress M3R (Figure 2); M3R expression correlates with gas-
tric cancer stage and lymph node metastasis (62, 63). M3R acti-
vation by autocrine release of ACh stimulates cell proliferation 
by an M3R/EGFR/ERK-dependent mechanism (63); M3R knock-
down suppressed growth and promoted apoptosis of human gas-
tric cancer cell xenografts (62). In murine gastric epithelial cells, 
ACh release from Dclk1-positive tuft cells and neurons induced 
NGF expression by a YAP-mediated mechanism (ACh/NGF/
M3R/YAP axis), which promotes neuron proliferation and cancer 
progression (Figure 3A and ref. 32).

Pancreatic ductal adenocarcinoma. Neurotrophins are overex-
pressed by PDACs and intrapancreatic cancer neurons; adding 
neurotrophins and coculture of PDAC and neural cells stimulates 
PDAC cell proliferation (Table 2 and ref. 124). Exogenous NGF 
dose-dependently increases MMP2 expression and enhances 

Table 3. Advantages and limitations of experimental models to assess GI nerve-cancer interaction

Categories Examples Advantages Limitations References
In vitro

GI cancer, glial,  
and neuronal  
cell cultures

Human and murine GI cancer 
cell lines; cancer cell coculture 
with glial and neuronal cells

Reductionist models permit selective 
parsing and precise manipulation 
of molecular and genetic pathways; 
coculture permits studies of cell-cell 
interactions 

Small repertoire of commonly used cell types; use of multiple cell lines 
may not validate the importance of findings; multiple passages may 
damage DNA; coculture excludes physical connections and other factors 
at the GI cancer-neural interface; using supraphysiological concentrations 
of reagents (e.g., neurotransmitters) limits disease relevance 

46, 64, 80, 
81, 163–165, 
174

Ex vivo
Organoid models Growth factor–induced 

expansion of murine and 
human epithelial and cancer 
stem cells

Multicellular composition of murine or 
human GI epithelial and cancer cells 
that retain many in vivo functions

GI epithelial and cancer organoid models lack neural and immune 
elements as well as a diverse gut microbiome; absence or loss-of-function 
mutations of key genes may retard or prevent organoid development

17, 34, 37, 
181–184

In vivo
Xenograft models Injection of human or 

murine GI cancer cells in 
immunodeficient mice

Compared with cutaneous cell injection, 
orthotopic xenograft models may mimic 
human disease progression

Conventional human cancer cell xenografts in immunodeficient mice rarely 
mimic human disease progression and commonly replicate information 
already obtained from cell culture studies; major species differences in 
innate immunity

124, 157, 184

Carcinogen-induced 
tumor models

AOM/DSS-induced colon 
tumors

AOM, alone or combined with DSS, 
selectively induces colon neoplasia

Failure to mimic human disease (e.g., lack of metastasis in AOM/DSS 
models); “off-target” effects of vagotomy and other interventions may 
have unexpected, unappreciated effects

17, 37, 68

Genetically 
engineered animal 
models

Apc gene mutations in mice 
and pigs with colon neoplasia; 
Kras mutations in KC and KPC 
mice with PDAC

No carcinogen needed; physiological 
molecule levels in microenvironment; 
autochthonous tumors preserve neuron 
and immune cell interface

Only a few genes can be manipulated per model, with long latency to 
cancer development; limited generalizability due to heterogeneous 
genetic variants in spontaneous cancers; genetic drift may occur between 
generations; pig models are not practical; most ApcMin/+ models primarily 
develop adenomas in the small intestine, not colon, and females have 
confounding mammary and gynecological tumors

17, 33–37, 
69, 165–167, 
190, 191

Human tissue 
samples

FFPE and freshly frozen tissues Allows comparison of in vivo expression 
of key molecules and cell-cell connections; 
can select specific cells for investigation 
with laser capture microscopy

Limited ability to manipulate test subjects; even generous margins (≥10 
cm) to obtain “normal” tissue may not exclude cancer field effects; lability 
of RNA may confound analysis 

46, 79, 146

AOM, azoxymethane; DSS, dextran sodium sulfate; FFPE, formalin-fixed paraffin-embedded; KC, (LSL-Kras+/LSL-G12D Pdx1-Cre); KPC, (LSL-Kras+/LSL-G12D LSL-
Trp53+/R172H Pdx1-Cre).

https://www.jci.org
https://doi.org/10.1172/JCI143776


The Journal of Clinical Investigation   R E V I E W  S E R I E S :  G U T- B R A I N  A X I S

8 J Clin Invest. 2021;131(10):e143776  https://doi.org/10.1172/JCI143776

lesions and CRC, enteric glial networks exhibit structural abnormal-
ities (141, 142); S-100β and glial fibrillary acidic protein immuno-
staining reveal denser and more branched networks and glial cells 
intimately associated with both CRC cells and adjacent neurons 
(Figures 1 and 2 and ref. 25). Bidirectional interactions between glial 
and CRC cells involve CRC-derived IL-1α/β stimulation of prosta-
glandin E2 (PGE2) biosynthesis and paracrine release by enteric glia 
(Figure 2). PGE2 stimulates CCSC growth and expansion via EP4 
receptor–mediated transactivation of EGFR (25, 143–146). Activa-
tion of enteric glia by IL-1 may promote tumorigenesis by effects 
on immunocytes similar to those in inflammatory bowel diseases 
that increase CRC risk (147). In human CRC cell lines, immunode-
ficient mice, and primary human CRC cells, enteric glia stimulate 
an increase in the number and size of CCSC-derived tumors (25), 
identifying enteric glia as potential therapeutic targets.

Neurons also facilitate tumor development by serving as 
physical scaffolds for CRC cell migration and metastasis (Figure 
1 and refs. 40, 46). ENS neurons are uniquely unmyelinated; the 
lack of perineurium and endoneurium sheath layers presents an 
unimpeded interface with tumors (46, 148) and glial cells, which, 
through paracrine signaling, enable CCSC activation (25). Enter-
ic neurons and EpCAM-positive CRC cells are closely associated, 
particularly at the tumor invasive front, facilitating physical inter-
actions between the two cell types (Figure 2 and ref. 46).

Synergistic interactions between bacterial species are associ-
ated with CRC initiation and progression (149); in mouse models, 
microorganisms (e.g., B. fragilis, E. coli, and Fusobacterium nuclea-
tum; refs. 150–152) release factors, including B. fragilis–derived 
BFT toxin (101, 102), F. nucleatum–derived FadA and Fap2 adhes-
ins, and NF-κB, that enhance CRC progression (153–155). It is 
likely that these factors modulate ENS activity; NF-κB, for exam-
ple, plays a key role in regulating CNS inflammation (156). These 
multidirectional interactions between the gut microbiome, CRC 
cells, and enteric neurons are likely to promote cancer progres-
sion; stronger evidence awaits better experimental models (153). 
Because differences in immune, epithelial, and neural cell func-
tions and microbial diversity in one region of the colon may impact 
cancer development and progression at other sites, purely reduc-
tionist approaches to explore links between the microbiome, ENS, 
and neoplasia may be misleading (157, 158).

The ability of CRC cells to adhere to enteric neurons and 
migrate to new anatomic locations is facilitated by cell surface 
molecules (e.g., L1CAM and N-cadherin) (Figure 2 and ref. 46) 
and can be modulated by neurotrophins (e.g., NT-4) (Table 2 
and ref. 159). When cocultured with primary enteric neurons, 
enteric glia, and mesenchymal cells, CRC cells from established 
lines and primary CRC cells colocalize with enteric neurons 
(46). Moreover, in contrast to nontransformed intestinal epithe-
lial cells and mesenchymal cells, CRC cells migrate across lon-
ger distances to reach enteric neurons and adhere to them with 
greater force (46). Successful invasion of CRC cells through the 
high-resistance neural sheath layers of collagen and basement 
membrane identifies hardier cells and confers survival and pro-
liferative advantages (40). Besides the prognostic value of PNI, 
single-cell gene profiling may identify expression patterns pre-
dictive of PNI and cancer, neuronal, and glial genes that provide 
therapeutic opportunities (40–42, 160, 161).

pancreatic cancer cell invasion by activating ERK signaling (125). 
Pancreatic cancers overexpress GDNF, which may have chemo-
kinetic effects on tumor cells and upregulates MMP9 expression 
and activity. MMP9, a gelatinase (type IV collagenase), facilitates 
cancer cell invasion and metastasis (15, 126). BDNF and NT-3 also 
stimulate PDAC invasion into the basement membrane (127, 128).

Following retroperitoneal nerve dissections that revealed 
neural involvement in PDAC (129), strong evidence accumulat-
ed linking neural input to cancer progression. Neural invasion, 
almost uniformly present in PDAC, shortens survival (44, 130–
133). Neuronal support and mutations in axon guidance genes are 
also implicated in PDAC progression (134). Rare RET mutations 
in PDAC are associated with GDNF-dependent tumor invasion 
(Table 2 and ref. 135).

Neurotransmitters like ACh, adrenergic agonists, γ-aminobu-
tyric acid (GABA), and glutamate, released from neuron and gli-
al cell networks infiltrating PDAC, play important roles in tumor 
growth and dissemination (136). Cholinergic signaling via musca-
rinic receptors directly and indirectly suppresses pancreatic tum-
origenesis and cancer stemness (37). In genetically engineered 
mice, subdiaphragmatic vagotomy accelerated, and a muscarinic 
agonist, bethanechol, suppressed, PDAC development; bethan-
echol, which improved survival by an M1R-dependent mecha-
nism (Figure 3B and ref. 37), is in early clinical trials. Likewise, in 
a murine PDAC model, subdiaphragmatic vagotomy promoted 
tumor growth and reduced survival, but not in mice deficient in 
TNF-α (38). In line with non-neuronal ACh production (54), ACh 
produced by human and rat pancreatic stellate cells may modu-
late pancreatic exocrine secretion and neoplasia (65). The specif-
ic downstream target genes for muscarinic receptor signaling in 
PDAC remain uncertain (Figure 3B).

β-Adrenergic signaling mediates the accelerated PDAC growth 
and invasion observed with chronic stress (16). In an orthotopic 
mouse model of PDAC, in vivo optical imaging revealed that 
stress-induced neural activation increased tumor growth and 
metastasis. These effects were reproduced by pharmacological 
activation of β-adrenergic signaling and reversed by β-blockade, 
which also extended animal survival (13). Compared with con-
trols, PDAC-bearing mice exposed to chronic stress had larger 
tumors and shortened lifespans, effects attenuated by a β-blocker 
(13). β-Blockade in PDAC is being evaluated in clinical trials.

Other neurotransmitters and receptors are implicated in PDAC 
progression. For example, GABA, which primarily inhibits CNS 
neuronal excitability, unexpectedly stimulates PDAC cell prolif-
eration (105). These actions are most likely mediated via overex-
pressed GABA receptor π subunits that signal by elevating intracel-
lular calcium and activating MAPK/ERK signaling (137). In accord 
with increased PDAC risk in tobacco users, nicotine-derived nitro-
samine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a potent 
mutagen, carcinogen, and nicotinic ACh receptor agonist, induced 
PDAC in hamsters (138). Aggressive pancreatic cancers overex-
press NMDA glutamate receptors that stimulate pro-growth signal-
ing pathways when activated by glutamatergic nerves (139, 140).

Colorectal cancer. Neural influences are evident early in CRC 
development — colon cancer stem cells (CCSCs) proliferate in an 
environment with a denser enteric glial cell network than in normal 
colon, particularly at the tumor invasive front (25). In precancerous 
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uous need to replenish tissue samples and the innate heterogene-
ity of cancers (174–176). Coculturing primary GI cancer and ENS 
cells provides useful information but does not fully capture com-
plex in vivo cell interactions (46). Biomedical journals commonly 
require investigators to replicate findings in multiple cancer cell 
lines, but adherence to this guidance is not uniform; as recently 
as 2018, an otherwise exemplary study employed only one estab-
lished human colon cancer cell line without providing a rationale 
for cell line selection, although key findings were replicated in pri-
mary human colon cancer cells (46). Even using multiple cell lines 
does not assure scientific validity or reproducibility in more com-
plex systems, particularly given the lack of cross-directional input 
from the neural and glial components of the tumor microenviron-
ment and substantial intratumoral and neural network diversity 
(177). To some extent, the use of single-cell RNA sequencing may 
address the latter limitation (178), but changes in gene expression, 
which must be confirmed by quantitative PCR, are not necessarily 
mirrored by commensurate changes in protein expression.

Ex vivo models. Conventional organoid models developed from 
GI cancer stem cells can provide useful information regarding the 
factors promoting growth, invasion, and metastasis, but, among 
other limitations, organoids lack neural and immune elements 
(179–182). Even novel 3D organoids-on-a-chip, which permit the 
growth of mini-intestines on scaffolds that mimic basement mem-
branes, fail to incorporate neural elements (179, 183). These lim-
itations may be overcome by tissue engineering to develop scaf-
fold-guided organoid morphogenesis from tissue stem cells that 
more faithfully mimic in vivo biology (183). In addition to further-
ing investigation into the role of neurons in GI neoplasia, devel-
opment of increasingly accurate patient-derived organoid models 
may pave the way for advances in precision medicine by predicting 
the efficacy of novel therapies directed at the gut-brain axis (183).

In vivo models. Xenografts developed from human cancer cells 
injected into the skin of immunodeficient mice are common “in 
vivo” models. More cynically, these models represent only a change 
in culture medium from in vitro solutions to live organisms; xenograft 
experiments almost uniformly mirror in vitro findings without offer-
ing novel mechanistic insights, providing only an incremental advance 
and limited validation of in vitro findings. Orthotopic xenografts may 
more faithfully replicate human cancer progression and metastasis, 
e.g., human colon cancer cells implanted in the mouse sigmoid colon 
(157, 184). Patient-derived xenografts (PDXs) can provide real-time 
information to develop cancer-specific treatment (176).

In vivo models commonly fail to account for the impact of human 
immune and neural cells on GI cancer progression, even when PDX 
models employ “humanized” mice. Variability in gut microbiota can 
also confound outcomes; causal inferences based solely on murine 
studies should be avoided (185, 186). Investigators using human sur-
gical tissues commonly use adjacent uninvolved tissue as control, 
but even the use of broad margins, 10 cm or more from the cancer, 
may be confounded by macroscopically indistinguishable cancer 
“field effects” affecting “control” cells (187). Innervation maps 
forming the basis for understanding nerve-tumor interactions derive 
largely from studies of noncancerous tissue, whereas GI cancers may 
restructure and rewire neuronal networks (30). Off-target effects of 
surgical manipulations, e.g., vagotomy, may alter the GI cancer-neu-
ron interface in unexpected ways (38, 50, 51).

As in gastric cancer and PDAC, cholinergic muscarinic recep-
tors in CRC are the most prominent neurotransmitter targets. Treat-
ment with a non–subtype-selective muscarinic agonist, bethan-
echol, promotes murine colon neoplasia (162). Of five muscarinic 
receptor subtypes, M1R and M3R activity most prominently modu-
lates colon cancer progression (Figure 3C). M3R overexpression in 
primary CRC predicts metastases, and in murine models of spo-
radic and genetic CRC, global M3R deficiency robustly attenuates 
intestinal neoplasia (68, 69, 79). M3R activation selectively induc-
es the expression of MMP1, MMP7, and MMP10, which facilitates 
CRC invasion and spread (163). Blocking expression and activation 
of MMP1 in vitro abolishes ACh-induced colon cancer cell invasion 
into endothelial cell monolayers (164). Selective BAs (e.g., deoxy-
cholyltaurine) can activate M3R (78, 80), providing a mechanism 
whereby increased fecal BA levels augment murine colon neopla-
sia (165, 166). The mechanisms underlying the actions of M3R in GI 
cancer are summarized in Figure 3D.

In contrast to M3R, the role of M1R in GI cancer remains obscure. 
As in animal models of PDAC (37), in azoxymethane-treated mice, 
M1R deficiency modestly augmented colon neoplasia and, notably, 
negated the beneficial effects of M3R deficiency (167). A therapeu-
tic strategy directed at muscarinic receptor signaling will likely 
require targeting of M1R and M3R simultaneously.

Impediments to studying gut-brain interactions 
in GI cancer
Capturing the intricacies of gut-brain interactions experimentally is 
challenging. While reductionist experimental systems such as cell 
coculture are valuable approaches to parse cross-directional cell 
signaling, they fail to capture the complex milieu and interactions 
between cells in living organisms. These models may not accurate-
ly reflect relevant concentrations of neurotransmitters and other 
biologically active molecules, diffusion limits in the extracellular 
space, and other parameters important to distinguish physiolog-
ical from pharmacological effects (Table 3). The human GI tract 
features a particularly complex and dynamic ecosystem that may 
not be reproduced even by in vivo mouse and other animal models, 
which are also confounded by species differences (Figure 1).

Technical limitations and insufficient attention to quality con-
trol — e.g., confirming the specificity of antibodies, particularly those 
directed at GPCRs (168); authenticating cell lines and transgenic 
mice; optimizing tissue fixation, preservation, and autofluorescence; 
and ensuring high-quality mRNA measurement (169) — further 
impact data quality, interpretation, and translational value. An addi-
tional challenge is replicating in vitro, ex vivo, and in vivo the physical 
forces cancer cells exert for PNI and migration along a neural scaffold 
(Figure 1 and refs. 170, 171). Collectively, these limitations contribute 
to the poor track record of experimental models in predicting thera-
peutic success of novel interventions in clinical trials, and to the pau-
city of treatments directed at the gut-brain axis (172, 173).

In vitro models. The majority of information regarding the 
effects of neurotransmitters on oncogenic cell signaling and func-
tion derives from in vitro cell models. These use a relatively small 
repertoire of human cancer cell lines, many established decades 
ago. Extensive passaging is likely to have altered their genetic 
makeup and key biological features (174). Use of primary GI can-
cer cells may address these concerns but is limited by the contin-
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Exciting research opportunities in GI cancer neuroscience will 
result from leveraging advances in tissue preparation, clearing, 
and higher-resolution optical imaging to resolve CNS and ENS 
circuitry; computational biology for single-cell mRNA sequencing 
and metabolomics; optogenetics using light to monitor and con-
trol the activity of individual neurons and biochemical pathways 
modified by gene editing; 3D electrophysiological recording; and 
artificial intelligence (18, 197). Integrating newly discovered cell 
types and signaling pathways will yield novel mechanistic insights 
and therapeutic targets. For example, subepithelial telocytes, 
which provide pro-proliferative signals to stem cells through-
out the small intestine and colon (198, 199), may contribute to 
crosstalk between colon cancer stem cells and components of the 
tumor microenvironment (Figure 1 and ref. 200). Filling key gaps 
in knowledge has great potential to advance our understanding 
of the role the gut-brain axis plays in GI cancer progression and 
empower us to leverage this information to improve therapeutic 
outcomes. Because of shared pathways and mechanisms (Figure 2 
and Figure 3D), novel therapeutics targeting the gut-brain connec-
tion for one GI cancer will likely be applicable to others.
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Genetically engineered mice and pigs (188–190) are limited by 
fundamental species differences in physiology and pathophysiol-
ogy (191). For example, the mouse and human immune systems 
have very different major histocompatibility genes. Humanized 
genetically engineered mouse models have long latency periods 
and fail to recapitulate late-stage human disease, the most diffi-
cult clinical management problem. Even combining advanced 
techniques and models fails to mimic faithfully the complexity of 
the human GI tumor microenvironment.

Conclusions and perspectives
Despite impressive progress, therapeutic interventions directed 
at the GI cancer gut-brain axis are currently limited to target-
ing neurotrophin, muscarinic, and β-adrenergic receptors. To 
advance the field, a more comprehensive understanding of the 
GI neuronal-glial-cancer cell interface is needed, akin to that 
for the gut microbiome (154, 192) and immune system (18, 193). 
Specific areas ripe for exploration include (a) determining how 
precancerous changes in the GI tumor secretome alter enteric 
glial networks and facilitate tumorigenesis; (b) using single-cell 
RNA-Seq and spatial transcriptomics to develop a more com-
plete inventory of the cells, genes, and proteins comprising the 
tumor-neuron adhesion complex and molecular guidance fac-
tors, and better understanding how their expression alters can-
cer progression; (c) using similar methods to learn how immune 
cells, e.g., tumor- associated macrophages, mediate interactions 
between the ENS and GI cancer cells; (d) elucidating how GI 
cancers attract neurons and other constituents of the ENS and 
vice versa; (e) exploring whether molecules like L1CAM, whose 
expression correlates with PNI in PDAC (194), are viable thera-
peutic targets; (f) investigating whether PNI provides a mecha-
nism for GI cancer cells to evade immune detection and treat-
ment; (g) cataloging axon-derived metabolites that enhance 
cancer cell survival and growth (109, 195); and (h) improving 
experimental models to more faithfully capture the extraordi-
nary complexity of the GI tumor microenvironment and the inte-
gration of neural and glial networks (196).
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