
Introduction
The traditional scheme of asthma pathogenesis is based
on a relative increase in Th2 cellular responses in com-
bination with a decrease in Th1 responses. The conse-
quent alteration in cytokine milieu, with excess Th2
products (e.g., IL-4, IL-5, and IL-13) and decreased Th1
products (e.g., IFN-γ and IL-12) is predicted to drive the
asthma phenotype. Evidence for such a shift in the
Th1/Th2 balance derives from studies of asthma in cel-
lular and murine models, where Th cell polarization
and allergen dependence of Th2 responses are most
clearly defined, and from human studies that profile
cytokine production and immune cell infiltrate. Thus,
in the murine system, IL-4, IL-5, IL-9, and IL-13 pro-
mote Th2 cell differentiation and B cell–dependent IgE
production, tissue eosinophilia, goblet cell hyperplasia,
and airway hyperreactivity (1, 2). Furthermore, these
responses are downregulated by Th1 cytokines such as
IFN-γ and IL-12 and are inversely correlated with the

level of Th1 cell responses (3–6). In humans, asthma is
tied to this paradigm by association with atopy and con-
comitant increases in the production of IgE and Th2
cell cytokines (7–9). Recent studies also provide evidence
of genetic linkage to polymorphisms in the IL-4, IL-4
receptor, and IL-13 genes (10). Similarly, eosinophils and
mast cells are characteristic of asthmatic airway inflam-
mation (11, 12) and may act as critical effector cells, at
least under some circumstances (13, 14).

However, several lines of evidence in model systems
and in humans raise questions regarding the Th2
hypothesis as a complete explanation for asthma. For
example, Th1 and antigen-specific Th2 cells may be
necessary for initiating the allergic response even in
mouse models of asthma (15, 16). Furthermore, end-
points of the allergic response, such as airway hyperre-
activity and mucus production, may develop without
IgE production and eosinophil influx (17–19). In some
cases, airway reactivity may be dissociated from
eosinophilic inflammation based on genetic back-
ground (20, 21). In fact, in human subjects, the devel-
opment of allergy and asthma are often dissociated as
well (22), and linkage to candidate genes for atopy has
not been found in large population studies (23). More-
over, treatment aimed at selective blockade of Th2
pathways has not yet proven to be efficacious in asth-
ma (24). Nonetheless, these discrepancies are generally
ascribed to the complexity of the allergic response, so
that other features of the response may still lead to the
asthma phenotype (25). Even given this diversity, how-
ever, the Th2 hypothesis does not take into account a
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newly described yet invariant feature of asthma: an
intrinsic abnormality in cellular programming of the
airway epithelium toward an anti-viral Th1 response
(26). In particular, airway epithelial cells are specially
programmed with anti-viral networks, and the behav-
ior of these cells in asthma resembles a persistent anti-
viral response (27–31). It is also not certain how the
Th2 hypothesis reconciles its insights into the allergic
response — a short-term response — with the develop-
ment of a lifelong disease.

In that context, a relationship between viral infection
and the development of chronic inflammatory disease
has been proposed for diverse clinical syndromes, but
the mechanistic basis for this relationship is still uncer-
tain. Relevant to asthma, paramyxoviral infections are
the leading cause of lower respiratory tract illness in
infants and young children (32, 33), and children with
clinically significant viral bronchiolitis appear to be
marked for the subsequent development of a chronic
wheezing illness that is independent of allergy (34). Pre-
sumably paramyxoviral infection triggers an abnormal
host response, since paramyxoviruses (and other respi-
ratory RNA viruses) are not thought to persist in airway
tissue as an ongoing stimulus of chronic respiratory
disease (35). In either case (i.e., with or without viral
persistence), the role of specific host factors in the
development of acute or chronic wheezing or lifelong
asthma still remains to be determined.

To better define viral and host factors in the develop-
ment of the asthma phenotype, we took advantage of a
mouse model of paramyxoviral bronchiolitis with
acute pathology similar to the human condition (31).
Thus, mouse parainfluenza virus type 1 (Sendai virus;
SeV) at proper inoculum causes infection limited to the
airway mucosa and inflammation largely restricted to
peribronchial/bronchiolar tissues. We reasoned that
inhibition of the acute inflammatory response could
be achieved by targeted disruption of airway epithelial
immune-response genes. These genes form a network
that is directly induced by viral replication and is dom-
inated by an array of IFN-responsive genes (27, 29, 31).
Among candidate genes that might mediate immune
cell traffic, ICAM-1 is the predominant determinant for
adhesion of immune cells (especially T cells) to epithe-
lial cells in vitro (28, 36, 37). Indeed, in the present
experiments conducted in vivo, we found that ICAM-1
expression is induced primarily on host airway epithe-
lial cells by viral infection and is necessary for full
development of acute inflammation and concomitant
postviral airway hyperreactivity. Unexpectedly, howev-
er, we also found that primary viral infection causes a
persistent asthma phenotype (i.e., airway hyperreactiv-
ity, goblet cell hyperplasia, and mucin production)
despite ICAM-1 deficiency, and this phenotype is main-
tained despite clearance of virus. This phenotype is also
inducible by allergen challenge, but in this case, the
phenotype resolves spontaneously with time. In the
context of previous data, the findings establish the
capacity of a single paramyxoviral infection to cause

both acute and chronic manifestations of the pheno-
type for hypersecretory airway disease and define the
relevance of specific host defense genes in moderating
the acute, but not necessarily the chronic, phenotype.
In addition, the results provide initial evidence of the
capacity for nononcogenic riboviruses (i.e., paramyx-
ovirus) to irreversibly reprogram host cell behavior in a
manner previously restricted to oncogenic DNA virus-
es (38, 39). These findings therefore raise the possibili-
ty that asthma not only resembles a persistent anti-viral
response (30, 31) but may even be caused by such a
response, and so provide the experimental link between
paramyxoviral infection in infancy with subsequent
asthma in childhood and perhaps adulthood.

Methods
Mouse generation and housing. Wild-type C57BL/6J and
same-strain IFN-γ–null mice were obtained from The
Jackson Laboratory (Bar Harbor, Maine, USA) (40).
Same-strain ICAM-1–null mice were a generous gift
from J.-C. Gutierrez-Ramos (Millennium Pharmaceu-
ticals Inc., Cambridge, Massachusetts, USA) directly
and via The Jackson Laboratory (41). IFN-γ– and
ICAM-1–null mice were backcrossed for nine and ten
generations, respectively, onto the C57BL/6J strain.
The ICAM-1–null mice are interrupted in ICAM-1 gene
exon 4 to avoid generation of alternatively spliced iso-
forms that may still interact with lymphocyte function
antigen-1 (42). Thus, anti–ICAM-1 mAb 3E2 recog-
nizes all five ICAM-1 isoforms and does not detect
ICAM-1 in this strain (ref. 41 and data not shown).
Mice were maintained under pathogen-free conditions
for study at 7–9 weeks of age. Experimental manipula-
tions were performed in a class II laminar flow hood.
Sentinel mice and experimental control mice were han-
dled identically to inoculated mice and exhibited no
serologic or histologic evidence of exposure to 11
rodent pathogens (including SeV).

Viral inoculation and monitoring. After ketamine/
xylazine anesthesia, mice were inoculated intranasally
with the indicated dose (50% egg infectious dose,
EID50) of SeV (Fushimi strain) or with UV-inactivated
SeV in 30 µl PBS. The viral expression level in lung tis-
sue was monitored by immunostaining and Western
blotting with anti-SeV Ab (31), viral plaque assay (43),
and real-time quantitative RT-PCR using a fluorogenic
probe/primer combination for SeV nucleocapsid pro-
tein RNA (nucleotides 519–587 in GenBank accession
M30202) according to the manufacturer’s protocol (PE
Biosystems, Foster City, California, USA). Lung RNA
was extracted with TRIzol (Invitrogen Corp., Grand
Island, New York, USA) and the RNeasy mini kit (QIA-
GEN Corp., Valencia, California, USA). The extracted
RNA was then subjected to RT-PCR using the TaqMan
One-Step system (PE Biosystems) to detect viral nega-
tive- and positive-strand RNA. Synthetic RNA stan-
dards for nucleocapsid protein and control GAPDH
were generated from portions of the nucleocapsid pro-
tein gene (nucleotides 10–620) and GAPDH gene
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(nucleotides 37–910) cloned into pCR2.1 (Invitrogen
Corp., Carlsbad, California, USA) and were in vitro
transcribed using T7 MEGAscript (Ambion Inc.,
Austin, Texas, USA). Standards were purified by TRIzol
extraction, DNase treatment (three rounds), RNeasy
mini kit preparation (three rounds), and phenol extrac-
tion, and then run in duplicate serial dilutions to con-
struct standard curves and calculate the copy number
of virus-specific RNA in experimental samples.

Histochemistry. Mouse lung (at 25 cm H2O pressure)
was fixed in 10% buffered formalin, dehydrated in
ethanol, embedded in paraffin, and cut into 5-µm-thick
sections. To detect ICAM-1, tissue sections were blocked
with 5% nonimmune goat serum and then incubated
sequentially with hamster anti–mouse ICAM-1 IgG
mAb (2 µg/ml of clone 3E2 from Pharmingen, San
Diego, California, USA), biotinylated goat anti-hamster
IgG (7.5 µg/ml), streptavidin-conjugated horseradish
peroxidase, and 3,3′-diaminobenzidine chromogen
(Vector Laboratories Inc., Birmingham, California,
USA). Sections were also immunostained for MUC5AC
mucin and underwent amylase digestion and Alcian
blue/periodic acid–Schiff (PAS) staining as indicators of
mucus production and corresponding levels of goblet
cells (44). For MUC5AC immunostaining, tissues were
blocked with mouse IgG (Vector Laboratories Inc.) and
then incubated with mouse anti–human MUC5AC
mAb 45M1 (2 µg/ml; Lab Vision Corp., Fremont, Cali-
fornia, USA). Tissue sections were counterstained with
hematoxylin, dehydrated in graded ethanol, and
mounted for photomicrography and quantification of
reporter by cell counting (cells per mm of basement
membrane), area of epithelium (percentage of total
epithelial area calculated using Image-Pro Express ver-
sion 4; Media Lybernetics, Carlsbad, California, USA),
and epithelial staining intensity (calculated using Opti-
mas version 5; Optimas Corp., Bothell, Washington,
USA) as described previously (30, 31).

Bronchoalveolar lavage fluid analysis. Bronchoalveolar
lavage was performed via tracheal cannulation with an
aliquot of 0.8 ml of sterile PBS with 2% FBS. Each sam-
ple was subjected to hypotonic lysis, cytospin centrifu-
gation, and Wright-Giemsa staining, and was then used
for total and differential cell counts.

Airway reactivity measurements. Airway reactivity to
aerosolized methacholine was determined using a sin-
gle-chamber whole-body plethysmograph and BioSys-
tem XA version 1.5.7 software (Buxco Electronic Inc.,
Sharon, Connecticut, USA) to derive values for enhanced
pause (Penh) as described previously (45). Mice were
placed in the plethysmograph for a 5-minute acclimati-
zation interval, followed by 5-minute acquisition inter-
vals before (baseline Penh) and after 3-minute exposure
to nebulized vehicle (PBS) or doubling concentrations of
methacholine (5–160 mg/ml) delivered from a Collison
6 jet nebulizer (BGI Inc., Waltham, Massachusetts, USA).

Allergen challenge. C57BL/6J mice were sensitized and
then challenged with antigen using a method modi-
fied from one described previously (46). Mice were

immunized by intraperitoneal injection of ovalbumin
(Ova; 8 µg) adsorbed to aluminum hydroxide gel (1
mg) in 0.5 ml PBS at 3 weeks before challenge (study
day –21), and were given an identical booster immu-
nization 2 weeks before challenge (day –14). Mice were
challenged with PBS or Ova (2 mg) in PBS (50 µl) given
intranasally as described above for viral inoculation.
Challenges were performed with intranasal PBS or Ova
either twice (12 hours apart) on day 0 (for a total of
two challenges) or twice on day 0 and again once on
days 1 and 2 (for a total of four challenges). On days 3,
21, and 77 after initial challenge, all mice were assessed
for airway reactivity and goblet cell hyperplasia as
described above.

Statistical analysis. Values for bronchoalveolar lavage
fluid cell counts, weight losses, Western blots, and viral
titers were analyzed using the unpaired Student t test.
Values for Penh and histochemistry of mouse tissues
were analyzed using a one-way ANOVA for a factorial
experimental design. If significance was achieved by
one-way analysis, comparison of means after ANOVA
was performed using Scheffe’s F test. The significance
value for all analyses was 0.05.

Results
ICAM-1–null mice are protected against airway inflammation
after SeV bronchiolitis. Initial experiments indicated that
SeV inoculation with 50–50,000 EID50 caused a spec-
trum of illness ranging from no detectable effect (at 50
EID50 or UV-inactivated SeV at any inoculum) to
reversible bronchiolitis (at 5,000 EID50) to lethal bron-
chopneumonia (at 50,000 EID50) in the C57BL/6J
genetic background (ref. 31 and data not shown). We
therefore used SeV inoculation at 5,000 EID50 for fur-
ther experiments aimed at modeling viral bronchi-
tis/bronchiolitis in humans. With this inoculum, 
SeV replication and induction of ICAM-1 expression 
were colocalized predominantly to bronchiolar epithe-
lium (Figure 1a). Wild-type and ICAM-1–null mice re-
sponded to this level of infection with immune cell 
infiltration confined to sites of viral replication, but 
ICAM-1–null mice responded with fewer immune cells,
especially neutrophils and lymphocytes (Figure 1, b
and c). This phenotypic pattern is consistent with in
vitro findings, i.e., in airway epithelial cell monolayers,
where ICAM-1 gene expression is inducible by
paramyxoviral infection and is required for leukocyte
adhesion and transmigration (28, 29, 36, 37, 47). These
findings are also consistent with evidence of decreased
inflammation after loss of ICAM-1 in several other
models, including allergen challenge (48). However,
others report little change in neutrophil influx induced
by Streptococcus pneumoniae or Klebsiella pneumoniae (49,
50), perhaps reflecting alternative mechanisms for
immune cell recruitment and/or activation in response
to bacterial infection in the lung.

The blunted inflammatory response in ICAM-1–null
mice was beneficial to the host since this cohort expe-
rienced less weight loss after bronchiolitis (Figure 2a)
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and lower mortality rates after SeV bronchopneumo-
nia (data not shown). In addition, the decrease in air-
way inflammation did not appear to hamper host
defense, since initial viral infection rate and subsequent
clearance was not significantly altered in ICAM-1–null
versus wild-type control mice (Figure 2, b–d). Clearance
by 12–21 days after SeV infection is consistent with pre-
vious reports that assess viral titer by endpoint titration
in embryonated hen eggs (51–53), but the present data
using real-time RT-PCR also provides evidence against
persistence of viral genome in the host tissue as mutant
quasispecies of virus (54).

ICAM-1–null mice are protected against acute but not chron-
ic airway hyperreactivity after SeV bronchiolitis. We have
long proposed that airway inflammation may lead to
airway hyperreactivity (55), so we determined whether
ICAM-1–null mice (which are relatively protected from
virus-induced airway inflammation) are also protected
from postviral hyperreactivity. For these experiments,
we used whole-body barometric plethysmography to
measure Penh as an index of airway obstruction at
baseline and after methacholine challenge in wild-type
and ICAM-1–null mice inoculated with SeV, UV-inac-
tivated SeV, or vehicle alone. In this setting, we found

slightly increased baseline Penh and airway reactivity
by 7 days after inoculation with SeV in both types of
mice (Figure 3). Baseline Penh returned to normal in
both types of mice by 14 days after inoculation, but air-
way reactivity was increased markedly by this time in
wild-type mice. Moreover, the development of post-
viral hyperreactivity at this timepoint and at 21 days
after inoculation was significantly diminished in
ICAM-1–null mice. Methacholine-induced increases in
Penh were rapidly and fully reversible by treatment
with inhaled albuterol, and so were consistent with air-
way smooth muscle contraction and consequent bron-
choconstriction (data not shown).

These findings linked virus-inducible inflammation
with hyperreactivity via the ICAM-1 gene during the
first 21 days after infection, but continued monitoring
indicated that hyperreactivity recurred at maximal lev-
els by 77 days after infection in ICAM-1–null mice, and
persisted throughout the monitoring period in wild-
type mice (Figure 3). In fact, virus-inducible hyperreac-
tivity proceeded unchanged for at least a year (see
below). Thus, ICAM-1 deficiency protects to at least
some degree against acute inflammation (maximal at
8 days) and subacute airway hyperreactivity (maximal
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Figure 1
ICAM-1 deficiency protects against virus-induced
inflammation. Wild-type (+/+) and ICAM-1–null (–/–)
mice were inoculated with SeV (5,000 EID50) and ana-
lyzed as follows. Lung sections were immunostained
with anti–ICAM-1 (a) or anti-SeV Ab (b) and counter-
stained with hematoxylin on the indicated postinocu-
lation days. Representative photomicrographs are
shown for each genotype (four mice/genotype). Wild-
type mice inoculated with PBS or SeV-UV revealed alve-
olar but not conducting airway epithelial staining for
ICAM-1, and incubation of lung tissue with control
nonimmune IgG resulted in no signal above back-
ground in either genotype (data not shown). Similarly,
ICAM-1–null mice exhibited no detectable ICAM-1
staining above background (data not shown). Bar, 20
µm. (c) Bronchoalveolar lavage fluid was subjected to
total and differential cell counts. Values represent
mean ± SEM for four mice. For a–c, values obtained
from +/+ and –/– cohorts inoculated with PBS or UV-
inactivated SeV were no different from preinoculation
values (data not shown). *Significant decrease com-
pared with the wild-type cohort.



at 21 days) but does not protect at all against the chron-
ic hyperreactivity (manifest at 77 days and longer) that
develops in response to SeV infection in this genetic
background. Many previous reports indicate that res-
piratory viral infection may transiently increase airway
reactivity in animal models and humans (56), but the
present findings indicate that viral infection may also
permanently reprogram airway reactivity.

Chronic airway hyperreactivity is accompanied by airway
remodeling after SeV bronchiolitis. Recognizing that the
host epithelial cell is a primary target of viral infec-
tion, we next determined whether infection also
resulted in persistent changes in epithelial behavior.

Indeed, airway hyperreactivity developed in concert
with prominent airway epithelial remodeling that was
fully manifest by 21 days and was maintained to a
similar degree at 77 days after SeV infection in wild-
type or ICAM-1–null mice (Figure 4). In particular, we
observed a marked increase in PAS-positive cell stain-
ing in a pattern indicative of goblet cell hyperplasia in
the airway epithelium. The increase in PAS-positive
cells was matched by increased immunostaining for
the mucin MUC5AC, indicating upregulation of
mucus-producing goblet cells. Quantifying this phe-
notype confirmed that ICAM-1 deficiency was not
protective against chronic goblet cell hyperplasia, just
as it was not protective against long-term airway
hyperreactivity. However, in the case of goblet cell
hyperplasia, ICAM-1 deficiency did not exert even
transient protection at 21 days after SeV infection,
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Figure 2
ICAM-1 deficiency protects against weight loss after viral infection
without changing viral clearance. Wild-type and ICAM-1–null mice
were inoculated with SeV (5,000 EID50) and analyzed as follows. (a)
Body weights relative to initial values were determined as mean ± SEM
of eight mice. *Significant increase compared with the wild-type
cohort. (b) Lungs were subjected to Western blotting against anti-SeV
Ab, and bands corresponding to SeV nucleocapsid protein (NP) and
the Sp1 control were quantified by densitometry as mean ± SEM of
three mice. (c and d) Lungs were also assayed for SeV plaque-forming
units (c) and SeV copy number (d). Values for viral plaque-forming
units and viral RNA copy number represent mean ± SEM for 1 g of
lung tissue and 100 ng of total lung RNA, respectively (three
mice/genotype). Viral RNA copy number was determined by real-time
RT-PCR for SeV nucleocapsid protein and corrected for GAPDH con-
trol. For a–d, values obtained from +/+ and –/– cohorts inoculated
with PBS or UV-inactivated SeV were no different from preinoculation
values (data not shown).

Figure 3
ICAM-1 deficiency protects against acute but not chronic airway
hyperreactivity induced by viral infection. Wild-type or ICAM-1–null
mice were assessed for airway reactivity to inhaled methacholine by
measurements of Penh at the indicated times before and after inoc-
ulation with SeV (5,000 EID50) or an equivalent amount of SeV-UV.
Values are provided for baseline (B) and after exposure to vehicle (V)
or methacholine (doubling concentrations, 5–160 mg/ml), and each
value represents mean ± SEM of eight to nine mice. Values for Penh
in cohorts that were inoculated with vehicle alone were no different
from those for SeV-UV treatment (data not shown). *Significant
increase from control mice that received SeV-UV. **Significant
increase from control mice and from SeV-infected ICAM-1–/– mice.



suggesting separate controls for the development of
the two components (hyperreactivity and remodeling)
of the chronic asthma phenotype as well.

IFN-γ–/– mice and wild-type mice exhibit similar acute and
chronic responses. As noted above, epithelial ICAM-1
gene expression is selectively sensitive to IFN-γ in
vitro and in vivo, but is still sensitive to viral induc-
tion in vitro using epithelial monolayers that exclude
IFN-γ–producing cell types (27, 36, 47, 57–59). Thus,
the relative roles of IFN-γ (derived from immune
cells) versus other endogenous mediators produced
directly by epithelial cells for driving ICAM-1 expres-
sion in vivo were still undefined. In the present exper-
iments, we found that viral induction of ICAM-1
expression proceeded unchanged in IFN-γ–null mice,
suggesting that epithelial pathways for ICAM-1
expression respond directly to viral infection without
a requirement for IFN-γ that is derived from immune
cells. In addition, IFN-γ–null mice exhibited levels of
weight loss, mortality, viral protein, and airway
inflammation that were no different from those in
wild-type control mice (Figure 5, a and b, and data
not shown). These findings are consistent with the

preservation of the CTL response and normal SeV
clearance in the absence of IFN-γ in the BALB/cJ
genetic background (52). The correlation between
ICAM-1 expression, airway inflammation, and airway
reactivity was reinforced in these experiments when
we found that wild-type and IFN-γ–null mice both
exhibited similar increases in acute and chronic air-
way reactivity as well (Figure 5c). In both cohorts, air-
way hyperreactivity was maintained at the same lev-
els for at least a year after viral clearance, in concert
with the same persistent degree of goblet cell hyper-
plasia (Figure 6, a and b).

Comparison to the allergic response. To determine
whether the virus-induced phenotype was typical of
other asthmagenic stimuli, we next monitored the
airway response to allergen over an extended time
period in this setting. We used a protocol that
depended on allergen sensitization and subsequent
challenge with Ova, since that allergen has been so
extensively studied in murine models of asthma. In
the present experiments, Ova challenge caused small-
er increases in airway reactivity but a similar de-
gree of goblet cell hyperplasia compared with viral 
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Figure 4
Persistence of goblet cell hyperplasia after viral infection in wild-type and ICAM-1–null mice. (a) Wild-type and ICAM-1–null mice were
inoculated with SeV (5,000 EID50) or SeV-UV, and lung sections were stained with PAS and immunostained for MUC5AC mucin. Repre-
sentative photomicrographs are shown for each genotype (n = 5) at postinoculation day 21. Immunostaining with nonimmune IgG gave
no signal above background (data not shown). Bar, 20 µm. (b) Quantification of results shown in a using values for MUC5AC+ cells per
mm basement membrane (bm) and for MUC5AC+ staining as percentage of total epithelial area. Values represent mean ± SEM (n = 10 air-
ways from three to five mice). Similar results were found by analysis of staining intensity (data not shown). (c) Wild-type and ICAM-1–null
mice were inoculated with SeV or SeV-UV and subjected to analysis on postinoculation day 77 as described in a and b. Representative pho-
tomicrographs and corresponding quantification are shown for MUC5AC immunostaining for each genotype (n = 5). Bar, 50 µm. Results
for PAS staining were similar to results at postinoculation day 21 (data not shown). (d) Quantification of results shown in c. Values rep-
resent mean ± SEM. No significant difference was detected for postinfection values for wild-type versus ICAM-1–null or for postinfection
day 21 versus day 77. *Significant increase from control SeV-UV.



infection (Figure 7). However, in contrast to the
response to viral infection, allergen-induced pheno-
types were fully developed by day 3 after challenge,
were decreasing by day 21, and were resolved by day
77. These observations were consistent with previous
studies of Ova immunization and challenge in mice
(45, 46, 60), but the present data provide a more com-
plete description for the resolution of the allergic

response. In addition, the present results for Ova and
SeV derive from mice of the same genetic background
(C57BL/6J) to exclude the possibility that this was
the basis for short- versus long-term effects of aller-
gen versus viral infection.

Response to treatment with glucocorticoid. Previous
work has indicated that asthma and allergen-induced
asthma in experimental models is sensitive to gluco-
corticoid treatment (24, 60). Accordingly, we next
determined whether the virus-induced asthma phe-
notypes were responsive to glucocorticoid treatment.
Using a protocol for glucocorticoid administration
that began after viral clearance but before airway
remodeling, we found that the chronic remodel-
ing/hyperreactivity phenotype was at least partially
prevented by treatment with glucocorticoids (Figure
8, a and b). As discussed below, these findings are
consistent with similar events in glucocorticoid-
treated subjects with asthma.
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Figure 5
IFN-γ–null and wild-type mice exhibit the same acute and chronic
responses to viral infection. Wild-type (+/+) and IFN-γ–null (–/–) mice
were inoculated with SeV (5,000 EID50) and analyzed as follows. (a)
Body weights relative to initial values were determined as mean ± SEM
of eight to ten mice per group. No significant difference was found for
wild-type versus IFN-γ–null cohorts. (b) Lung sections from IFN-γ–null
mice were immunostained with anti-SeV Ab and counterstained with
hematoxylin on the indicated postinoculation days. Representative
photomicrographs are shown for each genotype (five mice/genotype).
Bar, 20 µm. (c) Airway reactivity to inhaled methacholine was
assessed at the indicated times before and after inoculation with SeV
(5,000 EID50) or SeV-UV as described in Figure 3 legend. Values are
shown for the final concentration of methacholine (160 mg/ml) and
represent mean ± SEM of nine mice. The same pattern was observed
at lower concentrations of methacholine, and the values for Penh in
wild-type or IFN-γ–/– cohorts that received no virus were no different
from those for SeV-UV (data not shown). *Significant increase com-
pared with control mice that received SeV–UV.

Figure 6
Long-term persistence of goblet cell hyperplasia after viral infection in wild-type and IFN-γ–null mice. (a) Wild-type and IFN-γ–null mice were
inoculated with SeV (5,000 EID50) or SeV-UV, and lung sections were stained for PAS and MUC5AC mucin as described in Figure 4 legend.
Representative photomicrographs are shown for each genotype and condition (n = 5) at postinoculation day 365. Bar, 20 µm. (b) Quan-
tification of results shown in a. Values represent mean ± SEM. The response of IFN-γ–null mice was no different from that of wild-type mice.
*Significant change from control SeV-UV treatment.



Discussion
We reported previously that asthma is characterized by
persistent activation of the bronchial epithelium in a
pattern that is similar to one inducible by viral infection
(28, 30, 31). These findings suggested that an abnormal
response to virus might contribute to asthma patho-
genesis (reviewed in ref. 26), but it was also possible that
the epithelial response was driven by other inflamma-
tory stimuli. For example, allergen inhalation might
also lead to epithelial activation indirectly via Th cell
cytokine production, and under some circumstances
even this response may require Th1 cytokines that are

more typical of anti-viral responses (15, 61). In addition,
the previous data focused on the acute immune
response to virus and so could not fully account for the
persistent changes in epithelial behavior that occur in a
chronic disease such as asthma. In that context, the
present study offers the critical information that a sin-
gle paramyxoviral infection has the capacity to cause
not only the acute manifestations of the asthma phe-
notype but also results in long-lasting changes in airway
behavior that are characteristic of asthma. In addition,
we demonstrate that the acute and chronic responses
can be genetically segregated, since the acute but not the
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Figure 7
Reversibility of airway hyperreactivity and goblet cell hyperplasia after allergen challenge. (a) On the indicated study days, wild-type mice
were sensitized to Ova, then challenged with intranasal PBS or Ova either twice on day 0 (Ova ×2) or twice on day 0 and again on days 1
and 2 (Ova ×4), and finally were phenotyped for airway hyperreactivity and goblet cell hyperplasia. (b) For each experimental condition, air-
way reactivity was assessed as described in legends for Figure 3 and Figure 5. (c) For the same conditions, lung sections were immunostained
for MUC5AC mucin, and immunopositive cells were quantified as described in Figure 4 legend. For b and c, all values represent mean ± SEM
for groups of eight to ten mice. *Significant change from the corresponding PBS-challenged cohort.



chronic response depends on the expression of the
ICAM-1 gene and so is lost in the ICAM-1–null mouse.
Thus, specific host defense genes participate in mediat-
ing the acute inflammatory but not necessarily the
chronic remodeling response to viral infection. As dis-
cussed below, the present findings suggest overlap in
the underlying mechanism for the paramyxoviral
response in mice and the phenotype in asthma.

In particular, the present study also addresses the role
of persistent infection and cytokine bias in the develop-
ment of the chronic asthma phenotype after viral infec-
tion. For example, others have indicated that the loss of
IFN-γ production may underlie the longer lasting
hyperreactivity and airway fibrosis that develops in sus-
ceptible strains of rats after viral infection (62, 63).
Based on this model and others as well as studies of tis-
sue from human subjects, it has been suggested that
viral persistence may drive the asthma phenotype in
children (64). It has also been suggested that dimin-
ished IFN-γ production and decreased exposure to
immune agents that stimulate this response may under-
lie the rising incidence of childhood asthma (65, 66).
However, we show that acute and chronic postviral phe-
notypes develop in the same manner in IFN-γ–deficient
mice of analogous age. These findings are consistent
with our previous results indicating that airway mucos-
al tissue in asthmatic subjects exhibits no difference
from the normally low levels of IFN-γ or IFN-γ–produc-
ing cells found in healthy subjects (30). We also precise-
ly determined the tissue levels of replicating virus and
viral genome, and similar to other reports, found no 

evidence of chronic infection or persistence of defective
virus. Thus, while some riboviruses may persist in tissue
as low-level quasi species (54), in the present case, SeV
was eliminated from airway tissue by 12–21 days after
infection. The results suggest a hit-and-run hypothesis
for the viral effect, i.e., transient infection causes per-
manent alteration in host cell behavior. This type of
mechanism has been proposed for oncogenic DNA
viruses, but has not yet been observed for nononcogenic
riboviruses (38, 39). Further proof of this possibility will
depend on identifying specific viral gene products
responsible for altering host gene expression and con-
sequent phenotype.

In that regard, we note that the capacity to develop
two postviral chronic phenotypes, goblet cell hyper-
plasia and airway reactivity, can be separated in the
host genetic background used in the present study.
Thus, at 21 days after infection, the epithelial pheno-
type is fully manifest, whereas the chronic hyperreac-
tivity is not yet present. At this timepoint, the reactiv-
ity is still subject to influence by ICAM-1 gene
expression and presumably acute, ICAM-1–dependent
inflammation. By contrast, the recurrence of reactivi-
ty in the ICAM-1–null mouse at later timepoints sug-
gests that this phenotype is regulated by distinct
genetic controls independent of this acute response.
The present findings therefore support a scheme in
which replicating virus causes direct induction of
epithelial immune-response gene expression, and this
leads to inflammation and inflammation-dependent
hyperreactivity in the first few weeks after infection.
However, additional genetic analysis will be needed to
determine how these chronic phenotypes segregate in
mice and in humans and to define the relevant genes
for susceptibility at each timepoint.

The present effects of viral infection are distinct from
the more transient impact of antigen sensitization/
exposure even after repeated challenges (67). In addi-
tion, the allergic response appears to be more sensitive
to regulation by Th cytokines, notably IFN-γ (3, 68).
However, in both allergen challenge and viral infection,
the remodeling/hyperreactivity phenotype is at least
partially prevented by treatment with glucocorticoids,
whether initiated after significant viral clearance (but
before remodeling) or during allergen challenge and
remodeling (67). As noted above, the results suggest a
hit-and-run hypothesis for the viral effect, but even so,
there must be some element of memory in the host tis-
sue so the phenotype can be preserved. Several possi-
bilities exist for this type of memory, but in the setting
of viral infection, a conspicuous candidate is the per-
sistence of virus-specific T cells in the lungs (69, 70).
Subsets of this population, e.g., CD8+ T cells, have been
variously incriminated as downregulating and upregu-
lating the Th2 features of the acute anti-viral response
(71–73). The role of these cells in the chronic response
to viral infection still needs to be determined, but the
sensitivity of T cells to glucocorticoid action reinforces
their candidacy for involvement (74). As noted above,
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Figure 8
Glucocorticoid suppression of airway hyperreactivity and goblet cell
hyperplasia after viral infection in mice. (a) Wild-type mice were inoc-
ulated with SeV (5,000 EID50) or SeV-UV and then treated with saline
or dexamethasone (0.5 mg/kg per day, given subcutaneously) on
postinoculation days 13–21. At the end of this period, levels of air-
way reactivity were determined as described in Figure 3 legend. (b)
For the same conditions described in a, MUC5AC+ cells were deter-
mined as described in Figure 4 legend. For a and b, all values repre-
sent mean ± SEM. n = 10 mice. *Significant decrease compared with
saline-treated cohort. GC, glucocorticoid.



however, these studies have focused on the acute
response to virus, and the relevance of this mechanism
for chronic persistent changes must still be defined.

Taken together, the present findings establish the
capacity of a single paramyxoviral infection to perma-
nently change epithelial behavior and airway reactivity
in a pattern that is remarkably similar to one in asthma.
The present results add to previous findings indicating
that paramyxoviral infection and asthma may activate a
network of epithelial immune-response genes that are
part of the innate immune response (28, 30, 31). Thus,
we now find that paramyxoviral infection may also lead
to chronically abnormal airway structure and function,
with goblet cell hyperplasia and airway hyperreactivity
that is typical of asthma and other hypersecretory air-
way diseases. Furthermore, this chronic phenotype can
be genetically segregated from the acute anti-viral
response in mice. Several gene products appear to regu-
late goblet cell hyperplasia after allergen exposure, fit-
ting a paradigm in which Th2 products (e.g., IL-4, IL-5,
IL-9, and IL-13) may upregulate while Th1 products
(e.g., IFN-γ) downregulate the response (75, 76). Further
studies will be required to precisely identify the genes
responsible for epithelial remodeling and chronic
hyperreactivity in response to paramyxoviral infection,
but the lack of IFN-γ–dependent regulation in this set-
ting implies that the viral pathway is distinct from
pathways driven by allergen. Indeed, the present results
raise the possibility that primary paramyxoviral infec-
tion in a specific genetic background may lead to chron-
ic dysfunction of host cell behavior that overlaps with
but does not depend on allergy (26).
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