

Supplemental Figure 1. RNA editome landscape of glioblastoma stem cells. Refers to Figure 1. (A) Workflow of RNA editing analysis. (B) Functional enrichment analysis of RNA editing sites. (C) Pathway enrichment bubble plot of genes marked by higher editing levels in GSCs. (D) Conservation analysis of RNA editing sites in different species. Bars represent the sum of conserved number of edits in the 7 designated species. (E) Conservation analysis of RNA editing sites in 9 cancer types (Bladder Urothelial Carcinoma, BLCA; Breast invasive carcinoma, BRCA; Cervical squamous cell carcinoma and endocervical adenocarcinoma, CESC; Colorectal carcinoma, CRC; Head and Neck squamous cell carcinoma, HNSC; Kidney Chromophobe, KICH; Kidney renal papillary cell carcinoma, KIRP; Low-Grade Glioma, LGG; and Uterine Corpus Endometrial Carcinoma, UCEC). (F-J) Kaplan-Meier survival curves of glioblastoma patients for editing level for indicated gene performed in 1L from TCGA data segregated by the median level. P-value was determined by log-rank test.


Supplemental Figure 2. ADAR1 levels are enriched in glioblastoma stem cells. Refers to Figure 2. (A) Western blots of ADAR1 in NMs (NM176 and NM263), NSCs (NSC11 and WT83), and GSCs (1517, 3565, 3691, and 1919). $\beta$-actin served as loading control (upper panel). ADAR1 protein levels were quantified by ImageJ (lower panel). Statistical significance was determined by ANOVA. $N=3$. ${ }^{* * * * P<0.0001 \text {. (B) Western blotting of ADARB1 or ADARB2 }}$ in NMs (NM176, NM293, and NM263), NSCs (HNP1, ENSA, NSC11, and WT83), and GSCs (MGG8, 3565, 2907, 3691, 1517, and 1552). $\beta$-actin served as loading control. (C) Kaplan-Meier survival curves of GBM patients based on ADAR1 mRNA in TCGA, CGGA, and Rembrandt databases segregated based on median expression. P-value was determined by log-rank test. (D) Kaplan-Meier survival curves of GBM patients based on ADARB1 (upper panel) or ADARB2 (lower panel) mRNA in TCGA, CGGA, and Rembrandt databases segregated based on median expression. P-value was determined by log-rank test. (E) Immunofluorescence analysis of ADAR1 and SOX2 in NMs (NM176 and NM263), NSCs (NSC11 and WT83) and GSCs (1517, 3565, and 3691). DAPI serves as a nuclear control. Scale bar: $50 \mu \mathrm{~m}$. (F) Pairwise correlation analysis between ADARs and 3 stem cell representative genes derived from the GBM TCGA. Plots indicate gene expression data. Correlation coefficient ( R ) values are shown.


C

1517 DGC


| Pathway | Gene ranks | NES | P-value |
| :---: | :---: | :---: | :---: |
| SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP |  | -3.45 | 3.1e-03 |
| KOBAYASHI_EGFR_SIGNALING_24HR_DN |  | -3.31 | 3.2e-03 |
| FISCHER_DREAM_TARGETS I | ำ" | -3.29 | $4.7 \mathrm{e}-03$ |
| FISCHER_G2_M_CELL_CYCLE |  | -3.27 | 3.2e-03 |
| ROSTY_CERVICAL_CANCER_PROLIFERATION_CLUSTER |  | -3.25 | $3.3 \mathrm{e}-03$ |
| WANG_RESPONSE_TO_GSK3_INHIBITOR_SB216763_DN |  | -3.06 | 3.2e-03 |
| REACTOME_CELL_CYCLE_MITOTIC । |  | -3.04 | $3.5 \mathrm{e}-03$ |
| HALLMARK_G2M_CHECKPOINT |  | -3.01 | $3.0 \mathrm{e}-03$ |
| SHEPARD_BMYB_TARGETS |  | -2.92 | $2.6 \mathrm{e}-03$ |



shCONT shADAR1.6243
shADAR1.1708


Gene ranks


NES P-value

3691 DGC
shCONT + shCONT + - shADAR1 - 62431708 ADAR1 - Cleaved PARP $\equiv \equiv \equiv<$ $\beta$-actin -

(A) Correlation between expression levels of ADARs and overall editing level of high confident editing sites in GSCs. (B) Correlation between expression levels of ADAR1 and overall editing level of indicated genes and correlation between expression levels and overall editing levels of indicated genes in GSCs. (C) mRNA expression of ADAR1 and GM2A in GSCs (3565 and 3691) transduced with shCONT or shADAR1. Quantitative data from four independent experiments are shown as the mean $\pm$ SD (error bars). $N=4$. Statistical significance was determined by ANOVA. **** $<0.0001$. (D) The editing pattern of GM2A. The ADAR1 binding peaks across GM2A mRNA (upper panels). The lower panels indicated the position of editing sites of GM2A within SINEs and the editing level in GSC and NSC.


Supplemental Figure 5. Relationship between ADAR1 and JAK/STAT family members. Refers to Figure 7. (A) Correlation between ADAR1 and 12 JAK-STAT Pathway representative genes Plots indicate gene expression data from TCGA datasets. Correlation coefficient values are shown. (B) Western blotting of ADAR1 in GSCs (1517, 3691, and 3565) with different concentrations of a JAK1 inhibitor. $\beta$-actin served as loading control. (C) Western blotting of ADAR1 in GSCs (1517, 3691, and 3565) with different concentrations of a JAK2 inhibitor. $\beta$-actin served as loading control. (D) Western blotting of ADAR1 in GSCs (1517, 3691, and 3565) with different concentrations of a JAK3 inhibitor. $\beta$-actin served as loading control.

## Supplementary Table 1: Antibodies used in this study

All the antibodies used in this study are listed

| Antigen | Host | Vendor | Catalogue\# | Dilution (WB) | Dilution (IF) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ADAR1 | rabbit | cell signaling technology | 14175 s | $1: 1000$ |  |
| ADAR1 | mouse | abcam | ab88574 |  | $1: 100$ |
| GFAP | mouse | sigma | G3893 | $1: 1000$ |  |
| SOX2 | goat | R\&D Systems | AF2018 |  |  |
| $\beta$-actin | mouse | sigma | A5316 | $1: 20000$ |  |
| GM2A | rabbit | Proteintech | $10864-2-A P$ |  |  |
| GM2 | rabbit | Matreya | 1951 |  | $1: 50$ |
| Lamp2 | mouse | novus | NBP2-22217 |  | $1: 100$ |
| ADARB1 | rabbit | Proteintech | $22248-1-A P$ |  |  |
| ADARB2 | mouse | santa | sc-73410 | $1: 500$ |  |
| PARP | rabbit | cell signaling technology | 9532 S | $1: 1000$ |  |
| Caspase3 | rabbit | cell signaling technology | 9664 S | $1: 1000$ |  |

Supplementary Table 2: DNA oligos used in this study
All the DNA oligos used in this study are listed

| Primer oligos for quantifying gene expression |  |  |
| :---: | :---: | :---: |
| Target | Strand | Sequence(5'->3') |
| ADAR1 | Forward | TCAGCGGGCTGTTAGAATATG |
|  | Reverse | AAACTCTCGGCCATTGATGA |
| GM2A | Forward | TCGTTCCTGGAAATGTGACC |
|  | Reverse | AGCCACCTCCTTCTCCAAAA |
| ACTB | Forward | TCCCTGGAGAAGAGCTACGA |
|  | Reverse | AGCACTGTGTTGGCGTACAG |
| CENPA | Forward | TTCCTCCCATCAACACAGTCG |
|  | Reverse | CACACCACGAGTGAATTTAACAC |
| AURKB | Forward | AAGGAGAACTCCTACCCCTGG |
|  | Reverse | ACAAGTGCAGATGGGGTGAC |
| CENPF | Forward | GTTCCAGGCGAGTCAGATCA |
|  | Reverse | TTCTCTGGCCTTTTGCTCAG |
| CDK1 | Forward | AGGAAGGGGTTCCTAGTACTGC |
|  | Reverse | TGGAATCCTGCATAAGCACA |
| CCNB1 | Forward | GTGGATGCAGAAGATGGAGC |
|  | Reverse | CCGACCCAGTAGGTATTTTGG |
| PLK1 | Forward | GGAAGCCCCTCACAGTCC |
|  | Reverse | CGACCACCTCACCTGTCTCT |
| CHEK1 | Forward | CATCAGCAAGAATTACCATTCCA |
|  | Reverse | CACCACCTGAAGTGACTCGG |
| Ki67 | Forward | TGAGCCTGTACGGCTAAAACA |
|  | Reverse | TCAGTTGACTTCCTTCCATTCTG |
| TOP2A | Forward | ACCCAAGAGCTTTGGATCAAC |
|  | Reverse | GGACTTGGGCCTTAAACTTCA |
| POLE2 | Forward | CCTCACAGAAGCTCTTCAGTCTATC |
|  | Reverse | TTCCACCACAGATCGTTCAA |
| RAD51 | Forward | CTGAGGGTACCTTTAGGCCAG |
|  | Reverse | TGGGTCTGGTGGTCTGTGTT |
| GM2A | Forward | TGTTTACAAACTCAGGTACCCG |
|  | Reverse | ACTCTCCAACTGACTCCAGTC |
| HEXA | Forward | GGGGCTTGCTGTTGGATAC |
|  | Reverse | TACCAGATGCCAGTGGAACA |
| HEXB | Forward | GTTGATGACCAGTCTTTCCCAT |
|  | Reverse | CACCATACGGACATCATTTGG |
| 18s rRNA | Forward | GAAGGGCACCACCAGGAGT |
|  | Reverse | CAGACAAATCACTCCACCAA |
| Primers for constructing expression plasmids |  |  |
| Target | Strand | Sequence(5'->3') |
| ADAR1-wt | Forward | attGCTAGC atgaatccgcggcaggggta |
|  | Reverse | attGCGGCCGCtactgggcagagataaaagttctttcct |
| ADAR1-E912A | Forward | ctgtcaatgactgccatgcagcaataatctcccggagaggcttc |
|  | Reverse | gaagcctctccgggagattattgctgcatggcagtcattgacag |
| DNA oligos for shRNA |  |  |
| Target | TRC number | Sequence(5'->3') |
| ADAR1 | TRCN000005078 | CCGGGCCCACTGTTATCTTCACTTTCTCGAGAAAGTGAAGATA ACAGTGGGCTTTTTG |
|  | TRCN000005079 | CCGGGCTGTTAGAATATGCCCAGTTCTCGAGAACTGGGCATAT TCTAACAGCTTTTTG |
| GM2A | TRCN000000869 | CCGGCCTTAACTTCTGTGACTAATTCTCGAGAATTAGTCACAGA AGTTAAGGTTTTT |
|  | TRCN000000869 | CCGGGATCCCATGCACAGACTACATCTCGAGATGTAGTCTGTG CATGGGATCTTTTT |
| HEXA | TRCN000002928 | CCGGCCCAGTCTCAATAATACCTATCTCGAGATAGGTATTATTG AGACTGGGTTTTT |
|  | TRCN000002928 | CCGGCGTCCTTTACCCGAACAACTTCTCGAGAAGTTGTTCGGG TAAAGGACGTTTTT |
| HEXB | TRCN000021845 | GTACCGGGTCCGTATGGTGATTGAATATCTCGAGATATTCAAT CACCATACGGACTTTTTTG |
|  | TRCN000023105 | CCGGGGATATTATTGCAACCATAAACTCGAGTTTATGGTTGCAA TAATATCCTTTTTG |

Full unedited gel for Suppl Figure 2A


Full unedited gel for Suppl Figure 2B


Full unedited gel for Suppl Figure 3B


Full unedited gel for Suppl Figure 5B



Full unedited gel for Suppl Figure 5D


Full unedited gel for Figure 2B



Full unedited gel for Figure 3F


1517 GSC


Full unedited gel for Figure 3G


Full unedited gel for Figure 31


Full unedited gel for Figure 4C


Full unedited gel for Figure 4D


Full unedited gel for Figure 4F


Full unedited gel for Figure 7D



