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mediated antitumor immunity.

Introduction

Interferons (IFNs) were discovered by Alick Isaacs and Jean Lin-
denmann in 1957 as regulator cytokines against virus infections,
interfering in viral replication (1). These secreted cytokines are
potent inducers of growth arrest, differentiation, inflammation,
and immunity (2-5). Furthermore, IFNs have a central function in
orchestrating adaptive and innate antitumor immune responses
(6-8). Distinct IFN types drive specific gene expression signatures
that can be largely overlapping and crosstalk with other pathways
in a context-dependent manner (9), thus generating dynamic
cascades of signals evolving into basal, augmented, and desensi-
tized IFN responses (10, 11). As a consequence, IFNs have pleio-
tropic and opposing roles that act at multiple levels of the tumor-
immune interface, shaping tumor and metastasis dynamics as
well as therapeutic responses.

The concept of immunosurveillance was postulated by Lewis
Thomas and Frank Macfarlane Burnet during the mid-20th cen-
tury, proposing the immune system’s role in detection and elim-
ination of malignant transformed cells (12, 13). Schreiber and
colleagues described initial functional experimental evidence
of immunosurveillance showing IFN-y signaling’s critical role in
governing antitumor immune responses (14). Later, their work
with genetically modified mouse models lacking IFN-y sensitivity
(IFNGR- or STAT1-deficient mice) showed aggressive carcino-
genesis in multiple organs due to low immunogenicity and failure
of immune detection (15), which suggested IFN as a central node
of cancer immunosurveillance. In addition, a seminal study using
immunodeficient RAG27~ mice, which are incapable of generating
mature B and T cells, showed that immune defense is necessary to
halt tumorigenesis and that this effect depends on IFN-mediated
immunogenicity in tumor cells (16). IFN-nonresponsive tumor
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cells were poorly immunogenic and were selected as a result of
immune pressure, enabling escape from immunosurveillance and
tumor outgrowth. This coevolutionary interplay between tumor
cells and the immune system was termed “cancer immunoedit-
ing” (17,18), and IFN signaling is a cornerstone of the process.

IFNs have traditionally been used for cancer treatment because
of their pleiotropic antitumor effects. Interestingly, at the end of
the 19th century, William B. Coley — the “father of immunother-
apy” — pioneered cancer treatments by harnessing the immune
system and showed that inactivated endotoxins from Streptococcus
pyogenes led to tumor regressions through a LPS-induced immune
response governed by IFNs (19, 20). The first FDA-approved
human immunotherapeutic agent was IFN-02 in 1986 (21); how-
ever, its variable responses and side effects reduced the interest in
IFNs. With the emergence of immune checkpoint blockade (ICB)
therapy, new IFN-based strategies should be considered, as IFNs
appear to be crucial in immunotherapy responses (22-24). It is now
well known that IFNs play critical roles in immunotherapy (25, 26),
yet mechanistic dynamics of IFN during therapy responses and
resistance require further investigation.

In this Review, we discuss how IFNs confer host-protective
cancer-eliminating functions, how mechanisms of IFN insensitiv-
ity shape tumor immunogenicity during cancer progression and
metastasis, and how IFNs participate in modification of tumor
attributes that contribute to cancer escape and progression. We
shed light on the implications of IFNs in metastasis and immuno-
therapy resistance, especially for ICB, and their clinical relevance
toward opening new avenues in cancer immunotherapy.

IFN signaling in cancer

The family of IFNs in humans is classified on the basis of structural
features, receptor usage, genomic location, and function in three
distinct groups: type I (IFN-a, IFN-B, IFN-¢, IFN-k, and IFN-),
type II (IFN-y), and type III (IFN-}) (6). Their canonical signal-
ing consists of JAK/STAT pathway activation. Type I and III IFNs
signal through distinct heterodimeric IFN receptors and TYK2/
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JAK1, while type II uses homomeric IFN receptors and JAK1/JAK2
kinases. All IFNs regulate various associations with STATs and
induce interferon-stimulated genes (ISGs) and interferon-regula-
tory factors (IRFs) to trigger IFN response, as recently reviewed in
more detail (5, 21, 27). Despite differences in signaling, IFN gene
expression signatures largely overlap and, hence, are challenging
to distinguish between types.

Most cells have the ability to produce type I IFNs as mecha-
nisms of antiviral defense, while high type III IFN expression is
largely found in epithelial cells. In the tumor microenvironment
(TME), IFN-0 and IFN-B are produced by innate and adaptive
immune responses but also by malignant tumor cells (5, 21). Their
production is prompted by various damage-associated molecu-
lar patterns (DAMPs) via pattern recognition receptors such as
TLRs (28) and cytosolic RNA-specific RIG-I-like receptors (RLRs)
(29) that sense pathogen-exogenous and endogenous damaged-
derived nucleic acids, and via cytoplasmic DNA sensors through
the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN
genes protein (STING) pathway (30). Interestingly, plasmacytoid
dendritic cells (pDCs), which synthesize large amounts of IFN-q,
are restricted to the expression of TLR9 (31). Type I1IFN is mainly
produced by NK cells, NKT cells, and subsets of CD4* and CD8" T
cells in response to antigens (27).

In cancer, IFN signaling mediates intrinsic and extrinsic
effects on tumor cells and the TME, including tumor-infiltrating
lymphocytes or tumor-associated stroma (32). Besides playing a
role in tumor prevention via IFNAR1/IFN-a/p signaling (33), IFNs
exert direct intrinsic antitumor effects including inhibition of cell
proliferation by induction of cell cycle arrest and apoptosis (34~
36), ferroptosis (37), cell differentiation (38, 39), and senescence
(39, 40), thus acting as a tumor suppressor.

Remarkably, IFN response is a master regulator of tumor
immunogenicity via cell-intrinsic control of the antigen process-
ing and presentation machinery (APM) pathways by MHC classes
I and IT, which are required for adaptive immune detection in anti-
gen-presenting cells and tumor cells. It has long been reported
that IFNs control upregulation of MHC (41-43), B2M (which is
essential for MHC class I antigen presentation) (44), and trans-
porter proteins TAP1 and TAP2 (45). Moreover, IFNs coordinate
the immunoproteasome through its subunits PSMB8, PSMB9, or
PSMBI10. As a result of genomic instability, the immunoprotea-
some cleaves polypeptides into neopeptides recognized as foreign
molecules by the immune system (46). However, IFN-y exposure
leads to expression of inhibitory receptors such as PD-L1/2 (47),
CTLA-4 (48), or the immunosuppressive metabolite indoleamine
2,3-dioxygenase (IDO) (49), which are mechanisms of adaptive
immune resistance (50). Although this normally occurs to prevent
chronic inflammatory processes, in cancer, it serves as an immune
evasion mechanism (10). Moreover, depending on the cellular
context, IFNs have opposing functions in cancer, such as prolif-
erative effects (51) via upregulation of NF-kB (52). Under chronic
IFN exposure, STAT3 activation fuels tumor growth while inhib-
iting antitumor actions of IFNs through expression of JAK inhibi-
tors, such as the suppressors of cytokine signaling 1 and 3 (SOCS1
and SOCS3) (53).

Among their extrinsic effects, the most relevant antitumor
effects of IFNs involve their vast influence on innate and adaptive
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immunity. IFNs upregulate the expression of MHC class I and II,
costimulatory molecules (e.g., CD80 and CD86), and other immu-
nomodulatory ISGs in DCs (4, 54), which promote activation and
cytotoxicity of CD8* T cells (55, 56) and differentiation of CD4*
T cells into Th1 cells (57). IFNs polarize tumor-associated macro-
phages toward an antitumorigenic, inflammatory M1 phenotype
(58) and decrease accumulation of myeloid-derived suppressor
cells (MDSCs) (59) and Tregs (60). IFN-mediated cytokine syn-
thesis of IL-15 can activate NK cell-mediated tumor cytolysis
(61-63). In contrast, persistent I[FN exposure has protumorigenic
effects by expanding Tregs (64) and attracting immunosuppres-
sive MDSCs (65), which produce nitric oxide (NO), leading to
dampened STAT1 activation and host immune response (66).

Tumor primary and acquired insensitivity to IFNs
Tumors exhibit high genomic and phenotypic heterogeneity,
which underlies the observed differences of tumor responses
to IFN signaling inputs. For instance, genomic alterations and
deletions in IFN receptors or mediators are commonly found
in several cancer types, which partially reduce their ability to
respond (67-70). The loss of response to IFNs gives cancer cells
growth advantages and leads to tumor development, hence
underscoring the tumor-suppressive intrinsic and extrinsic
effects of IFNs. In contrast, specific phenotypic traits such as
stemness are associated with low capacity to respond to IFN,
as shown in normal and cancerous mammary stem cells (39).
Therefore, distinct tumor cells have divergent responsive capac-
ity to IFN cues, eventually evolving tumors with low sensitivity
as the result of developing selective survival advantages, which
aligns with the law of natural selection.

Herein, we propose two types of IFN insensitivity in tumors
(Figure 1): (a) primary IFN insensitivity due to mutations (67-69)
or epigenetic marks (71-73) present at carcinogenesis, indepen-
dent of the TME interactions; and (b) acquired IFN insensitivity
can be caused by avoidance of IFNs’ antiproliferative activity but
mainly by circumvention of immune pressure during immunoed-
iting, leading to clonal selection of insensitive genotypes/pheno-
types or dynamic phenotypic conversions during cancer progres-
sion. This can be further intensified in boosted immunity through
immunotherapies. We envision cancer immunoediting as a deter-
minant process for acquired IFN insensitivity (Figure 1).

In primary IFN insensitivity, established tumors do not
respond to IFN signals. These tumors arise with genomic or epig-
enomic alterations of IFN mediators endowing malignant proper-
ties. In various cancers, the loss of STATI or inactivating mutations
disrupting IFN signaling have been observed (74), while STAT1
expression correlates with better prognosis (75, 76). Defects in
IFNARI1 and IFNAR?2 (77, 78) and mutations in JAKI and JAK2 in
tumors also result in IFN insensitivity. SOCS factors inhibit JAK/
STAT pathways and regulate IFN sensitivity by reducing apop-
tosis in pancreatic cancer (80). In experimental studies, Meth-A
fibrosarcoma tumor cells overexpressing a truncated dominant-
negative form of IFNGRI1 (i.e., IFN-y-insensitive cells) grew more
aggressively than control tumor cells (14). In addition, genetically
engineered mouse models lacking Ifngr or Statl are unable to
respond to IFN signaling, and the use of these models revealed
even greater tumor incidence (15).
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Figure 1. Types of IFN insensitivity: primary and acquired. Primary IFN insensitivity arises from
mutations or epigenetic marks, leading to IFN-insensitive tumor cells. Acquired IFN insensitivity
can be generated from tumors that initially respond to IFN but, as a result of clonal selection or
phenotypic conversions, turn insensitive. Both types are driven and sustained by two forces of

tumor evolution: tumor progression and immunoediting.

Acquired IFN insensitivity is generated in tumors that initially
respond to IFN signals but shift toward an IFN-nonresponsive
state during cancer progression. In fact, the clonal selection of
poorly immunogenic clones was recently demonstrated (81). A
recent experimental study showed that in heterogeneous tumor
settings, clones with Ifigr2 or Jakl deletions are positively selected
as a result of IFN insensitivity, but not when those deficiencies
are homogeneous in the tumor population, similar to primary IFN
insensitivity populations (82). This study indicates that acquired
IFN insensitivity drives more malignant features than primary
IFN insensitivity. Under augmented immune pressure, tumor
cells acquire mutations and defects in IFN signaling (23, 78, 79),
to exploit its protumorigenic effects while being insensitive to its
antitumor functions. Along with cancer progression and metasta-
sis, tumors silence IRF1 and STAT1, causing reduced MHC class
II expression as an immune evasion mechanism (83). Emerging
studies also reveal that cell fate regulators, such as LCOR, can
modulate IFN responses, since LCOR loss induces cancer stem cell
(CSC) properties and IFN insensitivity; conversely, LCOR upregu-
lation primes cells that are highly sensitive to IFN signals (39, 84).
Another study in triple-negative breast cancer (TNBC) showed that
IFN signal transduction in CSC populations is blocked by reduced
ISG3 phosphorylation (85). Also, CD133* CSCs were shown to be
insensitive to IFN-y-mediated autophagy (86). Ultimately, stem
cell phenotypes are linked to reduced IFN sensitivity, conferring
advantageous properties for sustained tumor progression.

Cancer metastasis immunoediting and IFN
sensitivity

The concept of cancer immunoediting delineates three phases
— elimination, equilibrium, and escape — of tumor-immune
coevolution during cancer progression, in which immune attack
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executes anticancer actions, but the failure to
complete tumor eradication results in selec-
tion of immune-evasive tumors, contributing
to their aggressiveness (87). Recent studies
shed light on the extension of immunoedit-
ing beyond the primary sites. Once dissem-
inated, tumor cells encounter new immune
interactors in distant tissues (88-90), and the
immune system continuously exerts immune
pressure that recapitulates the phases of
immunoediting and enhances editing of met-
astatic tumors (Figures 2 and 3). Although
how the immune microenvironment affects
tumor evolution in diverse metastatic organs
remains to be determined (81, 91), two
recent studies demonstrate the influence of
organ-immune contexture in sculpting and
generating heterogeneous metastatic lesions
in different sites corresponding with different
prognoses in ovarian cancer metastasis (92,
93). Even though both studies represent evi-
dence of metastasis immunoediting, neither
reported the impact of immunity on clonal
tumor evolution. Remarkably, another study
showed how the immunity of different meta-
static sites influences the clonal evolution of metastasis and thus
results in outgrowth of immune-privileged clones (81).

The foundation of the concept of immunoediting is the sup-
pressive effect of the immune system on IFN-y-sensitive immu-

Immunoediting

nogenic tumors, which are negatively selected by immune pres-
sure; the resultant IFN-insensitive tumor cells escape immune
detection and grow without IFN-suppressive constraints (16). [FN
sensitivity plays key roles in the three phases of cancer immu-
noediting: cancer detection and elimination; dynamic equilibrium
of immune-mediated killing and maintenance of proliferating,
indolent cancer cells; and immune escape and outbreak of more
aggressive tumor phenotypes (87). To date, several studies have
demonstrated how IFNs intervene as a central axis in all three
phases (see other specialized reviews, refs. 7, 17; and Figure 2).
We focus on IFN’s dynamic sensitivity in tumor cells, which deter-
mines the pace of cancer immunoediting (Figure 2) and the sculp-
ture of metastasis evolution.

Elimination phase. Initial studies using neutralizing monoclo-
nal antibodies (mAbs) to block IFN-y in mice or mouse models
with tumor IFN response deficiencies showed that IFN sensitivity
is fundamental in mediating the expression of MHCs and the other
APM factors, and thus conveying the immunogenicity for tumor
elimination (14-16). Accordingly, ectopic expression of APM fac-
tors, such as TAP1 in Ifingr”- tumors (16) as well as in other models
(94), restores the APM, preventing escape and facilitating tumor
elimination by the immune system. In addition, IFNs contribute to
tumor suppression by intrinsic actions such as proliferation inhi-
bition, apoptosis induction (34, 95), and necrosis (96), resulting
in impaired tumor progression and eradication (Figure 2). IFNs
increase the cytotoxic activity of both innate and adaptive immu-
nity (7). Overall, during the elimination phase, tumor growth is
inhibited, and cancer cells are eliminated by innate and adaptive
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Figure 2. Tumor-extrinsic and -intrinsic effects of IFN during immunoediting. Elimination phase: IFNs orchestrate the pace of elimination by controlling
cell proliferation, differentiation, and senescence; and by increasing tumor immunogenicity, immune infiltration, and adaptive immunity attack to clear
tumor cells. Equilibrium phase: Remaining tumor cells, which survive immune attack, are poorly sensitive to IFN and thus less immunogenic and less
visible to the adaptive immune system. Senescent cells can persist at this stage, and other IFN-nonresponsive cells can acquire stem cell abilities, such

as self-renewal, maintaining the survival of this cell population contributing to tumor survival. Overall, there is a dynamic equilibrium of cell cycling and
death mediated by the crosstalk of tumor and innate and adaptive immunity. Escape phase: IFN-insensitive proliferative clones, which also express immu-
nosuppressive ligands to evade adaptive immunity, burst out. Tumor-extrinsic effects of IFN are mediated mainly by dendritic cells and macrophages. An
immunosuppressive microenvironment leads to the expression of immunosuppressive receptors in CD8* T cells, reducing the immune attack. Immuno-
therapy: During immunotherapy, the immune pressure is accentuated, leading to further immunoediting. Acute IFN signaling increases tumor immunoge-
nicity, which turns cancer cells vulnerable to immune attack, favoring immunotherapy response and tumor regression. On the other hand, immunoedited
cells are poorly differentiated and highly aggressive. Chronic IFN signaling contributes to immunosuppression by the upregulation of multiple immunosup-
pressive ligands, causing resistance to ICB monotherapy.
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immunity orchestrated by IFN (Figure 2). Similarly, during met-
astatic progression the immune system can also eliminate tumor
cells in an IFN-dependent manner (97). NK and T cell-mediated
elimination also affects circulating and disseminated tumor cells
(DTCs) (98), e.g., via perforin produced by activated NK cells (99)
or the interaction of lymphocytes and Kupffer cells in the liver,
promoting cytotoxic elimination of DTCs (100).

Equilibrium phase. After the elimination phase, remaining
tumor cells can resist immune pressure, resulting in indolent,
latent tumors. At this stage, the adaptive immune system engages
in persistent surveillance of any growing clones and steadily keeps

tumor growth in a dynamic equilibrium of proliferation and killing
(Figure 2). This phase can last for years or even decades consider-
ing the dormancy periods observed in many human cancers (101).
In this scenario, consequent IFN-insensitive cells have selective
advantages to avoid immune-mediated elimination and persist for
long periods. Indeed, a seminal study by Koebel et al. showed for
first time that the equilibrium process led to poorly immunogenic
tumors (102). WT mice treated with low doses of methylcholan-
threne (MCA) that did not show clinically apparent tumors were
treated with both anti-CD4/CD8 and anti-IFN-y, and 60% formed
tumors at the MCA injection site. A similar trend was seen when
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mice were treated with either anti-CD4/CD8 or anti-IFN-y. This
indicated that the activated adaptive immunity maintained tumors
in a dormant equilibrium state. Notably, NK depletion did not
show any effect, highlighting the crucial role of adaptive immunity
in equilibrium. However, recent experiments show that innate
immunity may also participate, since skin carcinogenesis in mouse
models without adaptive immunity were immunoedited (103). In
fact, NK cell production of IFN-y leads to M1 macrophage activa-
tion that activates Th1 responses and secretion of toxic agents such
as NO (104). Moreover, immune cell-derived IFN-y and TNF-a not
only eradicate cancer cells but also induce senescence and arrest
tumor cells, contributing to the equilibrium phase (40, 105, 106).

The equilibrium is particularly relevant in metastatic dis-
ease. First notions came from clinical observations in metastatic
patients: two kidney transplant recipients developed second-
ary cancer metastasis that had been indolent in the donor for 16
years after surgery of the primary melanoma tumor, suggesting
that withdrawal of immune pressure granted exit from immune-
constrained dormancy (107). Therefore, the equilibrium phase
may explain latency periods of dormancy, which represent a
challenging clinical problem. DTCs can remain for years or
even decades in a dormant state in distant organs, which can be
explained by a dynamic equilibrium of immune-mediated killing
and tumor growth in which IFN is critical (108-110) (Figure 2).
During this equilibrium phase, reactive CD8* T and B cells pro-
duce IFN-y upon stimulation by indolent metastatic tumor cells in
the bone marrow and lymph nodes, suggesting that the immune
system remains activated (108). In addition, IFN-y released from
the immune microenvironment might have antiproliferative
effects on the tumor cells, maintaining them at low proliferative
rates (108). Moreover, type I IFN maintained tumor dormancy in
bone metastasis (111). This effect could also be mediated by type
I IFN released from macrophages in the TME (39), since macro-
phages can infiltrate metastatic tumors with opposing roles (112),
and IRF8-deficient macrophages allow better establishment of
metastasis (113). In melanoma metastasis, it was experimentally
shown that CD8" T cells are responsible for maintenance of indo-
lent metastasis in equilibrium in the lung (109). Overall, these
studies shed light on the opportunity to employ immune-based
therapies to avoid relapse of dormant metastasis.

Escape phase. The tumor growth and death equilibrium per-
sist until cancer cell escape variants emerge. In this scenario, the
immune system fails to control tumor outgrowth, and tumors
become clinically detectable. The emergence of such mechanisms
is still poorly understood because of difficulties in modeling equi-
librium in experimental settings, although it is well known that
reduced IFN sensitivity is critical to escape, circumventing both
innate and adaptive immunity, as demonstrated in seminal studies
(16, 102, 114, 115). Accordingly, the loss of antigen presentation is
required to persist and escape throughout the phases (114) (Figure 2).

On the other hand, IFNs can mediate opposite effects by pro-
moting tumor-immunosuppressive abilities critical for escape from
tumor immunity. Long-term IFN exposure induces the expression
of immune checkpoint ligands, which prevent chronic inflam-
mation and autoimmune disease (9) but also drive CD8* T cell
inhibition and immune escape in cancer (116, 117). In melanoma
cells, IFN-y signaling regulates expression of PD-L1 through the
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JAK1/2-STAT2/3-IRF1 axis, whereas PD-L2 is regulated by IFN-f
and IFN-y through both IRF1 and STAT3, which bind directly to
PD-L2 promoters and promote immunosuppression (47). Chronic
IFN-y signaling is associated with expression of other immune
checkpoint ligands via STAT1-regulated epigenetic mechanisms
(118). In addition, IFN induces IDO expression, which recruits
immunosuppressive Tregs in the TME (119). In the inflammatory
TME established through IFN networks, tumor cells gain STAT3
activity through immune-derived IL-10, IL-6, NF-xB, or Bcl2,
which execute tumor-promoting effects such as proliferation,
antiapoptotic signals, and angiogenesis (120, 121). Additionally,
these secreted factors drive expansion of MDSCs and Tregs,
which, together with M2 macrophages and DCs, produce immu-
nosuppressive cytokines such as TGF-f and IL-10 and express
immunoregulatory molecules, including arginase, inducible NO
synthase, and IDO (120, 121). Ultimately, the proinflammatory
environment elicited by IFNs and tumor-intrinsic IFN insensitivity
permits tumor escape and outgrowth.

Regarding metastasis, fewer studies have characterized the
escape phase and IFN sensitivity. However, the loss of IRF7 in
breast cancer metastatic cells was shown to be crucial for escaping
NK and CD8* T cell immunity in bone metastasis (122). In another
study, the clonal evolution of metastasis demonstrated that clone
outgrowth is largely dependent on the adaptive immune system,
which is consistent with the immunoediting principles of escape
(17). Alternatively, the lack of immunity ends up in non-immu-
noedited metastatic tumors. Therefore, not every metastatic
tumor is immunoedited, and consequently, immunoedited metas-
tases are less immunogenic, confirming the environmental influ-
ence on clonal evolution (81, 123). Accordingly, both scenarios
align with the observation that metastatic tumors generally dis-
play lower immune activity than primary counterparts (124, 125)
and metastatic cells have less antigen presentation (126).

Therefore, acquired IFN insensitivity is relevant in all phases
of immunoediting. Accordingly, heterogeneous tumors contain
small subsets of nonsensitive populations that are not eliminated,
leading to selection of insensitive, aggressive clones. Indeed, CSCs
reported to be insensitive to IFN may persist beyond this phase,
leading to tumor initiation and progression. In fact, it was shown
that CSCs are resistant to anti-CTLA-4 treatment in squamous
cell carcinoma (127). Therefore, cancer immunoediting could
enrich for IFN-insensitive CSC populations, underscoring the
tumor-promoting consequences of immunoediting. As a result,
metastatic tumors are enriched in metastasis-initiating cells with
immune-evasive properties. Overall, how immune pressure shapes
cancer escape mechanisms in metastasis, and the role of distinct
IFN effects varying throughout the process, will require additional
exploration at different stages of tumor progression. The findings
might have important implications for immunotherapeutic treat-
ments in different metastatic organs (90, 128).

IFN functions during cancer metastasis

Metastatic disease encompasses a cascade of complex biological
steps, from tissue invasion, intravasation into the vascular system,
and circulation to extravasation at distant tissues, seeding, and
tissue colonization. Hence, tumor cells require distinct abilities to
overcome these challenges, including an intense dialog with the
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dissemination. Also, IFN types | and Il lead to CCL2 secretion and increase recruitment of Tregs to the metastatic site, supporting the seeding of tumor
cells. Genomic instability triggers cGAS/STING pathways, promoting invasion and metastasis. The dynamic interaction with immunity could be the
cause of tumor heterogeneity loss and the increase in clonal tumor selection driven by IFN sensitivity. Immune hostile challenges accumulate through-

;

out the process, contributing to immunoediting.

TME (129, 130). Along the metastatic journey, IFNs play tumor-
repressive and -promoting roles and can differ in the primary and
metastatic site (131) (Figure 3).

Non-immune-directed functions. Several IFN implications have
been reported to influence tumor cell proliferation, migration, and
angiogenesis during metastasis (Figure 3). Besides reduction of
cell proliferation and induction of apoptosis, IFN type I may con-
tribute to the preservation of tumor cell migration by upregulating
E-cadherin (132, 133), which is a hallmark event of epithelial-mesen-
chymal transition (EMT) leading to tumor invasion and dissemina-
tion (134). In addition, IFN-y downregulates CXCR4 and its ligand
SDF-1, leading to suppression of cell migration and proliferation in
head and neck carcinoma (135). Angiogenesis, a characteristic pro-
cess in cancer and metastasis (136), is blocked by IFNs, thus reduc-
ing tumor growth (137-139). An interesting study used TIE2/IFNA1-

expressing monocytes to deliver IFN-o in glioblastoma and mam-
mary tumors, leading to reduced angiogenesis, tumor growth, and
metastasis by preventing tumor cell dissemination (140). Strikingly,
another report suggested that IFN-y-mediated angiostasis facilitates
the dissemination of subcutaneously implanted lung carcinoma cells
(LCC1) due to perivascular disruption (141). After dissemination into
the bloodstream, circulating tumor cells (CTCs) require the regula-
tion of cell adhesion molecules (142) that are partially modulated
by ISGs (e.g., via induction of VCAM-1 by IRF1) (143). By reducing
CXCR4 at the metastatic sites, IFN-y impairs trafficking, homing,
and survival of CTCs (144). At the metastatic site, depletion of Lgr5*
cells impairs cancer plasticity of CTCs with a consequent increase in
IFN signaling and reduced metastasis (145).

On the other hand, IFN signaling also promotes metastatic
behaviors (143). In brain metastasis, tumor cells activate NF-xB and
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STAT1 pathways via astrocyte-derived, IFN-o-promoted growth
(146). Remarkably, genomic instability triggers cGAS/STING and
noncanonical NF-kB, favoring a mesenchymal invasive phenotype
and metastasis (147). Moreover, IFN-o mediates activation of quies-
cent hematopoietic stem cells in vivo (148) as well as prostate can-
cer cells in bone metastasis (111). Intriguingly, stem cell-like pheno-
types respond differently to IFN stimuli with increased tumorigenic
formation and aggressiveness. In contrast, differentiated tumor
cells that are IFN-sensitive respond by reducing growth and increas-
ing differentiation (39). Therefore, molecular mechanisms of [FN
orchestrate divergent effects during tumorigenesis, especially
during metastasis, which requires further investigation.

Immune-directed functions. The immune system controls differ-
ent steps of metastasis by regulating IFN (Figure 3). IRF1 activa-
tion and IFN-y signaling were enriched in cytotoxic Thl responses
to prevent early tumor cell dissemination (149), suggesting that
immunity actively prevents tumor dissemination. In addition, pri-
mary tumor-infiltrating NK cells produce IFN-y that induces the
extracellular matrix protein fibronectin 1, preventing dissemina-
tion (150). Functional in vivo screening studies in mice showed how
host deficiencies in the I[FN-regulatory factors IRF1 and IRF7 led to
defects in IFN type I signaling, which is associated with metastatic
colonization. However, host IRF5 deficiency, which does not cause
IFN type I deficiency, had no influence on metastasis, demonstrat-
ing an antimetastatic role of IFN type I signaling in the metastasis
microenvironment (151). The delivery of IFN-o in MMTV-PyMT
primary tumors increased infiltration and activity of innate and
adaptive cytotoxic cells, preventing metastasis development (140).

In the innate compartment, IFN-y upregulates STING in neu-
trophils, promoting their killing capacity to eliminate dissemi-
nated tumor cells in the lung, preventing metastasis (152). Recent
studies demonstrate NK cells’ important role in immune-selective
pressure by sculpting the metastatic tumor phenotype (153-155).
Various studies highlight the role of IFN-y-activated NK cells for
immune surveillance of target organs, specifically recognizing and
eliminating metastatic EMT-like phenotypes (154, 156), offering an
extrinsic explanation of aggressive epithelial phenotypes observed
in metastatic organs (157) (Figure 3). The deficiency in IFNAR1
expression and JAK/STAT signaling reduces NK cell-mediated
antitumor immunity, enhancing breast cancer metastasis (158, 159).
Moreover, TLR7, which can induce IFN type I (160), promotes early
NK cell and late CD8" T cell responses, inhibiting lung metastasis
(161). Aligned with this, silencing IRF7 negatively regulates NK cell-
mediated immunity and CD8" T cell responses, accelerating bone
metastasis of breast (122) and prostate cancer (162). Therefore,
multiple mechanisms involving adaptive and innate immunity take
part in IFN signaling’s implications in metastasis reduction.

In contrast, MDSCs induce EMT and invasion of tumor cells
in an IFN-A- and STAT3-dependent manner to increase metastasis
(163), and, intriguingly, STING/cGAS reduces MDSC accumula-
tion, which collectively reverses EMT and metastasis (164). The
loss of ELF5 — an EMT repressor — stabilizes IFNGRI1, causing an
increase of immunosuppressive neutrophils contributing to tumor
growth and metastasis in TNBC (165). Indeed, EMT cells express
and respond more strongly to IFN-y, which increases PD-L1 to
protect from adaptive immunity (166, 167). Once CTCs reach the
secondary organ, type I IFNs induce chemokine production (e.g.,
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CCL2) that favors adaptation of tumors in a fertile environment
(168, 169) and recruitment of Tregs that promote metastasis by
immunosuppression (170). Overall, the pleiotropic effects of [FN
during the metastatic cascade are remarkable, and we envision
that new studies applying single-cell resolution analyses will con-
tribute to a better understanding of this complexity.

IFN implications during therapy-mediated
immunoediting

Immunotherapy induces anticancer immune responses in which
IFN plays a critical role. Therefore, clinical interventions alter the
tumor-immune interface, determining the course of their coevo-
lution and intensification of immunoediting (Figure 2). This was
demonstrated by analysis of 68 melanoma patients treated with
anti-PD-1 ICB that revealed reduced mutational burden after
treatment and changes in lymphocyte T cell receptor reper-
toires (171). In tumors reentering immunoediting, nivolumab (an
anti-PD-1 mAb) forced an alteration of the clonal evolution and
the appearance of IFN deletions, suggesting that a genetic drift
reduces IFN response, whereas in responders, IFN response was
high (171). This remarkable study suggests the sculpting effects
of immunotherapy-mediated immune pressure. More studies are
required to corroborate these highly relevant findings, since the
treatment period was only 4 weeks and longer treatments would
be more appropriate to observe immunoediting as a consequence
of the treatment. In addition, further considerations are required
for the processing of bulk tumor data in responders versus non-
responders. Nonetheless, another study showed that deficiency
in IFN-y responsiveness — such as loss of the APM components
tapasin and HLA-A3 — appears after immunotherapy treatment
of metastatic melanoma, as tumor genetic and epigenetic edit-
ing results in resistance (172). This is not surprising since the
mechanisms of immunotherapy resistance widely overlap with
those related to immune evasion (173), and as we highlight in
this Review, IFN insensitivity is a main mechanism of immune
evasion. In addition, tumor-intrinsic mechanisms of acquired
immunotherapy resistance involve mutations in the IFN path-
way and the APM, which is regulated by IFN signaling (77, 174).
Supporting these findings, single-cell RNA-Seq of untreated and
ICB-treated melanoma patients revealed a T cell exclusion and
ICB resistance gene program downregulated in APM and IFN-y
signaling genes (175). In this scenario, tumor IFN response is
negatively selected and IFN-insensitive tumor populations arise,
leading to immunotherapy resistance. It will be crucial to vali-
date these findings in expanded cohorts to prove tumor evolution
and progression under ICB treatment.

The different mechanisms underlying primary and acquired
immunotherapy resistance are directly and indirectly governed
by IFN signaling pathways (Figure 2). The activation of IFN and
downstream expression of ISGs predict response to immunother-
apies in preclinical and clinical studies (22, 176, 177). In anti-PD-1
resistance studies (23, 178-180), genes encoding proteins impli-
cated in IFN-y signaling pathways, namely jakl, Statl, Ifngrl,
Ifngr2, and Jak2, were hits enriched in independent CRISPR-KO
screens designed for the identification of essential genes for
immunotherapy resistance. Notably, Ptpn2 and APLNR were dis-
covered to regulate IFN signaling and immunotherapy response
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Table 1. Combinatorial immunotherapeutic clinical trials using IFN and ICB

IFN type Representative drug(s) Cancer type(s) Phase NCT number
IFN-a. Atezolizumab Metastatic NSCLC, RCC, melanoma | NCT02174172
Ipilimumab Metastatic melanoma | NCT01409174
Metastatic melanoma I/ NCT01409187
Metastatic melanoma I NCT01708941
Metastatic melanoma Ml NCT01274338
Nivolumab Recurrent hepatocellular carcinoma I/ NCT04233840
Unresectable hepatocellular carcinoma I/ NCT04380545
Metastatic melanoma I/ NCT03638375
Pembrolizumab Locally/regionally advanced/recurrent melanoma | NCT02339324
Metastatic TNBC | NCT03599453
Metastatic breast cancer I NCT04418219
Metastatic TNBC, HER2+BC, brain metastasis Il NCT04348747
Metastatic melanoma 1l NCT02506153
Advanced renal cell carcinoma, melanoma 1l NCT02089685
IFN-B Avelumab Metastatic colorectal cancer, pheochromocytoma, NET | NCT02923466
Metastatic Merkel cell carcinoma I/ NCT02584829
Pembrolizumab Refractory NSCLC or HNSCC | NCT03647163
IFN-y Nivolumab Advanced solid tumors | NCT02614456
Pembrolizumab MF, SS, synovial sarcoma Il NCT03063632

HER2+BC, HER2-positive breast cancer; HNSCC, head and neck squamous cell carcinoma; MF, mycosis fungoides; NET, neuroendocrine tumors; NSCLC,

non-small cell lung carcinoma; RCC, renal cell carcinoma; SS, Sézary syndrome.

in murine and human melanoma cells, respectively (23, 24).
A similar trend was observed in anti-CTLA-4-resistant tumor
cells (77, 180). Another CRISPR screen in B16 melanoma cells
revealed ADARI1 as an RNA-editing enzyme that limited the sens-
ing of double-stranded RNA (dsRNA), reducing IFN type I and
II responses. Hence, the loss of ADARI overcomes resistance to
anti-PD-1 therapy (181). Similarly, loss of LSD1 reduces IFN type
Iinduced by ERV and dsRNA stress, leading to anti-PD-1 therapy
response (182). In a melanoma patient cohort treated with ICB, all
nonresponders with active CD8" T cell signatures carried defects
in antigen presentation and the IFN-y pathway (183).

The disruption of IFN-y signaling through acquired JAK1/2
mutations in cancer cells renders tumors insensitive to the antipro-
liferative and cytotoxic effects of T cells (180). After receiving ICB
therapy, in particular anti-PD-1, regressed tumors have specific
deleterious mutations in JAKI and JAK2, losing IFN-y sensitivity
(78). IFN-regulatory factors, such as IRF1, are lost during ICB with
anti-CTLA-4 in melanoma patients, and the expression of JAK/
STAT inhibitors is increased (77). Other reports found that tumors
of responders carrying IFNGRI mutations still regressed (184) or
that increased IFN-y serum levels as a result of systemic inflam-
mation correlate with anti-PD-1 therapy progression and clinical
benefit (185). A recent study using a CRISPR screen assay in cyto-
toxic conditions again identified IFN pathway genes as critical for
ICB response, in particular Ifngr2 and Jakl, driving IFN insensi-
tivity. As a result of lack of immune recognition, Ifngr2 mutants
were selected and led to resistance to anti-PD-L1 treatment (82).
This highlights immunotherapy-mediated immunoediting of IFN-
insensitive cells as a mechanism of immunotherapy resistance.

In contrast, long-term exposure to IFNs and persistent activa-
tion of IFN signaling generate a cascade of secondary IFN gene pro-

grams that can mediate opposing immunosuppressive functions in
tumor immunity and immunotherapy (186). Strikingly, persistent
IFN signaling not only leads to PD-L1 expression as previously
reported (187), sensitizing tumors to anti-PD-L1, but also leads to
epigenetically driven changes in STAT1 activation that stimulate
multiple T cell-inhibitory ligands such as LGALS9, TNFRSF14,
MCH class II, and CD86. The latter complements a whole set of
immune checkpoints and thus mediates resistance to individu-
al ICB and to the combination of anti~-CTLA-4 with radiotherapy
(118). After radiation therapy, IFN type I is persistently induced
and causes long-term expression of Serpinb9, an inhibitor of gran-
zyme B that hence protects tumor cells from T cell-mediated kill-
ing with or without anti-PD-L1 treatment (188). Therefore, the
divergent paths and temporal dynamics of IFN signaling are highly
complex and require further revision to answer whether immu-
notherapy-mediated immunoediting may restore or sustain IFN
sensitivity. These paradoxical effects are reflected in chemo- and
radiotherapy resistance in patients with IFN-related DNA damage
signatures (IRDS). IRDS positivity and thus chronic IFN signaling
predict therapy resistance by reducing cytotoxic signals translating
into prosurvival effects (189) and by activating tumor cell initiation
pathways, such as NOTCH signaling (190).

Ultimately, IFN signaling is a core regulatory mechanism
of evolving responses to conventional and immunotherapy,
namely therapy-induced immunoediting (Figure 2). Overall,
these therapeutic effects highlight the spatiotemporal complex-
ity of IFN signaling and the necessity of better understanding
IFN dynamics and immunoediting to exploit its application in
immunotherapy (see ongoing clinical trials in Table 1) as well
as for new combined strategies to personalize treatments for
IFN-insensitive or -sensitive patients.
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Conclusions
Herein, we highlight the dynamic perspectives of IFN signaling in
carcinogenesis, immunoediting, and metastasis as well as its dual-
ity in immunotherapy. We classify IFN insensitivity in two types,
primary IFN insensitivity and acquired IFN insensitivity, that can
determine the pace of tumor evolution with intrinsic and extrinsic
implications. We outline acquired IFN insensitivity based on the
ability of tumors to acquire insensitivity during tumor progression
and metastasis reciprocally with immunoediting, while primary
IFN insensitivity originates at tumor onset without progressing
with immunoediting. Therefore, the more immunoediting and IFN
insensitivity progress, the more strongly they convey resistance and
highly aggressive tumors, which is reflected in clinical advanced
stages. A better understanding of how the different types of IFN
insensitivity (Figure 1) emerge in whole tumor cell populations
depending on the immune context is critical since alteration of IFN
signaling is a shared feature that provides cancer cells with benefits
to overcome immune pressure and develop therapy resistance.
However, the duality of IFNs’ effects raises questions, because
persistent IFN signaling leads to immunosuppressive effects and,
thus, IFN-driven resistance might be favored during tumor evo-
lution in direct contrast with IFN insensitivity selection. Future
research should address this apparent paradox. Alternatively, the

REVIEW

cooperation of different clonal populations within the hetero-
geneity of tumors — with immunosuppressive clones protecting
IFN-insensitive poorly immunogenic clones — might explain
increased tumor growth and resistance. IFN signaling activation
strategies in combination with other therapeutic strategies such
as chemotherapy, radiotherapy, or ICB may be the key factor to
overcome therapy resistance, leading to clinical benefit. We envi-
sion that the dynamic comprehension of the molecular and cel-
lular mechanisms of IFN responses during cancer progression,
metastasis, and treatments will be a future cornerstone for novel
immune-based therapies and tailored treatments.
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