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Stathmin-2: adding another piece to the puzzle  
of TDP-43 proteinopathies and neurodegeneration
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Cytoplasmic aggregated 
proteins in neurodegenerative 
disorders
A common neuropathological feature of 
several neurodegenerative diseases is the 
mislocalization and aggregation of Tar 
DNA-binding protein 43 (TDP-43), which 
is a member of the family of heterogenous 
nuclear ribonucleoproteins (hnRNPs) 
and is normally ubiquitously expressed in 
nuclei throughout the CNS (1). Intensive 
investigations regarding the normal func-
tion of TDP-43 and its role in the pathogen-
esis of neurodegeneration have identified a 
variety of pathways in which TDP-43 per-
turbations lead to neuronal toxicity. Orig-
inally identified as the major component 
of ubiquitinated cytoplasmic inclusions 
in amyotrophic lateral sclerosis (ALS) and 

frontotemporal lobar degeneration (FTLD) 
(2), TDP-43 pathology is now recognized as 
a neuropathological feature of a substantial 
proportion of cases of Alzheimer’s disease 
as well as Parkinson’s and Huntington’s dis-
eases, and even the degenerative muscle 
disease inclusion body myopathy.

The connection between TDP-43 and 
neurodegeneration was sealed by the dis-
covery of gene mutations in its parent gene, 
TARDPB, that are found in rare famil-
ial cases of ALS and FTLD, all of which 
demonstrate the pathognomonic finding 
of aggregated neuronal cytoplasmic TDP-
43 inclusions. Given this neuropathology, 
it seems apparent that the mechanism of 
TDP-43–associated toxicity likely relates 
to cytoplasmic TDP-43 aggregates or the 
loss of TDP-43 protein from the nucleus, 

or a combination of both. The pathways 
identified as being related to this patholo-
gy are now numerous.

Cytoplasmic aggregated proteins are 
a common feature of most neurodegener-
ative diseases, and there is some debate 
about whether these inclusions are direct-
ly toxic to neurons (3), or are possibly pro-
tective, acting to sequester toxic soluble 
oligomers (4–6). Indeed, TDP-43 cytoplas-
mic aggregates are seen in the majority of 
patients dying of sporadic or familial ALS 
and approximately 50% of patients with 
FTLD. However, a number of TDP-43 
cellular and animal models demonstrate 
that TDP-43 mislocalization and aggre-
gation are not required for neurotoxicity 
(7–9), bringing into question the role of 
mislocalization and aggregation in disease 
pathogenesis. Though phosphorylated 
TDP-43 (p–TDP-43) inclusions are neces-
sary for the neuropathological diagnosis 
of ALS and FTLD with TDP-43 patholo-
gy (FTLD-TDP), the proportion of cells 
showing this pathological feature, even 
at end stage, may be minor. These minor 
quantities contrast with the overwhelming 
burden of amyloid β and p-tau that is seen 
in most patients dying of Alzheimer’s dis-
ease. This contradistinction certainly does 
not discount the importance of TDP-43 in 
ALS and FTLD, but may suggest (as do the 
animal models) that what we see under the 
microscope may not tell the whole story.

A particularly informative discovery 
regarding TDP-43–related neurodegenera-
tion is its interaction with the RNA-binding 
protein ataxin-2 (ATX2). ATX2 is a regula-
tor of stress granule assembly, and there is 
evidence that sequestered TDP-43 in stress 
granules leads to the formation of insolu-
ble TDP-43 aggregates (10). Remarkably, 
reducing or deleting ATX2 in transgenic 
TDP-43 mice substantially reduces TDP-
43 aggregate pathology and results in an 
extraordinary improvement in survival (11).

TDP-43 is also a transcription sup-
pressor. In the absence of TDP-43, i.e., 
when TDP-43 is cleared from the nucleus 
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Cytoplasmic aggregated proteins are a common neuropathological feature 
of neurodegenerative diseases. Cytoplasmic mislocalization and aggregation 
of TAR-DNA binding protein 43 (TDP-43) is found in the majority of patients 
with amyotrophic lateral sclerosis (ALS) and in approximately 50% of 
patients dying of frontotemporal lobar degeneration (FTLD). In this issue 
of the JCI, Prudencio, Humphrey, Pickles, and colleagues investigated the 
relationship of TDP-43 pathology with the loss of stathmin-2 (STMN2), 
an essential protein for axonal growth and maintenance. Comparing 
genetic, cellular, and neuropathological data from patients with TDP-43 
proteinopathies (ALS, ALS–frontotemporal dementia [ALS-FTD], and 
FTLD-TDP-43 [FTLD-TDP]) with data from patients with non-TDP–related 
neurodegenerations, they demonstrate a direct relationship between 
TDP-43 pathology and STMN2 reduction. Loss of the normal transcription 
suppressor function of TDP-43 allowed transcription of an early termination 
cryptic axon, resulting in truncated, nonfunctional mRNA. The authors 
suggest that measurement of truncated STMN2 mRNA could be a biomarker 
for discerning TDP proteinopathies from other pathologies.
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as it mislocalizes to the cytoplasm, cryptic 
exons are exposed and transcribed, creat-
ing aberrant mRNAs that lead to neurotox-
icity in ALS models (12–14). Recently, this 
TDP-43 suppressor function was specif-
ically implicated in suppressing a cryptic 
early polyadenylation site in the pre-mR-
NA for the protein stathmin-2 (STMN2). 
Loss of TDP-43 allows incorporation of a 
premature poly A tail, resulting in a trun-
cated and nonfunctional form of STMN2 
(15, 16). STMN2 is a highly conserved 
cytosolic protein essential for axonal out-
growth and maintenance. STMN2-knock-
out mice develop late-onset, predominant-
ly motor axonopathy (17) paralleling that 
seen in human ALS.

Truncated STMN2
In this issue of the JCI, Prudencio, Hum-
phrey, Pickles, and colleagues (18) provide 
further convincing evidence that TDP-43 
pathology is associated with the appearance 
of the nonfunctional, truncated STMN2 as 
well as a reduction of the normal long form 
of STMN2. The researchers focused on 
whether the presence of truncated STMN2 
could be used as a biomarker for differen-
tiating the underlying pathology in patients 
with FTLD. Only half of the patients with 
frontotemporal dementia (FTD) showed 
TDP-43 pathology (FTLD-TDP) at autop-
sy. The majority of those without TDP-43 
pathology had pathological abnormalities of 
the microtubule-binding protein tau (FTLD-
tau). Clinically, these entities are indistin-
guishable. Given that the mechanisms of 
disease are likely distinct, differentiating 
FTLD-TDP from FTLD-tau during life will 
be important for the testing of therapeutics 
in clinical trials.

Prudencio, Humphrey, Pickles, and col-
leagues (18) sought to distinguish patients 
with FTLD-TDP from those with FTLD-
tau by comparing genetic, cellular, and 
neuropathological data from patients with 
TDP-43 proteinopathies (ALS, ALS-FTD, 
FTLD-TDP) with data from those with non-
TDP–related neurodegenerations (SOD1-re-
lated ALS, FTLD-tau, progressive supra-
nuclear palsy) and from control subjects. 
The authors interrogated brain and spinal 
cord tissues from these patient groups by 
RNA-Seq and found a consistent correla-
tion between the presence of the truncated 
STMN2 transcript, the reduction of full-
length STMN2 RNA, and the presence of 

Figure 1. The puzzle of neurodegeneration. Multiple processes and pathways leading to neurodegeneration 
are identified from experimental models and human neuropathology. Some of those pathways, proteins, 
and genes may fit together as an organized model of disease. STMN2 is shown as a central component of a 
pathway that includes TDP-43 proteinopathy — i.e., TDP-43 nuclear clearing, formation of phosphorylated 
cytoplasmic aggregates, and reduction of its normal transcription suppressor function in STMN2 mRNA. It is 
unclear how other pieces fit in, and still others remain missing. These same pathways are likely common to 
several neurodegenerative diseases. N/C transport, nucleocytoplasmic transport.

https://www.jci.org
https://www.jci.org
https://www.jci.org/130/11


The Journal of Clinical Investigation      C O M M E N T A R Y

5 6 7 9jci.org      Volume 130      Number 11      November 2020

pathogenesis. The multiple functions and 
dysfunctions of TDP43, including its new-
ly recognized influence on axonal growth 
and maintenance, are prime examples of 
the mechanistic complexities that underlie 
age-related dysfunction and degeneration 
of the nervous system. It is unlikely that 
the varied phenotypes of the broken ner-
vous system represent distinct and unrelat-
ed pathological pathways. This puzzle has 
many pieces (Figure 1). STMN2 may be a 
centerpiece that connects several of those 
pieces together.
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