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Obstructive arterial diseases, including supravalvular aortic stenosis (SVAS), atherosclerosis, and restenosis, share 2
important features: an abnormal or disrupted elastic lamellae structure and excessive smooth muscle cells (SMCs). However,
the relationship between these pathological features is poorly delineated. SVAS is caused by heterozygous loss-of-function,
hypomorphic, or deletion mutations in the elastin gene (ELN), and SVAS patients and elastin-mutant mice display increased
arterial wall cellularity and luminal obstructions. Pharmacological treatments for SVAS are lacking, as the underlying
pathobiology is inadequately defined. Herein, using human aortic vascular cells, mouse models, and aortic samples and
SMCs derived from induced pluripotent stem cells of ELN-deficient patients, we demonstrated that elastin insufficiency
induced epigenetic changes, upregulating the NOTCH pathway in SMCs. Specifically, reduced elastin increased levels of
y-secretase, activated NOTCH3 intracellular domain, and downstream genes. Notch3 deletion or pharmacological inhibition
of y-secretase attenuated aortic hypermuscularization and stenosis in Eln”- mutants. EIn~- mice expressed higher levels of
NOTCH ligand JAGGED1 (JAG1) in aortic SMCs and endothelial cells (ECs). Finally, Jag7 deletion in SMCs, but not ECs, mitigated
the hypermuscular and stenotic phenotype in the aorta of Eln”- mice. Our findings reveal that NOTCH3 pathway upregulation
induced pathological aortic SMC accumulation during elastin insufficiency and provide potential therapeutic targets for SVAS.

Introduction

The vasculature is an intricately arranged network of blood vessels
with vascular walls that deliver nutrients to, and remove waste prod-
ucts from, target organs. The arterial wall consists of an inner endo-
thelial cell (EC) lining (tunica intima), smooth muscle cells (SMCs)
supported by elastic lamellae (tunica media), and the outermost
adventitial layer containing fibroblasts and connective tissue (tuni-
ca externa). Elastin is the major component of circumferential elas-
tic lamellae that alternate with rings of SMCs to form lamellar units
in the media of large elastic vessels such as the aorta. Excessive and
aberrant accumulation of SMCs and cells derived from SMCs are a
hallmark of diverse obstructive vascular diseases such as supraval-
vular aortic stenosis (SVAS), atherosclerosis, restenosis, vein graft
failure, and pulmonary hypertension (1-6). These diseases, as well
as physiological closure of the ductus arteriosus, are associated with
enhanced SMC proliferation and abnormal or disrupted elastic lamel-
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lae structure (7-16). Indeed, SVAS, a devastating pediatric condition
with obstruction of large- and medium-sized arteries, results from
loss-of-function, hypomorphic, or deletion mutations of one elastin
(ELN) allele (15,17-19). Similar to SVAS patients, late-stage embryon-
ic or early neonatal Eln”- mice have increased vascular wall cellular-
ity and arterial lumen obstructions (20). Eln*- mice display thinner
and higher numbers of elastic lamellae with additional SMC layers;
however, in contrast with Eln”- mice and SVAS patients, Eln*/~ mice do
not develop aortic stenosis (15, 21). SVAS occurs as an isolated entity
(i.e., nonsyndromic) or as an integral part of Williams-Beuren syn-
drome (WBS), a multiorgan system disorder caused by heterozygous
deletion of approximately 27 genes (including ELN) on chromosome
7 (19). Unfortunately, the mechanistic link between elastin defects
and hypermuscularization in vascular diseases remains incomplete-
ly understood. As a consequence, there is a lack of pharmacologi-
cal agents that prevent excessive proliferation and accumulation of
SMCs, and major surgery remains the only therapy for vessel obstruc-
tion in elastin arteriopathy.

The evolutionarily conserved NOTCH signaling pathway
plays key roles in diverse vascular developmental programs, such
as aortic wall morphogenesis, EC tip-stalk dynamics during angio-
genesis, and in select vascular diseases (22-30); however, to the
best of our knowledge no prior investigations have evaluated the
role of the NOTCH pathway in aortic hypermuscularization or
stenosis in the context of elastin insufficiency. NOTCH signaling
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Figure 1. Upregulation of NOTCH3 pathway in human and mouse elastin mutants. (A) Schematic of the NOTCH3 pathway. Upon binding ligand (JAG or Delta-like
ligand [DLL]) expressed by a neighboring cell, the transmembrane NOTCH full-length receptor is cleaved by tumor necrosis factor-a—converting enzyme (TACE),
producing an intermediate form that remains membrane bound but lacks the extracellular region. This intermediate form is further cleaved by y-secretase to release
the NOTCH intracellular domain (NICD), which translocates to the nucleus, forms a complex with transcription factor CSL and coactivator Mastermind-like (MAML),
and induces expression of target genes (e.g., HEY and HES family members). (B-D) haSMCs were treated with scrambled (Scr) or ELN-specific siRNA (siELN), and
lysates were analyzed. In B, histogram depicts levels of indicated transcripts relative to 785 rRNA in lysates as assessed by gRT-PCR and normalized to Scr treatment
(n = 3). Western blots probed for ELN, NOTCH3 (full length and intermediate forms), NICD3, HES1, and GAPDH are shown in C, with densitometry of protein bands
relative to GAPDH and normalized to Scrin D (n = 3-5). *P < 0.05, **P < 0.01, ****P < 0.0001 vs. Scr by Student's t test. (E and F) Aortic lysates from WT or Eln™~
mice at P0.5 (2 aortas pooled per genotype for each n) were resolved by Western blotting for ELN, NICD3, HES1, and GAPDH (E), with densitometry of protein bands
relative to GAPDH and normalized to WT (F). n = 3 to 6 mice. *P < 0.05, **P < 0.01, ***P < 0.001vs. WT by Student’s t test. (G and H) iPSC-derived SMC progenitors
from WBS or nonsyndromic SVAS patients or controls were differentiated into SMCs. Protein levels of ELN, NICD3, HES1, and GAPDH in these iPSC-SMCs were
assessed by Western blotting (G), with densitometric analysis of ELN, HES1, and NICD3 normalized to GAPDH (H) (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001 by 1-way
ANOVA with Tukey's post hoc test. All data are averages + SD. Gels and blots for HES1and GAPDH were run contemporaneously (C, E, and G).

ers (25-28), and NOTCHS3 is highly expressed in human arterial
SMCs (22). In Notch3-null mice, major elastic arteries of the trunk
(e.g., aorta) are indistinguishable from those of wild-type (WT)
mice, whereas smaller caliber arteries in mutants have thinner
tunica media, impaired SMC differentiation, and incomplete ves-

is initiated by the binding of transmembrane ligands and recep-
tors on neighboring cells. In mammals, the repertoire of NOTCH
ligands consists of Jagged (JAG1 and -2), Delta-like ligand 1, 3, and
4, and the receptors are NOTCH1-4. Signaling via JAG1 on ECs
and SMCs is implicated in differentiation of arterial wall SMC lay-

J Clin Invest. 2022;132(5):e142338 https://doi.org/10.1172/)C1142338



The Journal of Clinical Investigation

sel maturation (31). In regard to human diseases, cerebral autoso-
mal dominant arteriopathy with subcortical infarcts and leukoen-
cephalopathy (CADASIL) is caused by NOTCH3 mutations (30),
and enhanced NOTCH3 expression in SMCs of small arteries in
the lung is associated with pulmonary hypertension (29).

In the current study, we report that NOTCH3 activation
and signaling are upregulated in cultured human aortic SMCs
(haSMCs) with ELN silencing, in the aortic media of both Eln”"
mice and WBS patients, as well as in WBS and nonsyndromic
SVAS induced pluripotent stem cell-derived (iPSC-derived)
SMCs. Upon engaging ligand, the transmembrane NOTCH
receptor is cleaved by the enzyme y-secretase, releasing the
NOTCH intracellular domain (NICD) and liberating it to enter
the nucleus and modulate gene expression (32). Our results
indicate that elastin depletion results in increased SMC levels
of JAG1, the y-secretase complex, the activated form of NICD3,
and downstream target genes. Mechanistically, SMCs lacking
elastin have reduced global DNA methylation — an epigenetic
mark that drives gene silencing (33, 34) — and decreased DNA
methyltransferase 1 (DNMT1). In particular, elastin depletion
in SMCs decreases DNA methylation mark at the promoters
of key NOTCH pathway genes JAGI and y-secretase catalytic
subunits PSEN1 and PSEN2, facilitating their upregulation.
Moreover, pharmacological inhibition of y-secretase or genetic
deletion of Notch3 attenuates aortic hypermuscularization and
stenosis in Eln”" mice as well as abrogates excessive muscular-
ization in Eln*”- mice. We previously reported that integrin B3
plays a key role in elastin aortopathy (3). Herein, our data indi-
cate that NOTCH3 regulates integrin B3 expression in haSMCs
and in mice, and NICD3 binds the promoter of ITGB3, the gene
encoding integrin B3, and these effects are enhanced by elastin
deficiency. The initial paper describing that Eln deletion results
in arterial stenosis reported a lack of evidence for EC activa-
tion or damage (20). Interestingly, our results suggest that EC
JAGI protein is increased in Eln”" mice at least partly through
the effects of the extracellular matrix (ECM) deposited by elas-
tin-deficient SMCs. Finally, Jagl deletion in SMCs, but not in
ECs, mitigates the hypermuscularized and stenotic phenotype
of the Eln”- aorta. Taken together, our data in cultured human
cells, mouse models, and samples from humans with SVAS
and WBS are the first to our knowledge to implicate a role of
the NOTCH signaling pathway and epigenetic remodeling in
the pathogenesis of elastin aortopathy and to identify select
NOTCH3 pathway members as attractive therapeutic targets
for human SVAS and WBS. In addition, these studies provide
fundamental mechanistic insights that are integral for advanc-
ing potential therapies for a cohort of proliferative and obstruc-
tive arterial diseases associated with impaired elastin.

Results

Upregulation of NOTCH3 pathway with loss of elastin. The NOTCH
pathway plays essential roles in SMCs during development and dis-
ease of the cardiovascular system (22), but to the best of our knowl-
edge prior studies have not evaluated the role of NOTCH in aortic
hypermuscularization or stenosis in the context of elastin insuf-
ficiency. Upon engaging ligand, the transmembrane full-length
NOTCH receptor is cleaved by tumor necrosis factor-a-converting
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enzyme to produce the NOTCH intermediate form (Figure 1A).
Subsequent cleavage of the intermediate form by the y-secretase
complex releases NICD into the cytoplasm which translocates into
the nucleus, forms a complex with the transcription factor CSL
and coactivator Mastermind-like, and thereby modulates gene
transcription (22). We initially treated haSMCs with nontarget-
ing scrambled (Scr) RNA or ELN-specific silencing RNA (siRNA)
to query the effect of reduced elastin levels on NOTCH pathway
members. In haSMCs, ELN silencing did not alter transcript lev-
els of the 4 mammalian NOTCH receptors but did result in an
approximately 4- to 8-fold increase in levels of key NOTCH path-
way downstream gene products, including hairy and enhancer of
split (HES) and hairy/enhancer-of-split related with YRPW motif
protein (HEY) family members (Figure 1B). Among the NOTCH
receptors, NOTCH3 is highly expressed in arterial SMCs and not
detected in ECs (35-37). To dissect the effect of reduced elastin
on NOTCHS3 proteolytic processing and activation, lysates collect-
ed from ELN-silenced haSMCs were analyzed by Western blot-
ting (Figure 1C). Elastin knockdown did not change full-length
NOTCHS3 levels (in agreement with transcript levels in Figure 1B)
but resulted in an approximately 2-fold reduction in the NOTCH3
intermediate form, with an approximately 3- to 4-fold increase in
NICD3 and HESI (Figure 1, C and D). These data suggest that loss
of elastin activates the NOTCH3 pathway by inducing the proteo-
Iytic cleavage of the NOTCH3 intermediate form.

We next confirmed the upregulation of NICD3 and HES1 with
reduced elastin gene dosage in mice and human patient samples.
For mice, aortas were isolated from WT and Eln”" pups on post-
natal day 0.5 (P0.5), and aortic lysates were analyzed by Western
blotting. Eln”~ aortas had approximately 3-fold higher protein lev-
els of NICD3 and HESI1 as compared with WT aortas (Figure 1, E
and F). NOTCH3 intermediate form did not change in Eln”" aor-
tas, which might reflect differences in rates of protein synthesis,
cleavage, and/or degradation in cultured haSMCs versus in vivo
(Supplemental Figure 1; supplemental material available online
with this article; https://doi.org/10.1172/JC1142338DS1). Prior
studies have shown that NOTCH3 and NOTCH2 have oppos-
ing functions in regulating SMC proliferation (38). Interesting-
ly, NOTCH2 protein levels (full length, intermediate form, and
NICD?2) were not altered in Eln” aortas, indicating the specificity
of NOTCH3 activation during elastin deficiency (Supplemental
Figure 2). Furthermore, to assess the NOTCH3 pathway in human
elastinopathy, iPSC-SMC progenitors derived from skin fibro-
blasts of human control, SVAS, or WBS patients were differentiat-
ed into SMCs (Supplemental Figure 3). NICD3 and HESI1 protein
levels were increased in iPSC-SMCs of WBS and nonsyndromic
SVAS patients compared with those of controls (Figure 1, G and
H). Taken together, these data demonstrate that reduced elastin in
SMCs results in upregulated NOTCH3 pathway signaling.

Loss of elastin upregulates y-secretase complex in SMCs by modu-
lating DNA methylation. As suggested above, the changes in protein
levels of the NOTCHS3 intermediate form (reduced) and NICD3
(increased) in haSMCs with elastin silencing implicate y-secretase-
mediated proteolytic cleavage (Figure 1, A, C, and D). y-Secretase
is a proteasomal complex composed of multiple subunits, includ-
ing the catalytic presenilins (PSEN1 or -2) and accessory subunits
nicastrin (NCT) and presenilin enhancer 2 (PEN2) (39). We next
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assessed the levels of y-secretase complex subunits in elastin-defi-
cient haSMCs. siRNA-mediated elastin silencing upregulated pro-
tein levels of y-secretase subunits NCT, PSEN1, PSEN2, and PEN2
(Figure 2, A and B). Similarly, aortic lysates from WT and Eln”" pups
at PO.5 had higher levels of the y-secretase complex (Figure 2, C and
D). Moreover, transverse cryosections of ascending aortas from WT
and Eln”" pups at PO.5 were stained for o-smooth muscle actin (SMA,
marker of SMCs) and for PSEN1 or -2, confirming upregulation of
the y-secretase catalytic subunits (Figure 2, E and F). To assess the
potential effect of sex on NOTCH3 pathway induction with elastin
depletion, we compared the protein levels of NICD3, HES1, PSEN1,
and PSEN2 in male and female Eln”~ pups. Sex-dependent differenc-
es in levels of these proteins or development of elastin aortopathy
were not observed (Supplemental Figures 4 and 5). Overall, these
data show that the NOTCH3 pathway is induced in Eln”" aortas.

(5mC) mark, suggesting active chromatin remodeling
and gene activation in elastin-depleted SMCs (Figure
3, A and B). Our analysis of major DNMTs (DNMT],
-3a, and -3b) in haSMCs revealed that elastin silencing
results in a decrease in DNMT1 transcript levels (Figure
3C). Similarly, Western blot analysis of lysates collected
from ELN-silenced haSMCs or Eln”" aortas demonstrat-
ed reduced DNMT1 protein levels (Figure 3, D-G). To
investigate the role of modulated DNA methylation in
expression of y-secretase genes in SMCs with reduced
elastin, we next assessed the status of 5mC at the pro-
moter regions of the PSENI and PSEN2 genes. haSMCs
were treated with Scr or ELN-specific siRNA (siELN)
and then subjected to 5mC chromatin immunoprecip-
itation (5mc ChIP). Methylated DNA was immunopre-
cipitated with an anti-5mC monoclonal antibody, and
recovered DNA was analyzed by quantitative real-time
PCR (qPCR) to assess 5SmC enrichment at the promoters of PSEN1,
PSEN2, and THS2B (the latter being a positive control with con-
stitutive 5mC mark). DNA methylation (5mC) was approximately
50% reduced at the PSENI and PSEN2 promoters in ELN-silenced
haSMCs (Figure 3H), consistent with increased gene expression.
Pharmacological y-secretase inhibition attenuates aortopathy
in elastin mutants. In the WT aorta, substantial levels of elastin
(expressed as the soluble monomer tropoelastin) are initially
detectable at embryonic day 14 (E14), and by approximately E15,
the full complement of SMC layers, as in the adult mouse, are pres-
ent (42, 43). Eln-null and WT aortas are indistinguishable at E15.5,
but thereafter the Eln”- aorta accumulates excess SMCs (3, 20). To
test the hypothesis that y-secretase and the NOTCH pathway, and
specifically NOTCH3, are critical for aortic hypermuscularization
and stenosis in Eln”" mice, we next utilized pharmacological and
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genetic inhibition. The y-secretase inhibitor DAPT (N-[(3,5-di-
fluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl
ester) acts as a global NOTCH inhibitor by blocking cleavage of
the membrane-bound NOTCH intermediate form and hence,
the generation and release of the NICD is attenuated. Pregnant
dams were injected with DAPT or vehicle on E14.5 and E15.5, and
transverse sections of the ascending aorta in WT and Eln”" pups
at PO.5 were stained for CD31 (EC marker) and SMA (Figure 4A).
Additionally, the aortas were stained with HES1 (downstream
NOTCH target), confirming NOTCH pathway inhibition by DAPT
treatment (Figure 4B). Consistent with prior studies (3, 20), Eln”"
newborns untreated or exposed to vehicle in utero displayed
ascending aorta hypermuscularization and stenosis (Figure 4,
C-E). However, DAPT treatment induced an approximately 2-fold
reduction in medial thickness and wall area and an approximate-
ly 2-fold increase in lumen area of Eln-null mice without altering
these parameters in WT pups. Furthermore, to assess the effect of
DAPT-mediated NOTCH inhibition during elastin haploinsuffi-
ciency, we analyzed the Eln*~ aorta, which had an approximately
50% reduction in Eln transcript levels compared with WT (Sup-
plemental Figure 6A) (15). In agreement with previous studies (15,
21), newborn Eln*~ aortas had a thicker media due to accumula-
tion of additional lamellar units and SMC layers (Supplemental
Figure 6B) without lumen occlusion and stenosis. Newborn WT or

J Clin Invest. 2022;132(5):e142338

Q%

Eln*~ mice were injected daily with DAPT or vehicle from P2.5-
P5.5, and aortas were analyzed on P7.5. DAPT treatment reversed
the increased medial thickness and wall area seen in the early
postnatal Eln*- aortas (Supplemental Figure 7).

Notch3 deletion attenuates elastin aortopathy and excessive SMC
proliferation in elastin-mutant aortas. Next, to determine the spe-
cific role of NOTCH3 in elastin aortopathy, we analyzed the effect
of Notch3 deletion on the Eln-mutant background. In neonatal
Eln*- mice, global deletion of Notch3 resulted in rescue of medial
thickness and medial wall area to near-WT levels (Figure 5). Fur-
thermore, on an elastin-null background, global Notch3 deletion
attenuated excessive muscularization and stenosis of the aorta at
PO.5 as compared with mice WT for Notch3 (Figure 6A). Quantita-
tive analysis revealed that similar to DAPT treatment, compound
Notch37~ Eln”~ mutants had a 40% * 8% reduction in medial thick-
ness, 314% *73% increase in lumen area, and 21% *+ 5% reduction
in medial wall area in comparison with Eln”- mice (Figure 6, B-D).
Taken together, these findings from pharmacological and genetic
inhibition studies indicate that the pathway involving y-secretase
and NOTCHS3 plays a key role in the pathogenesis of aortic disease
in elastin mutants.

We and others have previously shown that in Eln”" aortas,
SMCs are hyperproliferative, contributing to increased arterial
wall cellularity and stenosis (3, 15, 20). Given that Notch3 deletion

https://doi.org/10.1172/)C1142338
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A WT Eln- Figure 4. Inhibition of y-secretase attenuates
hypermuscularization and stenosis in Eln™/-
mice. (A) Pregnant dams were injected on both
E14.5 and E15.5 with either vehicle (4% DMSO

é in corn oil) or y-secretase inhibitor DAPT (1

O mg). Transverse sections of the ascending
aorta from pups at P0.5 of indicated genotype

g and treatment were stained for SMA (SMC

@ marker) and CD31 (EC marker). (B) Transverse
sections in A stained for HES1, SMA, CD31,
and nuclei (DAPI). Lu, lumen. Scale bars:

B 100 um (A) and 10 um (B). (C-E) Histograms
represent medial thickness (C), lumen area (D),

- and medial wall area (E) of ascending aortas
from A. n = 4 to 6 mice. ***P < 0.001; ****P <
0.0001 by 2-way ANOVA with Tukey's post hoc
test. All data are averages + SD.

I

T o

<8

C

804
E 60+ N% *kkk Ng 60+
% me 100 m‘::

£ 404 - < 40-

2 g g

o c 504 o ©

B 204 g Y 20+

= 3 =

01— T T T 0Ly T T T 0+ T T T
A, A A A
SO AR & & & & &g
WT Ein~- WT Ein~"- WT Eln~

mitigates aortic hypermuscularization and stenosis in Eln”" mice
(Figure 6, A-D), we next assessed SMC proliferation in aortas of
these mice. Dams pregnant with E18.5 embryos were injected
with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). Eight
hours later, embryos were harvested, and transverse cryosections
of ascending aortas were stained for EQU, SMA, CD31, and nuclei
(DAPI) (Figure 6E). In comparison with WT or Notch3”" mice, Eln""
mice displayed an approximately 2-fold increase in proliferative
aortic SMCs, as marked by EAU, SMA, and DAP]I, and this increase
was abrogated in compound Notch37~ Eln”- mice (Figure 6F). A
previous study demonstrated that NOTCH3 promotes haSMC sur-
vival and proliferation via ERK pathway activation (38). We found
that ELN knockdown in haSMCs induces ERK phosphorylation
(Supplemental Figure 8, A and B) and that reduction of NOTCH3
in haSMCs decreases transcript levels of the prosurvival gene
BIRC5 and proliferation-inducing transcriptional factor E2F1 (Sup-
plemental Figure 8C). Overall, these data suggest that inhibition
of the NOTCH3 pathway during elastin deficiency helps attenuate
the aortic phenotype by preventing excessive SMC proliferation.
In addition to SMC hyperproliferation, deficient circumfer-
ential growth has been shown to contribute to elastin aortopathy

in a model of partial elastin deficiency wherein human elastin
is expressed in Eln”" mice (44). Our analysis revealed a minor
reduction (~10%) in the external diameter of Eln”- versus WT
aortas, and this reduction was abrogated in compound Notch37~
Eln”- mice (Supplemental Figure 9). Taken together, these data
suggest that deletion of Notch3 in the Eln-null background res-
cues the aortic phenotype primarily by inhibiting SMC hyperpro-
liferation but also with a minor contribution of improving defi-
cient circumferential growth.

Elastin is critical for lung development, and Eln”- mice display
dilated distal air sac structures and emphysema (Supplemental
Figure 10, A and C), which is likely the major cause of early post-
natal death (45, 46). We next assessed whether pharmacological
or genetic inhibition of the NOTCH3 pathway could improve lung
structure and prolong survival of Eln”~mice. Unfortunately, on the
Ein”"background, DAPT treatment or Notch3 deletion did not res-
cue lung phenotype or prolong survival (Supplemental Figure 10).

Elastin deficiency increases NOTCH3-mediated integrin 3 levels.
Our previous studies demonstrated that integrin B3 expression,
activation, and signaling are upregulated in the aortic media of
Eln” mice and SVAS and WBS patients (3). In elastin mutants,

J Clin Invest. 2022;132(5):e142338 https://doi.org/10.1172/)C1142338
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enhanced integrin p3-mediated signaling results in SMC misalign-
ment and hyperproliferation, and pharmacological or genetic inhi-
bition of integrin B3 attenuates aortic hypermuscularization and
stenosis (3). Although little is known about the regulation of ITGB3
transcription, NOTCHS3 silencing has previously been shown to
reduce integrin B3 levels in cultured cells (47). Herein, we initially
confirmed these findings by demonstrating that siRNA-mediated
knockdown of NOTCH3 reduces levels of ITGB3 mRNA by 53% *
7% and protein by 64% * 6% in haSMCs (Figure 7, A-C). To extend
these findings to the in vivo setting, the aortas of WT and Notch3-
and/or Eln-knockout pups at P0O.5 were studied. Similar to results
with cultured SMCs, quantitative real-time reverse transcription
PCR (qRT-PCR) of'isolated aortic RNA revealed an approximate-
ly 50% reduction in Itgh3 transcript levels in Notch37~ compared
with WT newborns (Figure 7D). In addition, transverse sections of
the ascending aorta were stained for integrin 3 (Figure 7E), and
aortic lysates were assessed for integrin 83 protein levels by West-
ern blot analysis (Figure 7, F and G). Consistent with our previous
investigations (3), integrin B3 staining was upregulated in SMCs
of Eln”~ aorta compared with that of WT. More importantly, our
results herein indicate that on the Eln”- background, deletion of
Notch3 markedly reduces integrin 3 staining.

To further evaluate NOTCH3-mediated regulation of ITGB3
expression in elastin aortopathy, we next investigated the hypoth-

J Clin Invest. 2022;132(5):e142338 https://doi.org/10.1172/)C1142338
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Figure 5. Notch3 deletion in E/n*/- mutants reduces
aortic muscularization. (A and B) Transverse
sections of the ascending aorta from pups at P0.5
of indicated genotype were stained for SMA and
CD31in A and for ELN, SMA, and nuclei (DAPI) in
B. Lu, lumen. Scale bars: 100 um (A) and 10 um (B).
(C-E) Histograms represent medial thickness (C),
lumen area (D), and medial area (E) fromA.n=5
mice per group. ***P < 0.001; ****P < 0.0001 by
1-way ANOVA with Tukey’s post hoc test. All data
are averages * SD.

Eln*~ Notch3~"

Ein*~ Notch3~-

esis that NICD3 binds the ITGB3 gene and that this interaction
is enhanced in elastin mutants. haSMCs were treated with Scr or
NOTCH3-specific siRNA and then subjected to ChIP. Protein-DNA
complexes were immunoprecipitated with an antibody directed
against NICD3 or an isotype-matched control antibody. Recov-
ered DNA was analyzed by qPCR to assess NICD3 enrichment at
the promoters of the HES1, HEY1 (positive controls), and ITGB3
genes. Our results indicate that NICD3 binds the ITGB3 proximal
promoter region in haSMCs, and this interaction is significantly
diminished with NOTCH3 knockdown (Figure 7H). Moreover, in a
second set of ChIP experiments, we observed that siELN pretreat-
ment enhances binding of NICD3 to the HESI, HEYI, and ITGB3
promoter region (Figure 7I). Overall, these results indicate that in
SMCs in culture and in mice, the NOTCH3 pathway induces inte-
grin B3 levels and NICD3 binds to the ITGB3 promoter, and elastin
depletion augments these effects.

Elastin reduction enhances JAGI levels in aortic SMCs and ECs.
Asthe NOTCH ligand JAG1 is implicated in early arterial morpho-
genesis (25-28, 47), we next investigated the role of JAG1 during
aortopathy in the context of elastin insufficiency. Elastin silencing
in haSMCs resulted in increased JAG1 mRNA and protein levels
(Figure 8, A-C). Similarly to the promoter regions of PSENI and
PSEN2, elastin silencing reduced DNA methylation (5mC) at the
JAGI promoter, correlating with increased gene expression (Fig-
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ure 8D). Additionally, lysates of aortas isolated from Eln”~ pups at
PO.5 had upregulated levels of JAG1 protein (Figure 8, E and F).
Staining of transverse ascending aortic sections from these pups
revealed increased JAG1 levels in the hypermuscularized tunica
media (Figure 8G). The relevance of these findings to the human
elastin aortopathies, nonsyndromic SVAS and WBS, was evaluated
by assessing JAG1 levels in iPSC-SMCs derived from patients with
these diseases as well as in the WBS aorta. SVAS and WBS iPSC-
SMCs had greater than 4-fold higher JAG1 protein levels as com-

The Journal of Clinical Investigation

Figure 6. On the Eln/- background,
Notch3 deletion attenuates hypermuscu-
larization and stenosis and reduces SMC
proliferation. (A) Transverse sections of
the ascending aorta from pups at P0.5

of indicated genotype were stained for
SMA (SMC marker) and CD31 (EC marker).
Lu, lumen. Scale bar: 100 um. (B-D)
Histograms represent medial thickness
(B), lumen area (C), and medial wall area
(D) of ascending aortas from A.n =4 to

Ein~~ Notch3~-

*kk
60 —— 5 mice. **P < 0.01; ***P < 0.001; ****p <
—— 0.0001 by 1-way ANOVA with Tukey's post
*k hoc test. (E) EdU was injected in pregnant
60 . dams at E18.5, and 8 hours later, embryos
of indicated genotypes were collected.
40 4 Cryosections of ascending aortas were
. stained for EdU, SMA, CD31, and nuclei
T (DAPI). Proliferative SMCs were marked
201 by EdU*SMA*DAPI- cells. Lu, lumen. Scale
bar: 25 um. (F) Histogram represents the
oLl . : : percentage of SMCs that are proliferative
&é 3 &3 in E. n = 3 mice. **P < 0.01 by 1-way ANO-
0\(}‘ < o\c'? VA with Tukey’s post hoc test. All data are
W ,..,‘9“ averages + SD.
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pared with those cells derived from control human iPSC-SMCs
(Figure 8, H and I). Similarly, immunostaining of WBS aortas
revealed JAG1 upregulation (Figure 8, J and K). Activation by JAG1
is critical in propagating NOTCH activation through developing
layers of the arterial media (28). To further evaluate JAG1-medi-
ated downstream signaling, haSMCs were seeded on recombinant
JAGl-coated culture dishes. Our results demonstrated that JAG1
stimulation induces HESI, HEYI, and JAGI transcript levels (Sup-
plemental Figure 11).

J Clin Invest. 2022;132(5):e142338 https://doi.org/10.1172/)C1142338
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Figure 7. NOTCHS3 regulates integrin 3, and elastin silencing promotes NICD3 binding to ITGB3. (A-C) haSMCs were treated with Scr or siNOTCH3 RNA,
and then cell lysates were analyzed. In A, histogram represents transcript levels of NOTCH3 and ITGB3 relative to 785 rRNA as assessed by gRT-PCR and
normalized to Scr treatment (n = 3). Western blots for NICD3, integrin 33, and GAPDH are shown in B, with densitometry of protein bands relative to GAP-
DH and normalized to Scrin € (n = 3). **P < 0.01; ***P < 0.001; ****P < 0.0001 vs. Scr by Student’s t test. (D) RNA isolated from aortas of WT or Notch3~/-
pups at P0.5 was analyzed by gRT-PCR. Histogram represents mRNA levels of Notch3 and Itgb3 relative to 185 rRNA and normalized to WT (n = 4 mice).
*P < 0.05, **P < 0.01vs. WT by Student’s t test. (E) Ascending aortic transverse sections of indicated genotypes at P0.5 stained for integrin f3, SMA, and
nuclei (DAPI) (n = 3 mice). Lu, lumen. Scale bar: 25 um. (F and G) Aortic lysates from mice of indicated genotype at P0.5 analyzed by Western blotting for
integrin B3 and GAPDH in F, with densitometry of protein bands relative to GAPDH and normalized to WT in G (n = 4-5 mice). *P < 0.05; ***P < 0.001;
****P < 0.0001 by 1-way ANOVA with Tukey's post hoc test. (H and 1) ChIP was performed with antibodies directed against NICD3 or IgM control in haSMCs
pretreated with Scr or siNOTCH3 in H and Scr or siELN in I. gPCR was then conducted with primers specific for regions upstream of the HEST1, HEY1, or
ITGB3 transcription start sites. Graph shows qPCR results calculated by the percentage input method (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001 by 1-way

ANOVA with Tukey’s post hoc test. All data are averages + SD.

Interestingly, in addition to SMCs, anti-JAG1 staining was
also increased in ECs of aortic sections of Eln”" mice at P0.5
(Figure 8G). We postulated that aortic ECs upregulate JAG1 in
response to altered ECM lacking elastin, largely derived from
SMCs. In large elastic vessels, such as the aorta and pulmonary
artery, elastin is predominately produced by SMCs (16, 48, 49),
and indeed, our qRT-PCR analysis of cultured cells indicated
300-fold enrichment of ELN transcripts in haSMCs compared
with haECs (Supplemental Figure 12A). haECs were cultured
on ECM derived from haSMCs pretreated with Scr or siELN
(Supplemental Figure 12B), and the data indicate that haECs

J Clin Invest. 2022;132(5):e142338 https://doi.org/10.1172/)C1142338

had increased levels of JAG1 transcript (but not other NOTCH
ligand transcripts) and protein in response to haSMC-derived
elastin-deficient ECM (Supplemental Figure 12, C-E). Collec-
tively, these results indicate that elastin deficiency stimulates
vascular cell JAG1 expression in cultured human cells and in
vivo in mice and humans.

Jagl deletion with Acta2-CreER™, but not Cdh5-Cre, attenu-
ates hypermuscularization and stenosis in elastin mutants. Given
theincreased JAGlinvascular cells, we next evaluated the effect
of Jagl-specific deletion in ECs and SMCs on the hypermus-
cularization and stenosis phenotype of Eln-mutant mice. For
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Figure 8. Elastin deficiency in SMCs induces JAG1 upregulation. (A-C) haSMCs were treated with Scr or siELN RNA, and then lysates were analyzed. In A,
histogram represents ELN and JAGT transcript levels relative to 785 rRNA as assessed by qRT-PCR and normalized to Scr treatment (n = 3). Western blots
for JAG1 and GAPDH are shown in B, with densitometry of protein bands relative to GAPDH and normalized to Scrin C (n = 3). *P < 0.05, ****P < 0.0001 vs.
Scr by Student’s t test. (D) Methylated DNA (5mC) ChIP from haSMCs pretreated with Scr or siELN. Histogram represents 5mC levels at promoter regions
of JAGT or THS2B (positive control) by gPCR and normalized to Scr (n = 4). **P < 0.01vs. Scr by Student’s t test. (E and F) Aortic lysates from WT or Eln~/-
mice at P0.5 were analyzed by Western blotting for JAG1 and GAPDH (for each blot, 2 aortas were pooled per genotype), with densitometry of JAG1 protein
bands relative to GAPDH and normalized to WT (n = 6 mice). **P < 0.01vs. WT by Student’s t test. (G) Transverse sections of ascending aorta from WT and
Eln”- mice at P0.5 were stained for JAG1, CD31, SMA, and nuclei (DAPI). n = 3 mice. Lu, lumen. Scale bar: 25 um. (H and 1) Protein levels of JAG1 and GAPDH
in iPSC-SMCs derived from control or WBS or SVAS patients as assessed by Western blotting with densitometric analysis of JAG1 normalized to GAPDH (n

_JCI et

=3). ***P < 0.001 by 1-way ANOVA with Tukey’s post hoc test. (J) Aortic sections from a WBS male patient (46 years old) and control male (53 years old)
stained for JAG1, SMA, and nuclei (P1). Scale bar: 50 um. (K) Column scatter plot represents fluorescence intensity of JAG1 and SMA immunostaining in
aortic sections of WBS patients (n = 5) normalized to age-matched controls (n = 11). Intensity was quantified on 8 to 10 microscopic fields per patient. **P

< 0.01vs. control by Student’s t test. All data are averages + SD.

investigation of EC JAG1, Jagl"f pups that were also carrying no
Cre or the constitutive Cdh5-Cre and either Eln** or Eln”- were
analyzed (Figure 9A). At PO.5, newborns were genotyped, and
the ascending aortas were sectioned transversely and stained
for CD31 and SMA. The increased medial thickness and area
and reduced lumen area in Jagl"/ pups of the Eln”" background
were not altered by the presence of Cdh5-Cre (Supplemental
Figure 13, A-C) despite very high (97% * 2%) deletion effi-
ciency of Jagl in ECs as assessed by qRT-PCR (Supplemental
Figure 13D), suggesting that EC JAG1 is not requisite for elastin
aortopathy. The aorta of Cdh5-Cre Jagl"f adults has previously
been shown to have some acellular gaps in the subendotheli-
al SMC layer (47). Consistent with this prior study, our results
demonstrated rare gaps in the inner layer of the tunica media

of Cdh5-Cre Jagl™f aortas at PO.5; however, at this same time
point, the aortas of Eln”~ Cdh5-Cre Jagl" mice had markedly
more acellular gaps, which were located throughout the media
(Supplemental Figure 14).

To determine the role of JAG1 in SMCs during elastin aortop-
athy, pups with conditional SMC-specific Jagl deletion on an Eln-
WT or -null background were generated (Figure 9B). We injected
pregnant dams at E10.5 with 1 mg of tamoxifen and concomitant
0.25 mg of progesterone to minimize the incidence of dystocia
(3), and a Jagl deletion efficiency of 68% * 14% was achieved in
aortic SMCs of newborn pups (Supplemental Figure 15). At PO.5,
transverse ascending aortic sections were stained for CD31 and
SMA (Figure 9B). In comparison with controls, the medial thick-
ness and wall area of Jagl"? Eln” newborns were increased and

J Clin Invest. 2022;132(5):e142338 https://doi.org/10.1172/)C1142338
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Figure 9. In elastin-mutant mice,
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deletion of Jag7in SMCs but not ECs
attenuates muscularization and
stenosis. (A and B) Jag?"f pups also
carrying no Cre, Cdh5-Cre, or Acta2-
CreER™ and either WT or null for Eln
were collected at PO.5. Transverse
sections of the ascending aorta from
indicated genotypes were stained
for SMA and CD31. In B, pregnant
dams were injected with tamoxifen
at E10.5. Lu, lumen. Scale bars:

Cdh5-Cre, Eln-
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the lumen area was decreased; these changes were prevented
in Acta2-CreER" Jagl"# Eln”~ pups (Figure 9, C-E). Thus, SMC
deletion of Jagl attenuates hypermuscularization and stenosis in
elastin mutants. Taken in their entirety, our findings identify the
NOTCH pathway and specifically, JAG1, NOTCH3, and y-secre-
tase as key molecular players in the pathogenesis of elastin aor-
topathy and also as promising therapeutic targets for the human
diseases SVAS and WBS (Figure 9F).
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Discussion

Obstructive arterial diseases, including atherosclerosis, resteno-
sis, pulmonary hypertension, and the genetic elastin arteriopathy
SVAS, are characterized by elastic fiber deficiency, degradation,
and/or fragmentation, and excess SMCs. The cellular and molecu-
lar mechanisms linking elastin defects and hypermuscularization
remain incompletely understood, which is a major obstacle to the
development of novel effective therapies. Indeed, major vascular
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surgery is the only therapy for the arterial obstruction of SVAS and
carries a sizable morbidity and mortality risk. There is a dire need
for intense investigation into mechanisms underlying the patho-
genesis of elastin aortopathy, as insights from these studies have
far-reaching impact on diverse vasculoproliferative diseases.

Although no prior investigations to our knowledge have eval-
uated the function of the NOTCH signaling pathway during elas-
tin insufficiency, NOTCH plays a myriad of critical roles during
vascular development. Indeed, mice bearing deletion of diverse
NOTCH pathway components have severe cardiovascular defects,
many of which result in embryonic lethality (22, 24, 50). Directly
relevant to the current study, the NOTCH pathway regulates arte-
rial SMC differentiation (25, 26, 28, 31). Furthermore, mutations
in NOTCH pathway components in humans cause cardiovascular
disorders, such as CADASIL, bicuspid aortic valve disease, and
Alagille syndrome (30, 51-53). On the other hand, inhibition of the
NOTCH pathway has been implicated as a potential therapeutic
strategy for select vascular diseases, including pulmonary hyper-
tension, tumor angiogenesis, and pathological vascular permea-
bility in diabetic retinopathy (29, 50, 54).

In the current study, we utilize a wide array of elastin deficien-
cy models —knockdown in cultured human vascular cells, genetic
and pharmacological inhibition in mouse models, and iPSC-SMCs
and aortic samples from nonsyndromic SVAS and /or WBS patients
— to demonstrate that the JAG1/NOTCH3/y-secretase pathway is
overactive in SMCs with elastin depletion (Figure 1). The catalytic
component of the enzyme y-secretase, PSEN1 or -2, cleaves type 1
transmembrane proteins, such as amyloid precursor protein and
NOTCH receptors (55), and interestingly, our data demonstrate
that elastin deficiency increases SMC levels of the y-secretase
complex, including PSEN1 and -2 (Figure 2). These results reveal
that perturbation of y-secretase in SMCs plays an important role
in elastinopathy.

Epigenetic modifications influence gene expression by alter-
ing chromatin accessibility and play a central role in regulating
SMC behavior during physiological and pathological conditions,
including several cardiovascular diseases (33). However, epigen-
etic regulation in the context of elastin deficiency is previously
unexplored, and our data implicate elastin deficiency in modu-
lating the epigenetic landscape of SMCs (Figure 3). Specifically,
loss of elastin reduces DNMT1, a pivotal epigenetic regulatory
enzyme that catalyzes DNA methylation to induce gene silencing
(41). Upon loss of elastin, levels of global as well as locus-specific
5mC mark at the promoters of PSEN1, -2, and JAGI are decreased.
These data shed light on molecular mechanisms underlying JAG1/
NOTCH3 pathway activation in elastin deficiency. The global
hypomethylation of elastin-deficient SMCs is intriguing. One
possible explanation is that extensive ECM remodeling associ-
ated with elastin deficiency might directly or indirectly regulate
DNMT1 levels and trigger genome-wide hypomethylation. In
addition to expression levels, the enzymatic activity of DNMTs
may be altered in Eln”~ SMCs. Future investigations into how elas-
tin deficiency regulates DNMT1 and the SMC epigenome promise
to reveal further insights into the biology of elastin and SMCs.

Pharmacological inhibition of the y-secretase complex in Eln”"
mice reduces the aortic hypermuscular and stenosis phenotype
(Figure 4). As described previously (15, 21), the aortas of Eln*/"
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mice display thinner and additional elastic lamellar units with
excess SMC layers (Supplemental Figures 6 and 7). Importantly,
from a clinical standpoint, our results demonstrate that postna-
tal treatment with a y-secretase inhibitor substantially reverses
hypermuscularization in Eln”- mice (Supplemental Figure 7). In
addition, genetic deletion of Notch3 significantly reduces aortic
stenosis in Eln”7- mice and hypermuscularization in both Eln*~and
Eln”~ mice (Figures 5 and 6).

Elastin is a critical component of diverse organ systems and is
indispensable for lung development. Eln”-mice have dilated distal
air sacs in the lung and die in the immediate postnatal period (20,
45, 46). NOTCH3 inhibition in Eln”" mice neither attenuates lung
developmental defects nor prolongs survival (Supplemental Fig-
ure 10), indicating that, not surprisingly, inhibiting the NOTCH3
pathway is insufficient to entirely overcome the massive burden
of total elastin loss. In contrast to Eln-null mice, Eln*~ mice dis-
play normal lung development (56). Thus, targeting the NOTCH3
pathway may be a promising therapeutic strategy for human aor-
tic elastinopathies (i.e., nonsyndromic SVAS and WBS), which are
caused by ELN haploinsufficiency and generally lack lung paren-
chymal disease. Because pathological complications of SVAS
manifest from infancy onward and often worsen with time (some-
times resulting in sudden death), therapeutic intervention should
be considered soon after diagnosis (57, 58).

Elastin is a potent regulator of SMC behavior. Tropoelastin
inhibits cultured Eln”- aortic SMC proliferation and migration,
and an elastin matrix sheath coating of metal stents reduces bal-
loon-overexpansion-induced neointimal SMC accumulation and
arterial obstruction in porcine coronary arteries (7). Conversely,
Eln”" aortas accumulate excess SMCs in the subendothelial region
of the vessel wall (3, 20), but mechanisms underlying this hypermus-
cularization are incompletely understood. Herein, our findings sug-
gest that the NOTCH3 pathway regulates SMC proliferation in Eln”"
aortas, as compound Notch3”~ Eln”- mutants display reduced aortic
SMC proliferation relative to Eln”- and comparable proliferation to
WT mice (Figure 6). It has been previously shown that NOTCH2 and
NOTCH3 have opposing effects on SMCs; NOTCH2 inhibits pro-
liferation by reducing MAP kinase activity, whereas NOTCH3 pro-
motes cell survival and proliferation via MAP kinase induction (38).
In addition, NOTCH3 induces expression of prosurvival genes and
prevents apoptosis, while NOTCH2 does not alter apoptosis (38). In
agreement with these studies, herein we find that loss of elastin in
SMCs upregulates MAP kinase activity (Supplemental Figure 8, A
and B) and does not alter NICD2 levels (Supplemental Figure 2) but
enhances NICD3 (Figure 1). Consistent with prior studies (38), our
data indicate that expression levels of the prosurvival gene BIRC5
and proliferative gene E2F1 are reduced by NOTCHS3 silencing (Sup-
plemental Figure 8C). Thus, the cumulative effect of elastin defi-
ciency on levels of NOTCH3 (increased) and NOTCH?2 (unchanged)
may be critical in promoting excessive SMC proliferation and poten-
tially in altering cell survival. Additionally, previous investigations of
partial elastin deficiency in which Eln”~ mice express human elastin
showed that impaired outward growth contributes to aortic stenosis
(44). Our data suggest that reduced outward growth has a small con-
tribution to the development of stenosis in Eln”~ model and Notch3
deletion in the elastin-null background improves the circumferential
growth (Supplemental Figure 9).
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We previously reported that integrin B3 expression, activation,
and signaling are upregulated in SMCs of elastin-deficient mice
and inhibition of integrin B3 attenuates aortic hypermusculariza-
tion and stenosis in these mice (3). Although integrin 3 is widely
studied, relatively little is known about regulation of Itgh3 tran-
scription. Herein, our initial studies in this area confirmed prior
work (47) that knockdown of NOTCH3 in haSMCs attenuates inte-
grin B3 transcript and protein levels, and we extended this work
by showing similar effects in the aorta of Notch3-null mice (Figure
7). Furthermore, our data indicate that in Eln-null mice, Notch3
deletion attenuates integrin B3 expression. Most interestingly,
ChIP studies demonstrate that NICD3 binds the Itgh3 promoter in
haSMCs, and elastin deficiency enhances this interaction.

In addition to the role of the NOTCH3 in elastin aortopathy, we
focused on the ligand JAG1, which has beenimplicated as an import-
ant player in arterial wall morphogenesis (25-28, 47). Our results
indicate increased expression of JAGI in aortic SMCs with elastin
deficiency in cell culture, in mice, and in WBS patients as well as in
SVAS and WBS iPSC-SMCs (Figure 8). Mechanistically, elastin defi-
ciency mediates hypomethylation of the JAGI promoter, resulting in
gene activation (Figure 8D). Culturing SMCs on JAG1-coated dishes
results in robust induction of JAG1 and downstream effectors HES1
and HEY1 (Supplemental Figure 11). These results suggest that
exposure to JAG1 can mediate rapid activation of the JAG1/NOTCH
pathway positive feed-forward loop in haSMCs (27). Immunohisto-
chemical analysis also revealed enhanced expression of JAG1 in the
EClayer of the aorta in Eln”- as compared with WT mice. The initial
study describing Eln”" mice reported a lack of evidence for altered
ECs (20). More recently, Wagenseil and colleagues demonstrated
that the hypermuscular ascending aorta of Tagln-Cre EIn"# mice
lacks intact elastic fibers in the media and has a disrupted internal
elastic lamellae (that separates ECs from SMCs), whereas EC-spe-
cific deletion of Eln does not alter aortic histology (16). Consistent
with these results, we find that ELN transcript levels are highly
enriched (>300-fold) in haSMCs as compared with haECs in cul-
ture, and interestingly, ECM produced by elastin-silenced SMCs is
sufficient to induce EC JAG1 expression (Supplemental Figure 12).
Collectively, our data indicate that JAGI levels are induced in both
ECs and SMCs during elastin deficiency.

Prior studies have demonstrated a key role of EC JAGI in aortic
SMC development and /or maintenance (26, 47). Cdh5-Cre Jagl"/ mice
are viable, with sporadic acellular gaps in the inner layer of the tunica
media (47). Our results indicate that Eln7~ Cdh5-Cre Jagl"# pups at
PO0.5 have numerous acellular gaps throughout the aortic tunica media
(Supplemental Figure 14); however, this EC loss does not attenuate the
stenotic phenotype (Figure 9 and Supplemental Figure 13). Finally, in
contrast to Cdh5-Cre-induced EC deletion, SMC-specific deletion of
Jagl with Acta2-CreER™ attenuates aortic hypermuscularization and
stenosis in Eln” neonates (Figure 9). It has previously been shown that
Jagl deletion with the constitutive Tagln-Cre results in patent ductus
arteriosus, defective descending aorta SMC differentiation, and early
postnatal lethality but does not alter ascending aorta morphogenesis
(25). Similarly, we do not observe phenotypic changes in the ascending
aorta with SMC-specific deletion of Jagl (utilizing Acta2-CreER™) in
elastin-WT mice; however, in the Eln”- background, there is a signifi-
cant reduction in aortic hypermuscularization. These results highlight
the critical role of JAG1 in SMC expansion during elastin aortopathy.
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Taken together, our results show that elastin deficiency in
SMCs results in reduction of DNMT1 levels and DNA methylation,
which induces expression of key NOTCH pathway genes (JAGI,
PSENI, and PSEN2) and triggers NOTCH3 activation. Elastin-defi-
cient SMCs display increased levels of (a) the NOTCH ligand JAGI;
(b) y-secretase complex, including PSEN1 and -2; (c) NICD3; (d)
NOTCH pathway downstream effectors, including integrin p3 and
the HES/HEY family of transcription factors; and (e) ERK activation,
which culminate in excess SMC proliferation and accumulation and
stenosis of the ascending aorta (Figure 9F). Additionally, NOTCH3
regulates the prosurvival gene BIRC5 and proliferative factor E2F1,
which may provide a survival advantage to elastin-deficient SMCs.
Our findings reveal critical mechanistic insights into arterial hyper-
muscularization during elastin insufficiency and identify the JAG1/
NOTCH3/y-secretase pathway as a key mediator of elastin aortop-
athy. These studies suggest that inhibiting specific components of
this pathway in SMCs is a promising therapeutic strategy for human
diseases SVAS and WBS and potentially other obstructive arterial
diseases associated with elastin insufficiency and excess SMCs.

Methods
Further information can be found in Supplemental Methods.

Animal studies and treatments. C57BL/6 WT, B6 129S1-Notch3-
tm1Grid/] (Notch3*; ref. 59), and Jagl™?" (Jagl""; ref. 60) mice
were from The Jackson Laboratory. Eln™®" (Eln*/~; ref. 20); Tg(Cdh5-
cre)7Mlia (Cdh5-Cre; ref. 61); and Tg(Acta2-cre/ERT2)51Pcn (Acta2-
CreER™; ref. 62) mice have been previously described. All mice were
maintained on the C57BL/6 background. Mice were bred and embry-
os or pups were harvested at different ages, with E0.5 considered the
time of vaginal plug. All agents were injected intraperitoneally. EQU
(Invitrogen, 10 mg/kg body weight) was administered to pregnant
dams on E18.5 and embryos were collected 8 hours later. Tamoxifen
(Sigma-Aldrich, 1 mg) with concomitant progesterone (Sigma-Aldrich,
0.25 mg) was administered on E10.5, and pups were analyzed imme-
diately after birth at PO.5. Pregnant dams were injected with 1 mg
DAPT (Calbiochem) or vehicle (4% DMSO in corn oil) on E14.5 and
E15.5, and pups were collected at PO.5. For postnatal analysis, WT or
Eln*~ mice were injected daily with DAPT (1.5 mg/kg body weight)
from P2.5 to P5.5, and pups were collected at P7.5.

Immunohistochemistry. After euthanasia, embryos or pups were
fixed in 4% paraformaldehyde for 2 hours, transferred to 30% sucrose
in PBS, embedded in OCT compound (Tissue-Tek), frozen, and stored
at-80°C. Transverse serial cryosections of ascending aortas of 10 pm
thickness were cut starting immediately caudal to the aortic arch and
continuing for 200 pm inferiorly, and sections near the aortic arch
were utilized for analyses (3-4 sections per mouse). Cryosections
were incubated with blocking solution (5% goat serum, 0.1% Triton
X-100 in PBS) and then with primary antibodies diluted in blocking
solution overnight at 4°C. On the next day, sections were washed with
0.5% Tween 20 in PBS (PBS-T) and incubated with secondary anti-
bodies diluted in blocking solution for 1 hour. Primary antibodies used
were rat anti-CD31 (BD Pharmigen, 553370; 1:100), rabbit anti-JAG1
(Abcam, ab7771; 1:100), rabbit anti-PSEN1 (Cell Signaling Technolo-
gy, 5643; 1:100), rabbit anti-PSEN2 (Cell Signaling Technology, 9979;
1:100), rabbit anti-integrin B3 (Abcam, ab210515; 1:100), anti-HES1
(Cell Signaling Technology, 11988; 1:1000), and directly conjugated
FITC or Cy3 anti-SMA (Sigma-Aldrich, C6198; 1:300). Secondary
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antibodies were conjugated to Alexa Fluor 488, 555, or 647 (Molec-
ular Probes) or Dylight 555 or 649 (Jackson ImmunoResearch) fluo-
rophores and used at 1:500 dilution. DAPI (Sigma-Aldrich, D9542;
1:500) was used for nuclear staining. CF633 hydrazide was used for
elastin staining (Sigma-Aldrich, SCJ4600037; 1:1000). A Click-iT
EdU Alexa Fluor 594 Imaging kit (Invitrogen) was used to assess pro-
liferation. For detecting DNA methylation, cryosections were incubat-
ed in 2N HCl for 45 minutes at 37°C and washed with 0.1 M boric acid
prior to incubation in blocking solution for 1 hour. Sections were then
stained for 5mC (Cell Signaling Technology, 28692; 1:100) overnight
at 4°C followed by secondary antibody staining as described above.
The percentages of medial SMCs with the 5SmC mark were scored.

Aortas from patients with WBS (1 = 5; refs. 3, 9, 63, 64) and human
controls (n=11) (as described in Supplemental Table 1) were fixed in for-
malin, paraffin embedded, and sectioned. Paraffin was removed from
sections of human aortas with Histo-Clear (National Diagnostics), and
after ethanol washes, sections were rehydrated into water. Rehydrated
sections were incubated in boiling antigen retrieval buffer (Dako) for 20
minutes. Sections were allowed to cool at room temperature for 1 hour
and then rinsed twice in PBS-T and blocked for 1 hour in 5% goat serum,
0.5% Triton X-100 in PBS. Slides were incubated overnight with anti-
JAG1 antibody conjugated to Alexa Fluor 647 (Santa Cruz Biotechnol-
ogy, sc390177; 1:50) at 4°C. The next day, sections were washed with
PBS-T and incubated for 1 hour with FITC directly conjugated anti-SMA
antibody (Sigma-Aldrich, F3777; 1:500). Propidium iodide (Sigma-
Aldrich, P4170; 1:500) was used for nuclear staining.

Quantification of staining intensity and parameters of aortic mor-
phology. Quantifications used Image] software (NIH). Fluorescence
intensity of immunostaining for JAG1 and SMA on formalin-fixed, par-
affin-embedded human aortic sections (10 pm thick) was measured
from 5 WBS patients and 11 controls (6-8 fields per sample). Measure-
ments from aortas of WBS patients were normalized to that of age-
matched controls as detailed in Supplemental Table 1. The number of
SMC nuclei per high-power field did not appear to differ substantively
between WBS and control groups stratified by age (Supplemental Fig-
ure 16). The medial wall thickness from transverse sections of murine
aorta were calculated by measuring the distance between the inner
aspect of the inner and the outer aspect of the outer SMA* medial lay-
ers (8 measurements per section and 3-4 sections per mouse). Medial
and lumen areas were calculated by measuring the area of SMA stain-
ing and the area interior to CD31 staining, respectively (3-4 sections
per mouse). The external diameter was measured on aortic transverse
sections as the length of a line having endpoints at the outer aspects
of the outermost SMA* medial layer and passing through the center
of the lumen (measurements of 2 perpendicular lines per section and
3-4 sections per mouse). All morphometric analyses of the aorta were
done in a blinded fashion. One potential limitation is that because
perfusion fixation was not performed in vivo, lumen loss measured on
sections could be an artifact of postmortem vessel constriction.

Patient-derived iPSC-SMC generation. Human undifferentiated
iPSCs reprogrammed from skin fibroblasts of a WBS patient (WS1-iP-
SC line C; refs. 65, 66), an ELN-mutant nonsyndromic SVAS patient
(ELNTI; ref. 66), and a control human (CT2; ref. 66) were used to gener-
ate iPSC-SMC progenitor cell lines via an embryoid body stage (65, 66).
The age and sex of iPSC donors are provided in Supplemental Table 2.
As described previously (67), the SMC progenitor cells were expanded in
Matrigel-coated 6-well plates in smooth muscle growth medium (Medi-
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um 231, growth supplement) (Life Technologies). Cells were passaged
when they reached 80% to 90% confluence. To induce differentiation,
the iPSC-SMC progenitors were trypsinized and plated in smooth mus-
cle differentiation medium (Medium 231, differentiation supplement)
(Life Technologies) on 0.1% gelatin-coated 6-well plates for 6 days. RNA
was isolated before and after SMC differentiation and utilized for qRT-
PCR analysis of SMC markers. Protein lysates from the differentiated
iPSC-SMCs were collected and utilized for Western blotting.

Cell culture and siRNA-mediated knockdown. haSMCs (Lonza) or
haECs (ScienCell) were cultured up to passage 6 in M199 medium sup-
plemented with 10% FBS, EGF, and FGF (PromoCell) or complete EC
medium (ScienCell), respectively. For gene silencing, siRNA was trans-
fected as described previously (68). Briefly, haSMCs were transfected
with Lipofectamine 2000 (Life Technologies) containing siRNA target-
ed against ELN (Dharmacon, 50 nM) or NOTCH3 (Origene, 50 nM), or
Scr RNA for 6 hours. Cells were then washed in M199 and cultured for
72 hours prior to collection for qRT-PCR or Western blot analysis.

qRT-PCR. For cultured haSMCs or haECs, RNA was isolated with
the RNeasy Plus Kit (Life Technologies). For newborn mice, PBS was
perfused through the left ventricle, the entire aorta from the root to
the iliac arteries was dissected, and aortic RNA was extracted with
mechanical homogenization in TRIzol (Invitrogen) and PureLink
RNA columns (Invitrogen). The isolated RNA was reverse transcribed
with the iScript cDNA Synthesis Kit (Bio-Rad), and qRT-PCR was per-
formed on a CFX96 Real-Time System (Bio-Rad) using SsoFast Eva-
Green supermix (Bio-Rad) and primer pairs as per Supplemental Table
3. Normalized mRNA levels are relative to 18S rRNA for cultured cells
and to 18S rRNA or Gapdh for murine aortas.

Western blot. Lysates of cultured cells were prepared by solubiliz-
ing cells in 1.5x Laemmli sample buffer at 95°C for 10 minutes. Lysates
from aortas were prepared by pooling aortas from 2 pups for each gen-
otype per sample and mechanically lysing in 1.5x Laemmli sample buf-
fer on ice with a glass pestle tissue homogenizer (Pyrex). Aortic lysates
were then centrifuged at 16,000g and 4°C for 2 minutes, supernatants
were collected, and protein concentration was determined by BCA assay
(Thermo Fisher Scientific). Protein samples from cultured cells or aortas
were resolved by 7%-15% SDS-PAGE, transferred to Immobilon PVDF
membranes (Millipore), blocked with 5% nonfat dry milk or bovine
serum albumin, washed in TBS-T, and probed with primary antibodies
overnight at 4°C. Membranes were incubated with HRP-conjugated sec-
ondary antibodies (Dako), washed in TBS-T, developed with Supersignal
West Pico Maximum Sensitivity Substrate (Pierce), and analyzed with the
G:BOX imaging system (Syngene). Primary antibodies used for West-
ern blot analysis were rabbit anti-NOTCH3 (Cell Signaling Technology,
2889; 1:500), rabbit anti-NOTCH2 (Cell Signaling Technology, 5732;
1:500), rabbit anti-DNMTT1 (Cell Signaling Technology, 5032; 1:1000),
rabbit anti-JAG1 (Cell Signaling Technology, 70109; 1:1000), rabbit anti-
HES]1 (Cell Signaling Technology, 11988; 1:1000), rabbit anti-NCT (Cell
Signaling Technology, 5665; 1:1000), rabbit anti-PSEN1 (Cell Signaling
Technology, 5643; 1:1000), rabbit anti-PSEN2 (Cell Signaling Technol-
ogy, 9979; 1:1000), rabbit anti-PEN2 (Cell Signaling Technology, 8598;
1:1000), rabbit anti-integrin B3 (Abcam, 197662; 1:1000), rabbit anti-
p-ERK (Cell Signaling Technology, 9101; 1:1000), rabbit anti-ERK (Cell
Signaling Technology, 9102;1:1000), rabbit anti-GAPDH (Cell Signaling
Technology, 2218; 1:2500), rabbit anti-human ELN (generated against
human aortic o elastin; 1:500), and rabbit anti-mouse ELN (raised against
exons 6-17 of recombinant mouse tropoelastin; 1:500) (14, 69).
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5mC ChIP. Methylated-DNA immunoprecipitation (MeDIP) was
carried out using a previously published protocol (70). Briefly, enrich-
ment of methylated DNA was performed using the MeDIP kit (Diageno-
de, C02010021) as per the manufacturer’s instructions. A total of 1 pg of
genomic DNA was isolated from haSMCs pretreated with Scr or SIEELN
and sheared to 200 to 500 bp using the Covaris sonicator. Methylated
DNA was captured by incubation with anti-5mC monoclonal antibody
coupled to magnetic beads overnight at 4°C. The beads were washed
and methylated DNA was eluted. The recovered DNA and input frac-
tions were analyzed by qPCR to assess enrichment of the methylated
DNA at the PSENI, PSEN2, and JAGI gene promoters.

The following forward and reverse primer pairs spanning canonical
CSL binding motifs upstream of the transcription start site were used:
PSENI1 5'-GTTCTCCCCGCAATCGTTTC-3" and 5'-CACCGTTGTC-
GTCATTTCCG; PSEN2 5'-CCCCAGTGGACGAGGGAAC-3' and 5'-
CTCCAGCGGAGTTTACGCA-3'; JAGI 5-GTAGAAGAACCAGGG-
CCCCA-3' and 5'- AGCAACGATCCCTTCCAAGT-3". The location of
the PCR amplification product with PSENI primers is chr14:73,136,336-
73,136,451, with PSEN2 primers is chr1:226,870,512-226,870,633, and
with JAGI primers is chr20:10,673,792-10,674,673. All reactions were
performed in at least triplicate from 4 independent experiments, and
data were calculated by the percentage input method. The primer pairs
for the THS2B promoter (positive control with constitutive 5mC mark)
were included in the MeDIP kit.

Imaging. Fluorescence images of aortic sections were acquired
with a confocal microscope (PerkinElmer UltraView Vox Spinning
Disc). Brightfield images of H&E staining were captured using
inverted microscopes (Eclipse 80i and Eclipse TS100, Nikon). Voloc-
ity software (PerkinElmer) and Adobe Photoshop were used to pro-
cess images.

Data and materials availability. Upon reasonable request,
iPSC-derived SMC progenitor lines are available from JE and SM and
anti-elastin antibodies are available from RM. All other materials
reported in this manuscript are commercially available. All the data
are available in the main text and supplementary information.

Statistics. A 2-tailed Student’s ¢ test and multifactor ANOVA with
Tukey’s post hoc test were used to analyze the data after testing for nor-
mality and equal variance using GraphPad Prism (version 6.03). Statistical
significance threshold was set at a P value of less than 0.05. All data are
presented as mean + SD.

Study approval. All procedures involving human aorta tissue iso-
lated at the time of surgery or autopsy were approved by the Institu-
tional Review Boards of Yale University (no. 2000020632), Stanford
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University (no. 12726), University of Pittsburgh (no. PRO10020125),
and the New England Organ Bank and complied with all relevant
ethical regulations. For patient iPSC generation, all procedures were
approved by the Institutional Review Board of the Hospital for Sick
Children in Toronto, Canada (no. 1000011232) and the Stem Cell
Oversight Committee of the Canadian Institutes of Health Research.
All participants, parents or legal guardians provided written informed
consent to participate in the study. All mouse experiments were
approved by the Institutional Animal Care and Use Committee at Yale
University and in accordance with the NIH Guide for the Care and Use
of Laboratory Animals (National Academies Press, 2011).
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