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Introduction
This Review, inspired by the 100th anniversary of insulin’s discov-
ery, focuses on severe insulin resistance syndromes, which constitute 
only the tip of the iceberg of a wide variety of clinical disorders associ-
ated with various degrees of insulin resistance. Historically, the ability 
to measure insulin in the circulation in the 1960s led to the realization 
that many subjects with diabetes and/or impaired glucose tolerance 
had high insulin levels, which was interpreted as a sign of resistance to 
the actions of insulin. Initial research efforts focused on syndromes of 
severe insulin resistance, to maximize impact, and also on the search 
for circulating antibodies against insulin or its receptor. It was soon 
realized that such receptors were responsible for severe insulin resis-
tance in a minority of subjects, and thus the search continued at the 
molecular level with a focus on receptor and post-receptor defects.

Insulin receptor and signaling
Insulin exerts its biological effects by binding to the insulin receptor 
(INSR). Since the homology between INSR and insulin-like growth 
factor-1 (IGF-1) receptor is high, insulin and IGF may bind and acti-
vate either receptor or the hybrid INSR/IGF-1 receptor (1–3). INSR is 
a cell surface heterotetrameric glycoprotein that belongs to the recep-
tor tyrosine kinase superfamily and is composed of two extracellular 
α subunits and two transmembrane β subunits linked by disulfide 
bridges. INSR has two isoforms, A and B, generated by alternate splic-
ing of the mRNA. Isoform B also includes exon 11, which encodes a 

12–amino acid sequence in the carboxy terminal and associates with 
more intense insulin binding. Conversely, isoform A, which excludes 
exon 11, demonstrates similar affinity for insulin and IGF-2 (1, 2). Iso-
form A is expressed highly during fetal development and in the brain, 
while isoform B is expressed in the liver. The two isoforms associate 
with minor downstream signaling differences (4). Ligand binding 
activates downstream phosphorylation events to ultimately recruit 
and activate receptor substrates, including the key insulin receptor 
substrate (IRS) and Shc proteins. The PI3K/AKT and the Ras/MAPK 
pathway are subsequently activated, controlling many aspects of 
metabolism and growth, such as cell cycle and survival functions, gly-
cogen synthesis, and lipid synthesis (ref. 1 and Figure 1).

Abnormalities at any point of the insulin signaling pathway 
cascade could contribute to the pathogenesis of severe insulin 
resistance, though molecules upstream in the cascade have, the-
oretically, a more pronounced effect. Severe insulin resistance 
could also result from suboptimal insulin availability due to insulin 
molecule mutations that render insulin bioinactive or suboptimal-
ly active, albeit still immunoreactive, or from enzymatic degrada-
tion in the subcutaneous space of administered insulin.

Definition
Insulin resistance is one of the most prominent metabolic disor-
ders, in which insulin action is impaired in target tissues. It is tra-
ditionally defined as suboptimal action of a given circulating con-
centration of insulin to control carbohydrate metabolism (5). Since 
insulin has various functions in humans, compensatory hyperin-
sulinemia that may result from an inability to control carbohydrate 
metabolism usually has adverse physiological outcomes in other 
organs and systems. Insulin resistance thus constitutes a common 
underlying pathophysiological condition for many clinical dis-
orders, usually grouped under the term “metabolic syndrome.” 

Severe insulin resistance syndromes are a heterogeneous group of rare disorders characterized by profound insulin resistance, 
substantial metabolic abnormalities, and a variety of clinical manifestations and complications. The etiology of these 
syndromes may be hereditary or acquired, due to defects in insulin potency and action, cellular responsiveness to insulin, 
and/or aberrations in adipose tissue function or development. Over the past decades, advances in medical technology, 
particularly in genomic technologies and genetic analyses, have provided insights into the underlying pathophysiological 
pathways and facilitated the more precise identification of several of these conditions. However, the exact cellular and 
molecular mechanisms of insulin resistance have not yet been fully elucidated for all syndromes. Moreover, in clinical practice, 
many of the syndromes are often misdiagnosed or underdiagnosed. The majority of these disorders associate with an 
increased risk of severe complications and mortality; thus, early identification and personalized clinical management are of 
the essence. This Review aims to categorize severe insulin resistance syndromes by disease process, including insulin receptor 
defects, signaling defects, and lipodystrophies. We also highlight several complex syndromes and emphasize the need to 
identify patients, investigate underlying disease mechanisms, and develop specific treatment regimens.
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clinical features observed in some of the severe insulin resistance 
syndromes include dyslipidemia, namely hypertriglyceridemia; 
nonalcoholic fatty liver disease; adipose tissue loss; abnormal adi-
pose topography; abnormal musculature; acromegaloid features; 
and other growth disorders (Figure 2).

Diagnostic strategies
In order to determine the presence and severity of insulin resis-
tance, several tests have been proposed. Apart from fasting glu-
cose levels, and the mixed meal and glucose tolerance tests, fast-
ing insulin levels above 50–70 μU/mL or levels that exceed 350 
μU/mL after an oral glucose tolerance test may indicate severe 
insulin resistance (9). However, circulating insulin concentration 
is dynamically variable, changing over time during the evolution 
of diabetes. In the research setting, other techniques to assess 
insulin resistance include the euglycemic clamp, considered the 
gold standard, and the simpler intravenous glucose tolerance 
test, which captures up to 90% of the variability as assessed by 
the clamp technique (10, 11). In large-population epidemiology 
studies, an even simpler test, the homeostasis model assessment 
of insulin resistance index or the quantitative insulin sensitivity 
check index, can, despite limitations, evaluate insulin resistance 
and/or pancreatic responses. These tests may capture insulin 
resistance variability (up to 80% as calculated by the clamp tech-
nique) adequate for large epidemiology studies (10, 12). Impor-
tantly, no universally accepted diagnostic biochemical criteria of 
severe insulin resistance in the clinical setting exist.

Generally, when evaluating patients with severe phenotypes 
of insulin resistance, clinicians should measure and interpret fast-
ing insulin and C-peptide in the context of circulating glucose lev-
els. Marked hyperinsulinemia should prompt further evaluation 
to detect degraded insulin in subcutaneous tissue, the presence of 
insulin or INSR mutations, and the presence of circulating anti-IN-

Severe insulin resistance syndromes are a group of rare syndromes 
characterized by profound insulin resistance. The prevalence of 
severe insulin resistance syndromes is not well documented but 
may reflect 0.1%–0.5% of the patients attending hospital-based 
diabetes clinics (6). Severe insulin resistance may be defined as a 
severely diminished response to insulin’s biological effects, and is 
characterized by substantial hyperinsulinemia and impaired glu-
cose response to endogenous and exogenous insulin. Severe insu-
lin resistance may present with abnormal glucose homeostasis, 
requiring large amounts of exogenous insulin to maintain eugly-
cemia. Notably, patients may also show hypoglycemia (especially 
in disorders such as Rabson-Mendenhall syndrome), which may 
precede hyperglycemia (6, 7).

Clinical features
Severe insulin resistance syndromes show variable metabolic traits 
and diverse clinical manifestations. Identifying shared features may 
increase clinical awareness when considering cases of insulin resis-
tance. Along with skin tags, acanthosis nigricans, a velvety hyper-
pigmented thickening of the skin, is an early sign and a common 
cutaneous manifestation of severe insulin resistance. The precise 
pathogenesis is not fully understood, but evidence suggests that 
high circulating insulin levels cross-react with the IGF-1 receptor on 
keratinocytes and dermal fibroblasts (8). Among women, ovarian 
dysfunction and hyperandrogenism are also common features. Hir-
sutism, polycystic ovaries, menstrual irregularities, or oligomenor-
rhea usually constitute the primary clinical manifestation in affect-
ed females. Hyperinsulinemia, in particular the synergy of insulin 
and gonadotropins, is implicated in the pathogenesis of polycystic 
ovary syndrome and ovarian hyperandrogenism (6). HAIR-AN — 
hyperandrogenism, insulin resistance, and acanthosis nigricans — 
is now considered a subphenotype of the polycystic ovary syndrome 
and a generic description of severe insulin resistance (6). Other 

Figure 1. Insulin and IGF-1 signaling pathways intersect. Insulin receptor and IGF-1 receptor activation initiates a cascade of phosphorylation events. At 
the time of ligand binding the receptors change conformation and autophosphorylate, leading to the recruitment and phosphorylation of receptor sub-
strates, such as IRS and Shc proteins. Shc activates the Ras/MAPK pathway, whereas IRS protein recruits PI3K to activate the PI3K/AKT pathway, leading 
to the generation of the second messenger PIP3. Membrane-bound PIP3 then recruits and activates PDK1, which phosphorylates and activates AKT and 
atypical PKCs (aPKC). AKT mediates most of insulin’s metabolic effects and regulates the cell cycle and cell survival. The Shc/Grb2/SOS/Ras/Raf/MAPK 
pathway controls cellular proliferation and gene transcription. 
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mate the leptin levels. Clinical characteris-
tics play a crucial role in the diagnosis; for 
instance, in congenital generalized lipodys-
trophy (CGL), the phenotype is so striking 
that diagnosis can be made at manifesta-
tion and/or even at birth.

On the other hand, genetic advances 
have had a tremendous impact on con-
firmation of diagnoses for most genetic 
forms of severe insulin resistance. Nowa-
days, many facilities provide genetic test-
ing services. However, because of the rar-
ity of these syndromes, laboratory tests, 
such as those that identify anti–insulin 
receptor antibodies (type B insulin resis-
tance syndrome), are generally unavail-
able and may require collaborating with 
research laboratories.

Beyond anti–insulin receptor anti-
bodies (13), the genetic causes of severe 
insulin resistance include primary insulin 
signaling defects due to mutations and 
defects in the INSR gene (1), and impaired 
adipocyte development, apoptosis, or 
function (14). Advances in genetics have 
driven progress in the field by allowing 
us to identify several genes responsible 
for severe insulin resistance and provid-
ing an accurate diagnosis of the related 

syndrome(s). Despite the rarity of severe insulin resistance syn-
dromes, studying these diseases can provide general insights 
into the pathophysiological mechanisms of insulin resistance. 
Notably, examination of the underlying pathophysiological 
mechanisms of lipodystrophies has offered essential informa-

SR antibodies, and to clinically identify characteristics associated 
with severe insulin resistance and various lipodystrophic disorders.

Moreover, in patients with complete lipodystrophy and poten-
tial leptin deficiency, determining leptin levels is paramount prior 
to initiating treatment. A specific laboratory test is required to esti-

Figure 2. Patients with congenital generalized, 
familial partial, and acquired lipodystrophies 
display selective and variable adipose tissue 
loss. (A) CGL1 and CGL2 may present with a 
generalized lack of fat, extreme muscularity, 
acanthosis nigricans in the groin, abdomen, or 
axillae, and acromegaloid features. (B) Familial 
partial lipodystrophy such as the Dunnigan vari-
ety may manifest as loss of fat from the trunk 
and upper and lower extremities and excess fat 
accumulation in the face and neck. (C) Other 
familial partial lipodystrophies are characterized 
by loss of fat from the face, neck, arms, and legs 
and excess fat accumulation in the trunk. (D) 
Similarly, acquired lipodystrophy associated with 
HIV infection may display as loss of fat from the 
face, arms, and legs; in certain cases, increased 
abdominal fat; and a “buffalo hump.” (E) 
Acquired partial lipodystrophy is characterized 
by loss of subcutaneous fat from the face, neck, 
arms, thorax, and abdomen and simultaneously 
excessive amounts of subcutaneous fat in the 
legs. (F) Acquired generalized lipodystrophy is 
characterized by loss of fat from large areas of 
the body, particularly the face, arms, and legs. 
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actions (27). Systemic inflammation caused by proinflammato-
ry cytokines such as TNF-α and IL-6 is directly correlated to the 
amount of adipose tissue (28). In these phenotypically severe 
insulin-resistant syndromes, there is chronic exposure to proin-
flammatory mediators, which may interrupt insulin signaling in 
the β cells of pancreatic islets and also induce insulin resistance 
in both liver and adipocytes (28, 29).

Understanding the regulation of adipose tissue biology in lipo-
dystrophy has implications for understanding the pathogenesis of 
common disease conditions and provides the opportunity to iden-
tify metabolic pathways responsible for insulin resistance.

This Review focuses on syndromes of severe insulin resistance. 
The following sections discuss severe insulin resistance syndromes 
related to INSR signaling defects (as seen in Donohue syndrome, 
Rabson-Mendenhall syndrome, and type A and B syndromes) and 
hereditary and acquired lipodystrophies, as well as rare conditions 
that demonstrate features of profound insulin resistance (Supple-
mental Table 1; supplemental material available online with this 
article; https://doi.org/10.1172/JCI142245DS1).

Defects of insulin signaling

Insulin receptor defects
Mutations related to the α subunit of INSR may decrease the num-
ber of available mature INSRs or the affinity of INSR for insulin 
binding. Furthermore, mutations related to β subunit tyrosine 
kinase domain may impair autophosphorylation, affecting the 
activation of downstream signaling cascades (30, 31). Genetic 
causes of insulin resistance from mutations in the INSR gene have 
been recognized in rare recessively inherited disorders including 
Donohue syndrome, Rabson-Mendenhall syndrome, and type A 
insulin resistance syndrome (1).

Donohue syndrome. Donohue syndrome (leprechaunism) is an 
extremely rare autosomal recessive disease caused by mutations 
in the INSR gene. It was first described in 1954 (32) and represents 
the most severe defective insulin signaling syndrome. Diagnosis is 

tion not only regarding the management of these rather rare 
syndromes but also regarding other metabolic diseases, such as 
obesity, type 2 diabetes, and nonalcoholic fatty liver disease.

Beyond genetics, adipose tissue as an active endocrine organ 
produces several cytokines and bioactive mediators, such as 
leptin, adiponectin, and inflammatory cytokines, that regulate 
insulin sensitivity homeostasis, lipid metabolism, blood pressure, 
and inflammation (15, 16).

Ectopic fat deposition, when adipose tissue storage space is 
insufficient (e.g., metabolically unhealthy obesity), and/or, con-
versely, extreme lipoatrophy, in which adipose tissue stores are 
nonexistent, leads to hypoleptinemia, abnormal adiponectin lev-
els, and insulin resistance (17–19).

Adiponectin, an adipokine abundantly expressed in white 
and brown adipose tissue, is inversely proportional to adipose 
tissue, especially centrally deposited adipose tissue (20). Adi-
ponectin exerts a potent insulin-sensitizing action through its 
receptors, AdipoR1 and AdipoR2, which activate AMP-activated 
protein kinase (AMPK) and peroxisome proliferator–activated 
receptor-α (PPARα) signaling pathways (15, 20). Decreased adi-
ponectin levels associate with conditions closely linked to insulin 
resistance, such as type 2 diabetes, hypertension, and cardiovas-
cular disease (21–24). The adipokine leptin regulates appetite, 
body fat mass, metabolism, glucose homeostasis, insulin sensi-
tivity, fatty acid oxidation, and neuroendocrine and reproductive 
function (25, 26). Leptin mediates its actions through several sig-
nal transduction pathways, including the Janus kinase (JAK)/sig-
nal transducer and activator of transcription 3 (STAT3) pathway, 
involved with energy homeostasis and possibly neuroendocrine 
function (15, 27). Several leptin-deficient syndromes or leptin 
resistance states associate with insulin resistance and diabetes 
(27), including severe insulin resistance in lipoatrophic subjects. 
Since leptin receptor and insulin receptor pathways overlap, e.g., 
the JAK/STAT3, AMPK, and PI3K pathways, leptin therapy may 
contribute to the leptin-mediated attenuation of insulin resis-
tance directly, as well as indirectly through CNS or peripheral 

Figure 3. Molecular pathways implicated in adipogenesis and genes that may lead to the development of lipodystrophy. Several molecular pathways 
are implicated in the development, differentiation, and apoptosis of adipocytes. The multipotent mesenchymal stem cell (MSC) serves as an adipocyte 
precursor. Transcription factors promote adipocyte differentiation from mesenchymal stem cells to committed preadipocytes, then to adipocytes. Preadi-
pocytes respond to adipogenic stimuli to initiate cell differentiation to mature adipocytes. Many genes implicated in the adipocyte differentiation process 
are involved in the potential development of lipodystrophy (red text indicates genes or factors discussed in this Review).
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Lipodystrophies
Lipodystrophies are a heterogeneous group of rare disorders with 
approximately 1.3–4.7 cases per million (53) and even fewer for 
genetic lipodystrophies (54). Lipodystrophies are primarily char-
acterized by complete or partial loss of adipose tissue and deple-
tion of lipid storage capacity (55, 56). However, in some cases, 
specific body areas possess excess adipose tissue (57). In previous 
decades, evidence has emphasized the critical role of white adi-
pose tissue as an active endocrine organ that efficiently stores 
excess energy. Based on etiology, lipodystrophy syndromes are 
either congenital or acquired. According to the extent of adipose 
tissue deficiency, we have characterized lipodystrophy syndromes 
as generalized or partial, such that four categories include con-
genital generalized lipodystrophy, acquired generalized lipodys-
trophy, congenital partial lipodystrophies, and acquired partial 
lipodystrophies. Other identified genetic causes (Figure 3) and 
pathophysiological pathways linked to lipodystrophy challenge 
the above classification (58).

Currently, no formal criteria exist. Despite progress in genet-
ic characterization, a lipodystrophy diagnosis is based on med-
ical history, clinical features, body composition, and metabolic 
status (55). Lipodystrophic syndromes are often misdiagnosed, 
or underdiagnosed, because of their scarcity, heterogeneity, and 
doctors’ perceptions. Notably, many patients, especially those 
with generalized lipodystrophy, possess low leptin levels. Leptin 
participates in energy homeostasis, lipid metabolism, and insulin 
action (59). Despite proposed pathophysiological pathways (60), 
the exact mechanism by which leptin mediates clinical heteroge-
neity of the lipodystrophies remains unclear. Although leptin may 
act peripherally (white adipose tissue, liver, and muscle), affecting 
appetite, food intake, and lipid and glucose metabolism (60–62), 
the CNS likely mediates these energy-related effects (63).

The extent of adipose loss and alterations in adiposity is asso-
ciated with the severity of metabolic derangements and related 
complications (64, 65). Metabolic disorders, and especially insulin 
resistance, are present in nearly all types of lipodystrophy. Addi-
tionally, more severe clinical presentation usually accompanies 
more severe insulin resistance. Patients can also develop severe 
hyperlipidemias, namely hypertriglyceridemia, inadequately con-
trolled diabetes, progressive hepatic disease, and increased meta-
bolic rate (66, 67).

Congenital generalized lipodystrophy
CGL was described initially in 1954 by Berardinelli and five years 
later by Seip (68, 69). CGL represents rare but clinically promi-
nent disorders with an almost complete lack of adipose present-
ing from birth (70).

CGL is inherited in an autosomal recessive manner with high 
prevalence among isolated communities or in cases of parental 
consanguinity (71). Until now, approximately 300 patients from 
different ethnic groups have been described (70, 72–76). Patients 
have a characteristic muscular phenotype due to a near-complete 
absence of adipose tissue (including subcutaneous and intra-ab-
dominal), usually apparent at birth or during early infancy. 
Depending on the underlying genetic cause, CGL may spare the 
supportive adipose tissue such as orbits, palms, soles, and joints 
(77). Increased insulin levels and a hyperandrogenic state may 

based on genetic, biochemical, and clinical characteristics, while 
functional analyses try to reveal potential genotype/phenotype 
and structure/phenotype correlations based on the severity of 
INSR mutations (33, 34). Affected individuals seldom live beyond 
infancy, with most surviving less than 2 years, mainly due to inter-
current infection (6, 7, 35). While there is no known etiology, in a 
few cases, decreased immunoglobulin levels, mainly IgG and IgA, 
with intact cellular and humoral immunity, have been described 
(36). Normal immunoglobulin concentration, T lymphocytes, and 
lymphocyte proliferation have also been documented (37, 38). It is 
possible that impaired polymorphonuclear leukocyte bactericidal 
activity drives the pathophysiology (38).

Rabson-Mendenhall syndrome. Rabson-Mendenhall syndrome 
is a rare autosomal recessive disease caused by mutations in the 
INSR gene (39). Both Rabson-Mendenhall and Donohue syn-
dromes present after birth and associate with growth and devel-
opmental defects (perhaps due to the defective mitogenic action 
of insulin; refs. 6, 40). Patients may present with extremely high 
insulin levels (41), fasting hypoglycemia (7), and failed respons-
es to endogenous and exogenous insulin, ultimately developing 
refractory diabetes mellitus, severe ketoacidosis, and microvas-
cular diabetes complications (7, 9, 41). Most individuals develop 
symptoms early in life but live into their 20s (1, 39). Suspected cas-
es based on the particular clinical manifestations and laboratory 
findings are confirmed with genetic testing (42).

Type A insulin resistance syndrome. Type A insulin resistance 
syndrome is also a rare severe insulin resistance syndrome caused 
by mutations in INSR. Heterozygous and, in some cases, homozy-
gous INSR mutations impair insulin receptor function and signal 
transduction (43–45). Individuals with type A insulin resistance 
syndrome can live beyond middle age (34). Diagnosis remains 
challenging, though early and accurate identification is essential 
for targeted treatment.

Insulin receptor antibodies
Type B insulin resistance syndrome. Type B insulin resistance syn-
drome is an infrequent autoimmune disorder caused by polyclon-
al autoantibodies (usually IgG) against insulin receptors.

Experimental findings suggest that the autoantibodies act 
biphasically, inducing hypoglycemia in the first (acute) phase 
while ultimately causing hyperglycemia. The first phase associates 
with activation of the tyrosine kinase receptor followed by a pro-
gressive receptor downregulation and an increased degradation 
and subsequent reduction in cellular insulin receptors, resulting 
in insulin resistance and hyperglycemia (46). It has also been pro-
posed that high autoantibody concentrations antagonize (inhibit) 
the INSR, leading to insulin resistance and hyperglycemia, while 
low levels partially agonize to elicit hypoglycemia (46–48). Conse-
quently, patients exhibit profound insulin resistance and hypergly-
cemia, though hypoglycemia may less frequently occur.

Usually, type B insulin resistance syndrome manifests in 
adulthood with high 10-year mortality risk (49, 50), occurs in 
middle-aged women, and associates with other autoimmune 
conditions (such as systemic lupus erythematosus, Sjögren syn-
drome, and mixed connective tissue disease) or is a manifesta-
tion of an underlying malignancy, such as Hodgkin disease and 
myeloma (49–52).

https://www.jci.org
https://doi.org/10.1172/JCI142245


The Journal of Clinical Investigation   R E V I E W  S E R I E S :  1 0 0 T H  A N N I V E R S A R Y  O F  I N S U L I N ’ S  D I S C O V E R Y

6 J Clin Invest. 2021;131(4):e142245  https://doi.org/10.1172/JCI142245

also contribute to prominent musculature. Other manifestations 
include acanthosis nigricans, acromegaloid features (70, 73), 
mental retardation (75), polycystic ovarian syndrome, and hyper-
trophic cardiomyopathy (78, 79).

Individuals with CGL may develop several metabolic disor-
ders and comorbidities, affecting women more severely (72, 73, 
80). Insulin resistance may be present at an early age, even at 
birth. However, diabetes mellitus often develops in adolescence 
or early adulthood and is usually refractory to insulin therapy; 
ketosis is rare. Furthermore, diabetes-related complications, 
such as nephropathy and retinopathy, constitute a notable cause 
of morbidity. CGL is also associated with early-onset and pro-
gressive severe hypertriglyceridemia, leading to acute pancre-
atitis, fatty liver disease, and cirrhosis. Notably, individuals 
with CGL, regardless of age or sex, usually exhibit clinically low 
leptin levels (60, 81).

There are at least four molecularly distinct CGL types, with 
types 1 (CGL1) and 2 (CGL2) dominating the cases. AGPAT2 
and BSCL2 gene mutations are responsible for CGL1 and 
CGL2, respectively. AGPAT2 is predominantly expressed in 
white adipocytes (82) and involved in the acylation process of 
lysophosphatidic acid to phosphatidic acid, which has a crucial 
role in triacylglyceride and glycerophospholipid biosynthesis 
(83). AGPAT2 deficiency associates with impaired signaling of 
critical elements such as PI3K/AKT and PPARγ, affecting adi-
pogenesis and reducing the levels of stored triglycerides inside 
the adipose (84). At least 150 cases and 42 AGPAT2 mutations 
have been published, and the number of related variants has 
increased over time (85, 86).

Individuals with CGL2 exhibit a more severe disease phe-
notype demonstrating an intense absence of body fat, includ-
ing mechanical adipose depots (77). Moreover, the prevalence 
of diagnosed intellectual impairment is higher in patients with 
CGL2 (70, 75), who can develop cardiomyopathy even at a young 
age (78). At least 36 mutations of BSCL2 and 167 individuals 
with these mutations have been described (85). The BSCL2 gene 
encodes the seipin protein, which is involved in lipid droplet 
formation and adipocyte differentiation (74, 87). BSCL2 par-
ticipates in the biosynthesis of glycerophospholipids and tria-
cylglycerides (83), and mutations may impair adipogenesis, the 
expression of enzymes (AGPAT2, DGAT2, and lipin-1), and lipo-
genic transcription factors (PPARγ and CCAAT/enhancer-bind-
ing protein-α [C/EBP-α]) (88–90).

Type 3 CGL (CGL3) is linked to CAV1 gene mutations affect-
ing caveolin-1 function. Caveolin-1 constitutes part of the plas-
ma membrane microdomains (caveolae), and is involved in cell 
migration, polarization, and proliferation (91). Caveolin-1 is also 
necessary for protein kinase A–mediated (PKA-mediated) phos-
phorylation of perilipin, which regulates lipolysis (92). Moreover, 
caveolin-1 loss associates with decreased de novo lipid droplet 
accumulation and a subsequent white adipose tissue atrophy (92). 
Caveolin-1 serves functional and structural roles in the biogenesis, 
accumulation, and metabolism of lipid droplets.

Type 4 CGL (CGL4) associates with mutations identified in 
the polymerase I and transcript release factor (PTRF) gene, also 
known as CAVIN-1 (93). Cavin-1 is a peripheral membrane protein 
and a structural component of caveolae. Moreover, Cavin-1 regu-

lates caveolin-1 and -3 expression (93) and stabilizes and assem-
bles the membrane structure, probably via the cytoskeleton (93, 
94). Functionally, Cavin-1 modulates adipocyte differentiation 
and the expandability of adipose tissue (94, 95). Infants with 
CGL4 may show progressive body fat loss that can also include 
facial adipose tissue.

Congenital partial lipodystrophies
Congenital partial lipodystrophies are a group of distinct genetic 
syndromes characterized by regional lipoatrophy.

Familial partial lipodystrophies. The majority of familial partial 
lipodystrophy (FPLD) syndromes are inherited in an autosomal 
dominant manner and demonstrate varying degrees of subcuta-
neous fat loss. While there are six main FPLD types, other genet-
ic syndromes also display partial lipodystrophy characteristics, 
resulting in substantial genetic and phenotypic variability (58, 
96, 97). The adipose fat loss usually occurs earlier in girls, and is 
evident during late childhood or puberty (14, 97, 98). Some clin-
ical characteristics and metabolic derangements include insulin 
resistance, hyperglycemia, diabetes, acanthosis nigricans, hyper-
triglyceridemia, hepatic steatosis, nonalcoholic steatohepatitis, 
ectopic fat deposition, hyperandrogenemia, hirsutism, polycystic 
ovarian syndrome, reproductive dysfunction, osteoporosis, car-
diomyopathy, and cardiovascular disease (97).

FPLD1, or Köbberling-type lipodystrophy, follows a polygenic 
inheritance pattern and is characterized by distal lipoatrophy and 
visceral adiposity (99, 100). Little is known about the pathological 
mechanisms.

FPLD2, or Dunnigan-type lipodystrophy, associates with 
autosomal dominant mutations of the LMNA gene and is the 
most common FPLD type (more than 500 reported cases; ref. 97). 
LMNA encodes lamin A and C proteins, which provide structur-
al support to the nuclear envelope. Defects in these proteins may 
impair interaction with chromatin or other nuclear lamina pro-
teins, leading to adipocyte apoptosis and premature death (101). 
Prelamin A accumulation may interfere with adipocyte transcrip-
tion factors or regulators, such as sterol response element–binding 
protein 1 (SREBP1) and PPARγ, disrupting adipogenesis (101–104). 
Recent findings indicate that females experience a more severe 
disease course, due to glucocorticoid receptor GRβ overexpres-
sion or increased proinflammatory cytokine levels (105).

FPLD3 results from mutations in PPARG, which regulates 
adipocyte differentiation and function. FPLD3 is the second most 
common FPLD (approximately 20 families) and manifests similar-
ly to FPLD1; however, affected patients tend to have more severe 
hypertriglyceridemia and hypertension (97, 106). Heterozygous 
mutations may attenuate gene expression or interfere directly 
with normal gene function (dominant negative) and inhibit adipo-
cyte differentiation.

FPLD4 has been described in four families with autosomal 
dominant mutations in the PLIN1 gene, encoding perilipin-1 (97). 
Perilipin-1 is the most abundant phosphoprotein in adipocytes and 
a principal component of lipid droplet membranes. Perilipin-1 par-
ticipates in lipid storage and lipolysis by regulating hormone-sen-
sitive lipase (HSL) and adipose tissue triglyceride lipase (ATGL), 
which catalyze the hydrolysis of diacylglycerol and triacylglycerol 
into monoacylglycerol and fatty acids (107).
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FPLD5 and FPLD6 are autosomal recessive syndromes due to 
mutations in the cell death inducing DFFA like effector c (CIDEC) 
and lipase E, hormone sensitive type, (LIPE) genes, respectively. 
The CIDEC gene is involved in the differentiation of adipocytes. 
Moreover, CIDEC protein is a main regulator of lipid and glucose 
metabolism. It has been proposed that CIDEC mutations cause 
defects in adipocyte differentiation and the inability of lipid droplets 
to accumulate fat (108, 109). The LIPE gene encodes hormone-sen-
sitive lipase, which associates with adipocyte function and lipid and 
glucose homeostasis. Pathological mutations of hormone-sensitive 
lipase may lead to impaired lipolysis, insulin resistance of small adi-
pocytes, and inflammation (110).

Mandibuloacral dysplasia. Mandibuloacral dysplasia (MAD) is 
a rare autosomal recessive syndrome identified in approximately 
40 cases (10, 73). It is characterized by craniofacial, skeletal, and 
cutaneous abnormalities, including mandibular and clavicular 
hypoplasia, birdlike face, joint contractures, dental anomalies, 
acroosteolysis, cutaneous pigmentation, and alopecia. Progeroid 
features and dysmorphic manifestations may be present at birth 
and become more prominent with age (98).

Two MAD types reflect the mutations: MAD type A is caused 
by mutations of the lamin A/C (LMNA) gene, which encodes nucle-
ar lamina proteins. MAD type B associates with zinc metalloprote-
ase (ZMPSTE24) genetic mutations and a more generalized loss 
of subcutaneous adipose tissue (111, 112). ZMPSTE24 is required 
for posttranslational proteolytic processing of carboxy-terminal 
residues of prelamin A to form mature lamin A. Specifically, the 
prelamin A contains a carboxy-terminal cysteine that is posttrans-
lationally modified (farnesylated) to link with the plasma mem-
brane. Subsequently, ZMPSTE24 catalyzes proteolytic cleavage 
and facilitates removal of 15 additional carboxy-terminal resi-
dues. ZMPSTE24 mutations may lead to the accumulation of the 
toxic farnesylated form of prelamin A, disrupting nuclear function 
in several tissues (54). Some patients may experience metabolic 
complications such as insulin resistance, hyperinsulinemia, diabe-
tes, and hyperlipidemia (113).

SHORT syndrome. SHORT syndrome (short stature; hyperexten-
sibility of joints; ocular depression; Rieger anomaly; teething delay) 
associates with autosomal dominant mutations of the PI3K p85α 
regulatory subunit 1 (PIK3R1) gene, which encodes the PIK3R1 pro-
tein (regulatory p85a subunit; ref. 114). The p85α subunit connects 
and stabilizes the p110 catalytic subunit, which determines its activ-
ity level (115). Both subunits form the phosphatidylinositol 3-kinase 
(PI3K) protein, which acts to catalyze the conversion of phosphatidy-
linositol phosphate 2 (PIP2) to PIP3. PIP3 activates the AKT signaling 
pathway, which regulates cellular functions including differentia-
tion, cell survival, and insulin’s biological actions (114, 115).

Acquired generalized lipodystrophy
Acquired generalized lipodystrophy (AGL), or Lawrence syn-
drome, is a rare syndrome (approximately 80 patients) with female 
dominance (10, 106) and develops in patients with a negative fam-
ily history, usually during childhood or adolescence (73, 116). Most 
patients with AGL demonstrate low leptin and markedly reduced 
adiponectin levels, which may associate with severe insulin resis-
tance and related metabolic complications (117). The pathogenic 
mechanism is unknown. However, several cases coincided with 

autoimmune or inflammatory diseases, such as panniculitis, 
Sjögren syndrome, juvenile-onset dermatomyositis, rheumatoid 
arthritis, systemic sclerosis, and systemic lupus erythematosus 
(116, 118, 119). Most recent findings implicate anti-adipocyte anti-
bodies predominantly directed against perilipin-1 (120–122). It has 
been proposed that autoantibodies, complement activation, and 
proinflammatory cytokines including TNF-α and IL-1 contribute 
to AGL by impairing fat uptake, adipocyte differentiation (50, 118, 
123), or adipogenesis (124) or increasing receptor-mediated apop-
tosis of adipocytes/preadipocytes (125, 126).

Acquired partial lipodystrophy
Acquired partial lipodystrophy, also known as Barraquer-Simons 
syndrome, is one of the most common forms of acquired lipodys-
trophy (10). It shows a higher prevalence in females and may fol-
low a viral infection (127, 128). Approximately 250 cases, primarily 
in patients of European descent (57, 73, 129), have been reported 
manifesting clinical symptoms during childhood or adolescence. 
The etiology is still uncertain; however, autoimmune-mediated 
destruction of adipocytes has been proposed. Most patients possess 
circulating autoantibody known as C3 nephritic factor and low com-
plement component 3 (C3) levels. Importantly, C3 nephritic factor 
stabilizes C3 convertase enzyme, increasing the half-life of the 
convertase by blocking C3 degradation, resulting in excessive C3 
activation (73). Moreover, low C3 levels, circulating autoantibody 
called C3 nephritic factor immunoglobulin, and the presence of 
membranoproliferative glomerulonephritis may coincide, suggest-
ing that inflammation plays a role (73, 130).

Lipodystrophy in HIV patients. The most common type of partial 
lipodystrophy is HIV-associated lipodystrophy syndrome (HALS), 
which develops in approximately 40% of patients treated with high-
ly active antiretroviral therapy (HAART), particularly with protease 
inhibitors and nucleoside analog reverse transcriptase inhibitors. 
HALS also associates with the duration of HAART treatment (131, 
132). The proposed underlying mechanisms involve increased apop-
tosis, impaired (pre)adipocyte differentiation (133, 134), suppressed 
adipogenesis (135), and altered expression of adipogenic transcrip-
tion factors, including PPARγ, SREBP1, C/EBP-α, and C/EBP-β (136). 
Moreover, HIV infection may inhibit adipocyte differentiation (137), 
while individual genetic background and inflammation processes 
may influence the metabolic and clinical manifestations as well as 
the severity of HALS (138–140). Low leptin concentration associates 
with reduced subcutaneous adipose tissue, while decreased adipo-
kine levels coincide with excess visceral fat (140, 141).

The prevalence of metabolic syndrome varies, and may asso-
ciate with HAART treatment duration, chronic inflammation, 
and the HIV infection itself. While safer HIV medications have 
decreased the prevalence of HALS (142), patients with HALS are 
also predisposed to an increased risk of atherosclerosis and car-
diovascular disease (143, 144).

Other complex syndromes of severe insulin 
resistance
Other complex syndromes of severe insulin resistance are described 
in Supplemental Table 1. Subcutaneous insulin resistance syn-
drome is a rare condition characterized by profound resistance to 
the action of subcutaneous insulin while maintaining sensitivity to 
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Insulin sensitizers
Metformin and thiazolidinediones (TZDs) play a crucial role 
in severe insulin resistance, improving glucose tolerance, in 
part by enhancing insulin sensitivity. TZDs or other PPARγ 
modulators also increase adiponectin levels. Metformin is con-
sidered first-line pharmacotherapy for improving insulin sen-
sitivity in patients with lipodystrophies and may also improve 
fat redistribution in HALS (164). Several reports support the 
use of TZDs, particularly pioglitazone, to improve the meta-
bolic profile in patients with partial lipodystrophy (165, 166). 
Only one open-label prospective study tested the troglitazone 
efficacy (167). Consequently, TZDs need to be used cautious-
ly in patients with generalized lipodystrophy. Similarly, incre-
tin-based therapies including glucagon-like peptide 1 receptor 
agonists and sodium glucose transporter inhibitors can be 
used in lipodystrophy, but their efficacy has not been studied 
systematically.

Lipid-lowering medications
Hyperlipidemia is usually managed with statins, fibrates, and 
fish oil, rich in omega-3 fatty acids (168, 169). No systemic 
studies have tested the efficacy of lipid-lowering medications 
in these patient populations. Combination of fibrates with 
statins should be used cautiously given the cumulative risk 
of myopathy and hepatotoxicity. Fibrates and/or long-chain 
omega-3 fatty acids may be considered for high triglycerides. 
Additional LDL-cholesterol–lowering medications, such as 
ezetimibe and PCSK9 (proprotein convertase subtilisin/kexin 
type 9) antibody inhibitors, are available, though they have not 
been studied specifically in this patient population. Inclisiran, 
a small interfering RNA, which may provide sustained LDL 
reductions, is a promising nonantibody approach that targets 
PCSK9. The efficacy of inclisiran has been demonstrated in the 
most recent phase III trials among patients with atherosclerot-
ic cardiovascular disease or its equivalent and elevated LDL 
level (170). Several liver-specific secreted proteins have been 
identified as playing a key role in regulating lipid metabolism. 
Bempedoic acid, an inhibitor of ATP citrate lyase, alone or in 
combination with statin or ezetimibe, may prove beneficial 
(171). In 2020, bempedoic acid was approved by the FDA for 
heterozygous familial hypercholesterolemia. Volanesorsen is a 
second-generation apolipoprotein C-III antisense oligonucle-
otide that decreases apolipoprotein C-III, a major triglyceride 
regulator, and subsequently reduces triglyceride levels (172, 
173). The BROADEN Study (174), a randomized, double-blind, 
placebo-controlled study, recruited patients with partial lipo-
dystrophy and hypertriglyceridemia and will report the effect 
and safety profile of volanesorsen. Similarly, trials involving 
angiopoietin-like 3 (ANGPTL3) inhibition via antibodies, such 
as evinacumab, or antisense oligonucleotides may reveal addi-
tional targets for the treatment of hypercholesterolemia in lipo-
dystrophy patient populations (175, 176). Gemcabene is anoth-
er agent that can enhance the clearance of VLDL-cholesterol, 
increasing HDL and decreasing hepatic triglyceride synthesis. 
A clinical study of gemcabene for the management of hyper-
triglyceridemia and nonalcoholic fatty liver disease in familial 
partial lipodystrophy patients is ongoing (177).

intravenous insulin, due to increased insulin-degrading activity in 
the subcutaneous tissue. These patients often experience recurrent 
episodes of life-threatening diabetic ketoacidosis (145–147).

Treatment strategies
Patients share common metabolic consequences of severe insu-
lin resistance, such as diabetes, lipid abnormalities, and hepatic 
derangements, despite their marked phenotypic heterogeneity. 
Lifestyle modifications, oral and injectable antihyperglycemic 
medications, insulin, and lipid-lowering medications, along with 
therapies targeted to reverse or attenuate insulin resistance, con-
stitute our modern treatment armamentarium.

Diet and exercise
Aggressive lifestyle modifications focused on calorie and, when 
appropriate, weight reduction and increased physical activity are 
key elements of the therapeutic approach (148–150). Several dietary 
approaches, including the Mediterranean, likely contribute to main-
taining a healthy weight, improving insulin resistance, and lowering 
inflammatory markers and endothelial dysfunction (151, 152). Mod-
erate-intensity physical activity daily for 30 minutes is beneficial.

Lipoatrophic patients are typically hyperphagic, reportedly 
secondarily to leptin deficiency. Energy-restricted diets and calor-
ic restriction are anecdotally effective if sustained for long peri-
ods of time (55). Most patients should follow diets with the goal 
of attaining ideal body weight (153), while very-low-fat diets may 
be appropriate in cases with severe hypertriglyceridemia. Both 
strength and endurance training are also encouraged (154), except 
in cases with cardiomyopathy (155).

Insulin
Insulin directly or indirectly affects the function of nearly every 
tissue in the body. Insulin resistance is defined as a subnormal 
response to normal insulin concentrations. To overcome insulin 
resistance, exogenous insulin has been used. Patients with gener-
alized lipodystrophy and patients with INSR mutations typically 
require higher insulin doses (156, 157). Since high insulin volume 
may result in discomfort, leakage, and impaired absorption, con-
centrated insulins (two or five times more concentrated than stan-
dard U-100 insulin) should be considered (158, 159).

Insulin-like growth factor-1
Since insulin and IGF-1 mediate their effects through similar tyro-
sine kinase receptors, and can interchangeably activate the alter-
nate receptor with reduced affinity, IGF-1 is a possible therapeu-
tic agent against insulin resistance. Recombinant human IGF-1 
(rhIGF-1) can improve metabolic control in INSR-related severe 
insulin resistance syndromes and increase life span in patients 
with Donohue syndrome (160, 161). RhIGF-1 can be adminis-
tered subcutaneously or via continuous pump infusion (162). 
RhIGF-1 is thought to exercise its effects on glucose homeostasis 
mainly by reducing hepatic gluconeogenesis and increasing glu-
cose uptake from peripheral tissues (163). Early treatment with 
rhIGF-1 typically improves outcomes, although side effects pre-
vented its approval and wide use. Currently available publications 
are either single case reports or include few patients, rendering a 
direct comparison of treatment efficacy inconclusive.
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status remained unclear. Complementary strategies to eliminate 
the culprit antibody may account for the success. Cyclosporin A, 
azathioprine, intravenous immunoglobulins, and plasmapheresis 
have also been used with variable effects (193).

Cosmetic surgery
Cosmetic surgery has been effective in correcting hypo- or hyper-
trophic depots in patients with lipodystrophy, with positive psy-
chological implications (55). However, this approach should ideal-
ly be coupled with modifications as outlined above.

Conclusion
This Review has discussed the pathogenesis and features of sev-
eral severe insulin resistance syndromes and potential therapeu-
tic interventions. Studying these rare conditions has historically 
opened new pathways in diabetes research and allowed us to gain 
important insights into insulin’s action and physiology.
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Etiologic therapeutic strategies
Leptin therapy. Metreleptin, a leptin analog, is the only drug specifi-
cally indicated for the treatment of lipodystrophy in the United States 
(178). In multiple prospective, albeit small and uncontrolled, studies 
of generalized lipodystrophy, metreleptin treatment suppressed 
appetite and favored metabolic profiles compatible with reducing, or 
even discontinuing, antidiabetic medications. Further, nonalcoholic 
steatohepatitis improved (179–181). In patients taking metreleptin, 
improved peripheral glucose disposal, hepatic glucose output, and 
insulin secretion lowered fasting glucose levels (182). Within weeks, 
triglyceride levels decreased, achieving 60% reduction after one year 
of treatment (66). Metreleptin has also found off-label use in partial 
lipodystrophy (183), with possible effectiveness in pediatric patients 
(184); however, the possibility of developing anti-leptin neutralizing 
antibodies has prompted the FDA to prevent metreleptin use for any 
lipodystrophies except complete lipodystrophy (185). While T cell 
lymphoma has been reported in individuals with acquired lipodys-
trophy who were treated with metreleptin, it remains unclear wheth-
er the cases represented a treatment side effect or a natural history of 
disease progression (186).

GHRH analog. The growth hormone–releasing hormone 
(GHRH) analog tesamorelin has FDA approval for use in HALS, 
in which it improves metabolic abnormalities associated with vis-
ceral fat accumulation (187, 188). Tesamorelin is administered as 
a subcutaneous injection daily. Several randomized clinical trials 
reported visceral fat reduction during treatment (189, 190), but 
rapid reaccumulation was noted after discontinuation of thera-
py. The possibility that tesamorelin worsens glucose intolerance 
through increased IGF-1 levels warrants caution (191).

Immunosuppresants. Type B insulin resistance is traditionally 
challenging to manage and has been treated with various forms 
of immunosuppression with mixed success (192). Malek et al. 
reported a protocol of rituximab, cyclophosphamide, and pulse 
steroids (49), which achieved remission in seven patients with 
type B insulin resistance. However, after about eight months 
immunosuppressive therapy was stopped and insulin resistance 
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