
The Journal of Clinical Investigation   R E V I E W

5 6 5 2 jci.org   Volume 130   Number 11   November 2020

Introduction
Muscular dystrophies comprise a heterogeneous group of genetic 
disorders characterized by progressive muscle wasting and weak-
ness (1, 2). In muscular dystrophies, muscle dysfunction arises 
from the mutations of genes encoding different cellular compo-
nents, including proteins associated with the sarcolemma, extra-
cellular matrix, nuclear membrane, and sarcomeric apparatus (3, 
4). Different forms of dystrophy differ in terms of age of onset, 
severity of symptomatic progression, and distribution of affected  
muscles (1, 3). Depending on the molecular etiology, muscular 
dystrophies can present clinically relevant defects beyond the 
skeletal muscle compartment (3). In particular, cardiac involve-
ment is present in several forms of dystrophy (3, 5).

With an incidence of approximately 1 in 5000 male newborns, 
Duchenne muscular dystrophy (DMD; OMIM 310200) is the most 
frequent and one of the most severe forms of muscular dystrophy 
(1, 3). DMD patients typically present with progressive weakness of 
limb muscles, trunk muscles, and the diaphragm, leading to wast-
ing, kyphoscoliosis, and severe respiratory problems (1, 2). Most 
patients die in their third decade of life due to respiratory compli-
cations (1, 2). Almost all DMD patients have cardiac involvement, 
and heart failure is the second leading cause of death (5). Cardiac 
abnormalities, such as dilated and hypertrophic cardiomyopathy, 
increase with age (6). A rarer (~1 in 20,000 male births) and clini-
cally milder form of dystrophy, Becker muscular dystrophy (BMD; 
OMIM 300376) has the same causative allele as DMD (1, 3). Onset 
of BMD symptoms occurs later than in DMD, and the average 
age of death is in the fifth decade of life (1). Almost 50% of BMD 
deaths occur due to congestive heart failure and arrhythmias (7).

DMD and BMD are caused by mutations in the DMD gene, 
encoding dystrophin (8). Different types of mutations in the DMD 
gene, which is located on the X chromosome and is the largest 
known gene of the human genome, cause DMD (8). Whereas 
DMD patients lack the dystrophin protein because of frameshift 
mutations, BMD is generally caused by mutations that do not dis-
rupt the translational reading frame (9). A partially functional dys-
trophin is typically expressed in BMD patients (9).

Dystrophin is a component of a plasma membrane–associated  
complex called the dystrophin glycoprotein complex (DGC), 
which acts as a framework to connect the intracellular cytoskele-
ton to the surrounding extracellular matrix (10). The DGC’s crucial 
role for proper muscle functionality and integrity is demonstrated 
by the overlap in pathological features between DMD and a num-
ber of dystrophies caused by mutations in genes encoding other 
components of the DGC (4). The most well-studied mechanism 
that has been proposed to explain the etiology of DGC-related  
muscular dystrophies is a loss of membrane integrity as a result of 
disruption of structural proteins (11, 12), but disruption of mem-
brane-associated signaling pathways has also been implicated in 
pathogenetic processes (13, 14). Whatever the pathophysiological 
processes, dystrophic muscle exhibits cycles of degeneration and 
regeneration, accompanied by infiltration of inflammatory cells 
and progressive accumulation of fibrotic and adipose tissues (15).

Although glucocorticoid treatment is associated with reduced 
disease progression and multidisciplinary care may further 
improve patient survival, there is currently no definitive cure for 
DMD and BMD (16, 17). However, many promising therapeutic 
strategies are now under active investigation. Among the most 
well-studied approaches is gene delivery using viral or nonviral vec-
tors, a strategy that seeks to deliver a functional, even if truncated, 
version of dystrophin to myofibers (18). As an alternative, interven-
tions that alter mRNA splicing (e.g., exon skipping) or translation 
(e.g., stop codon suppression) have been studied as ways to gener-
ate functional dystrophin proteins even in the face of pathological 

Muscular dystrophies are a heterogeneous group of genetic diseases, characterized by progressive degeneration of skeletal 
and cardiac muscle. Despite the intense investigation of different therapeutic options, a definitive treatment has not 
been developed for this debilitating class of pathologies. Cell-based therapies in muscular dystrophies have been pursued 
experimentally for the last three decades. Several cell types with different characteristics and tissues of origin, including 
myogenic stem and progenitor cells, stromal cells, and pluripotent stem cells, have been investigated over the years and 
have recently entered in the clinical arena with mixed results. In this Review, we do a roundup of the past attempts and 
describe the updated status of cell-based therapies aimed at counteracting the skeletal and cardiac myopathy present in 
dystrophic patients. We present current challenges, summarize recent progress, and make recommendations for future 
research and clinical trials.

Stem cell therapy for muscular dystrophies
Stefano Biressi,1,2 Antonio Filareto,3 and Thomas A. Rando4,5,6

1Department of Cellular, Computational and Integrative Biology (CIBIO) and 2Dulbecco Telethon Institute, University of Trento, Povo, Italy. 3Department of Research Beyond Borders, Regenerative Medicine, 

Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Conneticut, USA. 4Department of Neurology and Neurological Sciences and 5Paul F. Glenn Center for the Biology of Aging, Stanford University School 

of Medicine, Stanford, California, USA. 6Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA.

Conflict of interest: AF is currently an employee of Boehringer Ingelheim  
Pharmaceuticals.
Copyright: © 2020, American Society for Clinical Investigation.
Reference information: J Clin Invest. 2020;130(11):5652–5664. 
https://doi.org/10.1172/JCI142031.

https://www.jci.org
https://www.jci.org
https://www.jci.org/130/11
https://doi.org/10.1172/JCI142031


The Journal of Clinical Investigation   R E V I E W

5 6 5 3jci.org   Volume 130   Number 11   November 2020

cells, cell therapy is a gene delivery approach to introduce nor-
mal copies of the DMD gene (or other therapeutic genes in non-
DMD patients) into myofibers by cell fusion. As a consequence, 
development of gene correction/complementation strategies is 
crucial for the successful application of cell therapy, particularly 
when autologous cells are used as vehicles. In addition, delivery 
of muscle stem or progenitor cells holds promise to sustain or 
enhance muscle repair, and possibly populate the muscle stem 
cell niche for future regenerative demands. Finally, as with many 
cell-based therapies, cellular vehicles often deliver trophic or 
even immunomodulatory factors to a tissue that produce a thera-
peutic benefit. In fact, a growing body of evidence indicates that 
some progenitors evaluated in cell therapy approaches exert at 
least part of their regeneration-promoting role through paracrine 
signals (23). Here, we provide an overview of past attempts and 
current strategies to use cell-based therapies aimed at ameliorat-

gene mutation (19). More recently, with the advent of gene editing 
strategies such as transcription activator–like effector nucleases 
(TALENs), zinc finger nucleases, and CRISPR/Cas9, investigators 
have sought to directly correct endogenous mutations in DMD and 
restore its normal reading frame (20). Several pharmacological 
and genetic approaches striving to reconstruct the DGC complex 
through overexpression of DGC components, such as utrophin, are 
also under investigation (21, 22). Focusing more on downstream 
pathogenic mechanisms, pharmacological interventions have tar-
geted pathological consequences of dystrophin mutations includ-
ing myofiber necrosis, inflammation, fibrosis, ischemia, mitochon-
drial dysfunction, and aberrant histone deacetylation (22).

This Review focuses on a therapeutic approach that has 
been envisioned and tested for decades, namely cell-based 
therapy (Figure 1). The promises of cell therapy are multiple. 
On one hand, using genetically normal or genetically corrected 

Figure 1. Overview of candidate cell types for cell therapy in muscular dystrophies. Different types of progenitor cells derived from skeletal muscle or 
from nonmuscle tissues have been tested preclinically or clinically for therapeutic cell transplantation in muscular dystrophies. The identity of the progen-
itor cells and their tissue of origin are indicated. MSCs, mesenchymal stem cells; iPSCs, induced pluripotent stem cells; ESCs, embryonic stem cells; BMCs, 
bone marrow–derived cells.
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small volumes of cell suspension through closely spaced (1–2 mm) 
injections resulted in robust levels of dystrophin expression (48, 
49). Data from one patient undergoing myoblast transplantation 
in a portion of the gastrocnemius muscle showed that donor- 
derived dystrophin was induced in over 30% of the myofibers 
at the injection site (49). More recently, a series of studies in 
nonhuman primates have revealed additional determinants, 
such as the needle size, cell number, and injection volume (50). 
These have led to an ongoing phase I/II clinical trial evaluating 
the effectiveness of high-density delivery of myoblasts in pre-
serving muscle strength in DMD patients (ClinicalTrials.gov 
NCT02196467) (Table 1).

Notably, a clinical trial reported positive results of myoblast 
transplantation in patients affected by oculopharyngeal mus-
cular dystrophy (OPMD; OMIM 164300), a form of dystrophy 
characterized by the selective involvement of the pharyngeal and 
eyelid muscles. In this study (51), autologous myoblasts obtained 
from unaffected muscle groups were transplanted into the con-
strictor muscles of the pharynx of OPMD patients. Most of the 
patients exhibited stabilization of symptoms up to 2 years after 
transplantation, and a cell-dose-dependent effect on swallowing 
was apparent (51).

It is worth noting that the relatively limited amount of mus-
cle tissue affected in OPMD patients allows for focal cell delivery. 
By contrast, in other types of dystrophies, such as dystrophinop-
athies, a vastly greater muscle mass is affected, requiring differ-
ent strategies for cell delivery (1, 2). Unfortunately, intra-arterial 
delivery of myoblasts has proven to be ineffective (52).

Mesoangioblasts. An additional cell type, named mesoangio-
blasts (MABs) for their ability to differentiate into different meso-
dermal lineages (including skeletal muscle) and their association 
with blood vessels, became highly attractive for cell therapy in 
DMD owing to their ability to efficiently egress a blood vessel wall 
from the circulation into interstitial muscle tissue, making them 
a candidate for systemic delivery (53, 54). Originally identified in 
the wall of embryonic dorsal aortae in mice, MABs were also iso-
lated and characterized as a pericyte-derived population of cells 
from skeletal muscle of adult mice, dogs, and humans (55, 56).

Several studies indicated that MABs represent a promising 
approach to cell therapy in murine models of different muscular 
dystrophies (54, 55, 57–59). Furthermore, genetically corrected 
MABs delivered intra-arterially into dogs with golden retriever 
muscular dystrophy (GRMD) restored dystrophin expression in 
5%–50% of skeletal myofibers in select hind-limb muscles and 
improved muscle morphology and function (56). In addition to 
their direct involvement in skeletal muscle regeneration, MABs 
also have paracrine effects and can modulate immune cell  
function (60). Transplanted MABs also contribute to the MuSC 
pool (54, 59, 61).

These studies led to a phase I/IIa trial (EudraCT 2011-000176-
33) in five DMD patients (62). The clinical trial involved four 
intra-arterial infusions of HLA-matched MABs at doses consistent 
with those administered to dystrophic dogs in preclinical tests 
(56). Two months after the final infusion, muscle biopsies were 
collected and analyzed, revealing minimal donor cell engraftment 
and very modest increase of dystrophin levels (62). Disease pro-
gression in one patient was stabilized for more than 2 years, but 

ing both the skeletal and the cardiac defects in patients affected 
by muscular dystrophies.

Cell therapy in dystrophic skeletal muscle

Myogenic stem and progenitor cells from skeletal muscle
Satellite cells. Skeletal muscle tissue possesses a tremendous capac-
ity for effective self-repair of acute damage (24). Muscle stem cells 
(MuSCs), also known as satellite cells, are responsible for the mus-
cle regenerative process (25). MuSCs are marked by expression of 
the transcription factor PAX7 and are required for productive mus-
cle repair (26–28). MuSCs are actively maintained in a quiescent 
state in adult muscle (29), but can quickly divide following mus-
cle injury, enter the cell cycle, and give rise to proliferating myo-
blasts that ultimately differentiate and fuse in the process of tissue 
repair. Activated MuSCs also undergo self-renewal to maintain the 
population of adult MuSCs (30).

Many studies have demonstrated that transplantation of 
both mouse and human MuSCs not only promotes regeneration, 
but transplanted MuSCs also maintain the ability to repopulate 
the stem cell compartment (31–35). However, several obstacles, 
such as loss of potency with ex vivo expansion and limited in vivo 
migration after transplantation, currently hinder the use of these 
cells for clinical application. As discussed below, strategies aimed 
at improving these aspects of MuSC transplantation are under 
active investigation in the preclinical setting (Figure 2).

Myoblasts. Initial studies in dystrophic mdx and dy/dy mutant 
mice, modeling DMD and merosin-deficient congenital muscu-
lar dystrophy, respectively, demonstrated that normal myoblasts, 
obtained through in vitro expansion of MuSCs, can locally reme-
diate the genetic defect after intramuscular injection (36, 37). 
Substantial effort was therefore invested to enhance the efficacy 
of myoblast transplantation. The survival and mobility of precur-
sor cells, the extent of distribution of proteins produced by trans-
planted myoblasts, and the influence of the host environment, 
including the host immune response elicited by grafted cells, were 
investigated in different animal models (38). Furthermore, it was 
shown that some transplanted myoblasts could also survive as 
muscle precursor cells (39).

Initial observations in mice were rapidly followed by a series of 
clinical trials in which allogenic myoblasts were expanded in cul-
ture and transplanted in the muscles of DMD patients (40). These 
early studies reported variable expression of donor cell–derived 
dystrophin and myofiber chimerism, but were inconclusive in 
terms of functional improvement (41–43). Although discouraging 
in terms of efficacy, these early studies demonstrated the overall 
safety of the procedure and revealed the requirement of appropri-
ate immunosuppression (44).

In subsequent years, a series of studies using both murine and 
human myoblasts, and mainly the mdx model, disclosed several 
determinants of myoblast engraftment efficacy (45). Myoblast 
transplants were also performed in large-animal models to more 
accurately model human physiology (46, 47). These studies led to 
an optimization of transplantation protocols and to further clinical 
trials in dystrophic patients (Table 1). Major improvements con-
sisted of use of tacrolimus for immunosuppression and increased 
density of myoblast injection sites (48, 49). Indeed, delivery of 
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clinical trial failed to demonstrate clear efficacy, it provided infor-
mation essential for future cell therapy trials (Table 2).

Other cell populations with myogenic potential from muscle intersti-
tium. The search for myogenic cells suitable for cell therapy applica-

no clear correlation with dystrophin expression was apparent. One 
patient developed atrial fibrillation and a thalamic stroke detected 
by MRI, highlighting the need for stringent cardiovascular mon-
itoring when intra-arterial delivery of cells is used. Although this 

Figure 2. Preservation of potency during in vitro culturing of myogenic cells for cell therapy applications. (A) Expansion of MuSCs isolated from 
enzymatically digested skeletal muscles under standard culturing conditions on plastic dishes (upper path) selects for myoblasts with poor regenerative 
and engraftment capability. Two main strategies have been proposed to preserve the in vivo regenerative potential of MuSCs during in vitro culturing and 
resulted in productive engraftment in preclinical studies. One strategy (middle path) consists of the manipulation of artificial culturing substrates with 
bioengineering techniques to mimic the niche in which MuSCs reside and stimulate quiescence. The second strategy (lower path) consists of the adoption 
of culturing conditions favoring the expansion of myogenic progenitors with preserved regenerative potential. (B) Expansion of myogenic progenitors with 
preserved regenerative potential can be achieved through the addition to the culture medium of factors able to modulate the activity of fundamental 
signaling pathways, such as the Notch, JAK/STAT, oncostatin M (Osm), and p38 MAPK signaling pathways (34, 138–140, 142); Setd7-dependent epigenetic 
modifications (143); eIF2α-dependent translational control (141); or the genetic alteration of regulators of myogenic lineage progression and proliferation.
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derived stem cells (MDSCs), MuStem cells, SMALD+ cells, and 
smooth muscle–mesenchymal cells (71–74). All have been shown 
to contribute to new muscle formation upon transplantation (72–
74). Further molecular characterization is necessary for each of 
these, as well as identification of the nature and localization of the 
cells of origin in vivo.

Cells from non–skeletal muscle tissues
Mesenchymal stem cells. Over the last two decades, different stro-
mal cell types known to exhibit peculiar paracrine/secretory 
functions have been tested as potential treatments for muscular 
dystrophies. These mesenchymal stromal cells, often referred to 
as “mesenchymal stem cells” (MSCs), are under evaluation as 
potential cellular therapies for different pathological conditions. 
However, uncertainties remain because of the extreme heteroge-
neity of such cells obtained from different tissues and based on 
different criteria (75). Furthermore, it is unclear how paracrine 
effects are likely to be effective, long-term treatments of chronic,  
degenerative diseases like muscular dystrophies. Nevertheless, 
studies using both intramuscular and systemic delivery in dif-
ferent dystrophic mouse models have examined the potential 
therapeutic efficacy of MSCs of different tissue origin (76–81). 
Although many studies demonstrate the ability of MSCs to engraft 
in skeletal muscle, their ability to enhance muscle contractile force 
is unclear (82). Studies have also suggested the potential of trans-
planted MSCs to give rise to MuSCs (76, 79). Notably, in some of 
these studies, MSCs derived from nonmurine tissues were suc-

tions in muscle diseases resulted in the identification of several can-
didates, mainly consisting of stromal cells that can be isolated from 
skeletal muscles (63). Muscle side population (SP) cells are a popu-
lation of myogenic progenitors that can be isolated from murine and 
human muscle based on their ability to extrude Hoechst dye (64). 
Muscle SP cells, similarly to bone marrow–derived SP cells (65), 
can home to the skeletal muscles of dystrophic mice after systemic  
delivery, fusing with limited percentages of host myofibers (66). 
Moreover, muscle SP cells can give rise to MuSCs upon transplan-
tation (67). Although SP cell engraftment appears to be insufficient 
to be therapeutically relevant in terms of dystrophin complemen-
tation, evidence suggests that SP cells may influence the myogenic 
program through paracrine mechanisms (68).

A population of cells endowed with myogenic potential was 
identified in the interstitium of murine skeletal muscle through 
expression of the stem cell marker PW1 and absence of PAX7 
and was therefore named PW1+PAX7– interstitial cells (PICs) 
(69). PICs do not derive from MuSCs, are myogenic in vitro, and 
contribute to muscle regeneration, as well as generating MuSCs, 
following transplantation (69). Notably, a subpopulation of inter-
stitial cells that express PW1 and myogenic factor 5 (MYF5), but 
not PAX7, was also reported in the CD56+ fraction of cells isolated 
from human muscles (70).

Beyond these, other populations of cells with myogenic poten-
tial have been identified based on molecular markers, adhesion 
properties, or other functional characteristics. These have been 
studied primarily by single laboratories and include muscle- 

Table 1. Selected clinical trials for muscular dystrophies employing myoblasts

Cell therapy approach Dx / no. of 
patients

Time point  
(mo) 

Outcome Reference 
or trial IDDonor Route Immun. sup. Efficacy  Side effects

Parents i.m. Tacrolimus 
(± steroids)

DMD 
9

1 • % total DYS+ fibers at injection site:  
3.5%–21.2% (8/9); 1 fiber/muscle section  
(1/9); noninjected site: 0–4.6% (9/9);

• % donor-derived DYS+ fibers at injection site: 
6.8%–13.5% (5/6); 1 fiber/muscle section  
(1/6); noninjected site: <0.1% (6/6); 

• presence of donor-derived nuclei (2/2); 
• increased DYS in semiquantitative RT-PCR  

(9/9) and qPCR (3/3);
•  α-sarcoglycan reassembly (3/3)

Weight increase (1/3); diarrhea 
(3/9); local immune cell 
infiltration (8/9)

 48

Father i.m. Tacrolimus DMD 
1

1
 
 
 
 

• % donor-derived DYS+ fibers at injection site: 
27.5%; noninjected site: 0%;

• increased DYS in RT-PCR
• 70% increase in metacarpal flexion strength
• increased DYS in immunofluorescence;
• 70%–100% increase in metacarpal flexion 

strength

Thumb paresthesia 49

Allogeneic Tacrolimus DMD
10

2-18 Recruiting NCT  
02196467

Autologous 
(unaffected muscle)

i.m. OPMD
12

24 • stabilization of pharyngeal propulsion; 
• improved upper esophageal sphincter function 

(6/12); 
• dose-dependent improvement in drinking test

51

Autologous 
(unaffected muscle)

i.m. OPMD 
10

Ongoing NCT 
02878694

The number of patients with a specific parameter is indicated as a fraction of total patients considered. DYS, dystrophin; Immun. sup., immune 
suppression; qPCR, quantitative PCR; RT-PCR, reverse transcription PCR.
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cessfully transplanted into immune-competent mice, supporting 
the idea that MSCs have immune-evasive properties (83).

Local and intravenous injections of human adipose-derived 
stromal cells were able to engraft in muscles of GRMD dogs and 
express human dystrophin (84). Stromal cells obtained from 
human dental pulp were administered to GRMD dogs, resulting 
in significant engraftment in muscles but only modest human dys-
trophin expression after systemic multiple deliveries (85). These 
findings support the idea that MSCs may exert antiinflammatory 
or paracrine effects (23).

The effects of intravenous administration of human umbil-
ical cord–derived MSCs (UC-MSCs) were studied in one pedi-
atric and two adult BMD patients (86). Although histology of 
muscle biopsies did not reveal any improvement, the clinical 
examination reported gait improvement in the pediatric patient 
(86). In a subsequent study, nine DMD patients received a com-
bination of intramuscular and systemic administration of allo-
geneic UC-MSCs (NCT02484560) (Table 2). Pulmonary func-
tion, a readout of diaphragmatic activity, was improved in all 
patients (87). Variable induction of dystrophin expression was 
reported in all patients, and although limb muscle strength was 
not significantly different between pre- and post-treatment, the 
majority of the treated patients exhibited a reduction in creatine 
kinase levels (87).

Cardiosphere-derived cells. Recent evidence suggests a prom-
ising role of a cardiac population of stromal cells, referred to as 
cardiosphere-derived cells (CDCs) (88). Preclinical studies, which 

evaluated beneficial effects in dystrophic heart as the primary 
outcome, demonstrated that CDCs delivered systemically in mdx 
mice improved also the skeletal muscle phenotype (89, 90). How-
ever, these effects appeared to be due not to genetic restoration 
of dystrophin, but rather to effects possibly related to exosomes 
secreted by the transplanted cells. Intriguingly, in a clinical trial of 
the intracoronary injection of CDCs in 25 DMD patients, a mea-
sure of upper limb strength was greater in the 13 treated patients 
compared with the 12 controls (91). These findings have led to 
an additional clinical trial (NCT03406780) in which CDCs were 
injected intravenously in a cohort of mostly (80%) nonambulatory 
DMD patients (Table 2).

Bone marrow–derived/blood-borne cells. Despite initial enthu-
siasm that bone marrow–derived hematopoietic cells might serve 
as a source of myogenic progenitors and that bone marrow trans-
plantation could then be a treatment for muscular dystrophies (92, 
93), long-term studies in which bone marrow transplantation was 
performed in mdx mice found a negligible effect: only 0.09% of 
the myofibers became chimeric during the entire lifespan of the 
mice (94). These negative results were confirmed in a study per-
formed in dystrophic dogs (95). Inefficient contribution of cells 
of the hematopoietic lineage into myofibers was also observed in 
DMD patients (96, 97).

The inefficiency of bone marrow cells in complementing 
dystrophin expression in dystrophic patients led to a search for 
alternative sources of circulating myogenic progenitors. A popu-
lation of cells expressing CD133 and exhibiting myogenic poten-

Table 2. Selected cell therapy clinical trials for DMD involving nonmyoblast cell types

Cell therapy approach
No. of 

patients
Time point 

(mo) 

Outcome
Reference or 

trial ID
Cell type Donor Genetic 

correction
Route Immun sup Efficacy  Side effects/

Adverse events
MABs HLA-matched  

siblings
No i.a. Tacrolimus  

(+ steroids)
5 2 • DNA chimerism: 0–0.69%

• modest amount of donor-
derived DYS in 1 patient

• transient functional 
stabilization (2/5)

Atrial fibrillation, 
thalamic stroke (1/5); 
cutaneous reticulum 
(2/5)

62

MABs Autologous Yes (exon-
skipping 
snRNA)

i.a. 5 Ongoing EudraCT 2019-
001825-28

MSCs Allogeneic  
(umbilical cord–WJ)

No i.m. and i.a. 9 2, 9, 24 • increased DYS+ fibers after 
injection (9/9) 

• increased DYS in qPCR (8/8);
• reduction in CK levels (7/9 

after 24 mo) 
• improved pulmonary function

87

MSCs Autologous (BM) 20 Recruiting NCT 03067831
CDCs Allogeneic No i.c Steroids 13 6,12 • decreased cardiac fibrosis  

and improved inferior wall 
systolic thickening (MRI) 

• preservation of upper limb 
performance (8/9 lower-
functioning patients) 

Transient immune 
response against 
donor HLA antigens 
(1/13); atrial 
fibrillation (5/13); cTn 
increase (13/13)

91

CDCs Allogeneic No i.v, 20 Ongoing NCT 03406780

The number of patients with a specific parameter is indicated as a fraction of total patients considered. BM, bone marrow; CK, creatine kinase; cTn, cardiac 
troponin; DYS, dystrophin; i.a., intra-arterial; i.c., intracoronary; Immun. sup., immune suppression; qPCR, quantitative PCR; snRNA, small nuclear RNA; 
WJ, Wharton jelly.
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tial when cocultured with myogenic cells was identified in the 
blood and muscle of DMD patients (98, 99). CD133+ cells were 
shown to ameliorate the dystrophic phenotype upon transplan-
tation in different dystrophic mouse strains (98–100). Intramus-
cular and intra-arterial delivery of genetically corrected CD133+ 

cells, isolated from DMD patients and transduced with lentiviral 
vectors expressing antisense oligonucleotides with exon-skip-
ping ability, resulted in dystrophin expression and a recovery 
of muscle function in mdx/SCID mice (99). Similarly corrected,  
autologous, muscle-derived CD133+ cells were shown to 
increase the number of dystrophin-positive fibers when injected 
intra-arterially in GRMD dogs (101).

Pluripotent stem cells
Pluripotent stem cells (PSCs), comprising embryonic stem cells 
(ESCs) and induced pluripotent stem cells (iPSCs), are partic-
ularly appealing in regenerative medicine because they can be 
propagated indefinitely in the undifferentiated state but retain the 
capacity to differentiate to all somatic tissues (102, 103). Protocols 
to obtain muscle progenitors from PSCs are creating possibilities 
for cell therapy for DMD (104).

Initial studies aimed at the generation of myogenic pro-
genitors involved the formation of embryonic bodies (EBs) and 
led to poor myogenic differentiation, which was attributed to 
spontaneous differentiation into heart progenitor cells (105). 
To increase differentiation along the skeletal myogenic lin-
eage, forced overexpression of the transcription factor MyoD 
was attempted, but the resulting increase in differentiation 
remained suboptimal and failed to produce myogenic self- 
renewing cells (106). Strategies relying on antibodies recogniz-
ing myogenic and mesenchymal markers and selective media 
compositions were used to isolate a minority of engraftable 
myogenic progenitors appearing in ESC cultures (107, 108). 
Notably, generation of mouse myogenic precursors endowed 
with in vivo regenerative potential was also achieved by the 
expressing of a central regulator of embryonic myogenesis, 
PAX3, during EB-PSC differentiation (109). Similar approaches  
based on overexpression of PAX7 were subsequently used to 
generate human skeletal myogenic precursors from both ESCs 
and iPSCs (110, 111). These PSC-derived myogenic progenitors 
were shown to promote substantial muscle regeneration and to 
seed the MuSC compartment when delivered systemically or 
intramuscularly to mdx mice (109, 110, 112, 113).

As an alternative to transcription factor transfection, directed 
differentiation of PSCs to form myogenic progenitors has met with 
success. The first study to reprogram, differentiate, genetically 
correct, and transplant human iPSC–derived myogenic cells from 
patients with muscular dystrophy involved the differentiation of 
cells toward MAB-like cells (114). Human and mouse myogenic 
progenitors have been generated from PSCs by the inclusion of 
factors important for muscle development in the medium (115, 
116). Notably, those culture conditions resulted in production of 
PAX7+ cells resembling quiescent MuSCs. When transplanted in 
vivo in a preclinical model of DMD, the myogenic cells form large 
foci of myofibers (115).

It was also demonstrated that genetically corrected DMD 
myogenic cells derived from human PSCs (hPSCs; using CRISPR/

Cas9 technology) could be directed to differentiate and restore 
dystrophin in immune-deficient mdx mice to levels approaching 
those observed in cells directly isolated from fetal tissues (117, 
118). Work from different laboratories further expanded both gene 
correction strategies and myogenic cell induction/selection proto-
cols applied to PSCs (111, 119–122).

Notably, a recent study reported the production of myogenic  
progenitors from teratomas derived from murine PSCs (123). 
This protocol relies on isolation of myogenic progenitors from 
teratomas developed from PSCs injected in injured dystrophic 
muscle. Importantly, the ability to colonize host muscle after 
intramuscular injection appears to be greater in teratoma- 
derived cells than in myoblasts and PAX-modified PSCs. Tera-
toma-derived cells can also give rise to functional MuSCs (123). 
Further studies will address whether teratoma-derived myo-
genic cells are suitable for systemic delivery and whether they 
can be derived from human teratomas.

Direct reprogramming to myogenic progenitors. Protocols involv-
ing overexpression of myogenic regulatory factors have been pro-
posed to efficiently derive myogenic progenitors from sources 
different from PSCs, in a process of direct reprogramming that is 
applicable to fibroblasts from DMD patients (124). This approach 
was used to generate myogenic progenitors for testing in trans-
plantation paradigms in mdx mice (125). Direct reprogramming of 
accessible autologous cell types may represent a clinically relevant 
alternative to PSC-derived cells.

Cell therapy in dystrophic heart
Over the past two decades, more than 200 trials based on cell 
transplantation have been performed in patients affected by car-
diovascular diseases. These trials have involved different cell 
types, such as skeletal myoblasts, bone marrow–derived cells, 
MSCs, and cardiac-resident progenitors (126). However, the effi-
cacy of these cells remains controversial, and the absence of a gen-
eral consensus has limited the transition of these therapies from 
investigational to general practice (127). In particular, the poor 
ability to differentiate into cardiomyocytes and the resulting risks 
of promoting ventricular arrhythmias are limiting the application 
of myoblast transplantation (128).

The ideal cell type to use in DMD heart would generate 
new cardiomyocytes expressing dystrophin, which would con-
fer long-term protection against the disease process. Similar to 
what has been reported for skeletal muscle, restoring 15%–20% 
of normal levels of dystrophin appears to be sufficient to pre-
vent cardiac disease progression (129). Preclinical studies in 
dystrophic mice have investigated the cardiac effects of cells 
that had previously been tested in skeletal muscle. Bone mar-
row transplantations in mdx mice suggest a limited contribution 
of bone marrow–derived cells to the cardiomyocyte pool (92). 
Aorta-derived MABs, which can be induced to differentiate into 
beating cardiomyocytes in vitro, can delay the onset of cardio-
myopathy upon transplantation into the hearts of severely dys-
trophic mice (53, 130). Intriguingly, a population of MABs, able 
to spontaneously differentiate into functional cardiomyocytes 
and referred to as cardiac MABs, was isolated from ventricles 
of postnatal hearts (131). Although not yet tested in dystrophic 
settings, cardiac MABs efficiently generate new myocardium 
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An important limitation is that MuSCs lose their regenerative 
potential when expanded ex vivo (35, 133). Similarly, CD133+ cells, 
SP cells, and MABs appear to be defective when isolated from 
diseased muscles (134–136). Since the first pioneering studies on 
myoblast transplantation, there has been much interest in devel-
oping culturing conditions to preserve the regenerative potential 
of transplanted cells (45). Most studies were initially centered on 
myoblasts and MuSCs, but findings can potentially be extended 
also to other cell types (Figure 2). A promising approach uses bioen-
gineering principles to more closely mimic, in terms of tissue rigid-
ity, the natural microenvironment, where MuSCs are maintained 
(137, 138). Alternative approaches rely on modulation of signaling 
pathways that maintain stemness and suppress terminal myogenic  
differentiation (35, 139–143). Additionally, epigenetic regulators 
have been studied as potential ways to enhance the therapeutic 
potential of MuSCs (144). Genetic manipulation was also shown to 
be a suitable approach, as exemplified in a study in which reversible 
cell immortalization was obtained with excisable hTERT and Bmi1 
transgenes, in both DMD MuSCs and MABs (145). Additionally, 
different reports suggest that interfering with genes controlling the 
myogenic program may preserve muscle cell regenerative poten-
tial (146, 147). Finally, lowering oxygen tension close to physiolog-
ical levels was shown to improve the self-renewal of myoblasts and 
transplantation efficiency in mdx mice (148).

Poor engraftment is another obstacle hindering the success 
of cell transplantation approaches, which depend on different 

in ischemic murine hearts (131). More recently, the observation 
that iPSCs may be obtained from DMD patients, genetically  
corrected, and differentiated to functional cardiomyocytes has 
paved the way for future investigations for the treatment of 
dystrophic cardiomyopathy (117). Finally, CDCs were shown 
to improve cardiac myopathy after intra-cardiac or intravenous 
delivery in mdx mice (89, 90).

Recently, a phase I/II randomized, controlled, open-label trial 
(NCT02485938) assessed the safety and efficacy of intracoronary 
allogenic CDCs in DMD patients with established cardiomyopa-
thy (91). CDC administration appeared safe and demonstrated 
signs of efficacy. The sustained changes in scar and regional func-
tion are reminiscent of the responses to CDC observed in a recent 
trial of ischemic cardiomyopathy (132). The results of a recently 
completed follow-up phase II double-blind, placebo-controlled 
clinical trial (NCT03406780), in which CDCs were infused intra-
venously, await publication.

Challenges and future perspective
To date, only MuSC-derived myoblasts, MABs, CD133+ cells, 
MSCs, and CDCs have been evaluated in clinical trials, and only in 
studies involving a limited number of dystrophic patients (Table 1 
and Table 2). Despite some positive indications in terms of safety 
or functional/histological recovery, these therapeutic options are 
still preliminary. Many obstacles continue to limit the clinical use 
of cell therapy in dystrophic settings.

Figure 3. Strategies aimed at increasing in vivo engraftment of transplanted cells. (A–C) Approaches to enhance productive engraftment in cell transplan-
tation experiments include targeting the cells to be transplanted and priming the recipient tissue. Productive engraftment is schematized by a transverse 
section of a transplanted muscle showing an increased proportion of fibers replenished by the transplanted cells (marked as blue fibers) compared with “No 
treatment condition,” as well as a reduction in the dystrophic pathology.

https://www.jci.org
https://www.jci.org
https://www.jci.org/130/11


The Journal of Clinical Investigation   R E V I E W

5 6 6 0 jci.org   Volume 130   Number 11   November 2020

a systematic investigation of the molecular and cellular events 
controlling these processes.

An additional determinant of productive cell therapy is the 
control of the immune response against transplanted allogenic 
cells or against autologous cells expressing a foreign therapeu-
tic gene (176). The exact mechanisms underlying rejection are 
still under active investigation, but increasing evidence suggests 
a major role for T lymphocytes (101, 177, 178). The optimization 
of protocols to minimize the immune response will be crucial for 
the success of cell therapy in dystrophies and will require careful 
evaluation of the immunogenic properties of the specific cell pop-
ulation to be transplanted (44, 81, 84, 179), selection of effective 
immunosuppressant drugs that are not toxic to the transplanted 
cells (180, 181), and identification of the optimal dosage and dura-
tion of immunosuppression to balance efficacy and undesired side 
effects. Indeed, evidence suggests that transient immunosuppres-
sion might be sufficient to ensure the long-term retention of trans-
planted cells (182, 183).

For most of the cell populations that have been tested, the 
relative contribution of paracrine effects versus gene comple-
mentation is unknown. An understanding of these issues will 
facilitate the definition of effective cell therapy protocols. The 
experience gained with recent preclinical and clinical studies 
will lead to improved clinical trial design (184). These optimi-
zations, together with the recent progress in gene correction 
strategies, will pave the road for future evaluation of cell ther-
apy in muscle diseases.
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parameters such as homing to the degenerating skeletal muscle, 
intramuscular diffusion, survival, and proper functional mat-
uration of the transplanted cells. Attempts have been made to 
modulate key molecular determinants controlling these param-
eters (Figure 3). The amount of donor muscle formed reportedly  
increased after exposure of donor myogenic cells, before or 
during their implantation, to factors altering the activity of sig-
naling pathways initiated by FGF, IGF, IL-4, Wnt7a, and TGF-β 
superfamily members (149–153). Other approaches attempted 
to increase the survival of grafted cells by preconditioning cells 
with stressful stimuli or interfering with signaling pathways con-
trolling cell death (154, 155). Several injectable biomaterials have 
also been shown to improve survival and the maturation of cells 
transplanted in dystrophic muscles (156, 157).

Several strategies targeting the recipient tissues reportedly 
increase engraftment (Figure 3). Exercise or induction of mild 
local damage was shown to improve transplantation efficiency 
of different cell types (158–160). Promoting neovasculariza-
tion enhances engraftment of myoblasts, MABs, and MDSCs 
(161–163). Modifying extracellular matrix or inhibiting profi-
brotic molecules improves muscle engraftment (161, 164–167). 
The inflammatory state of recipient muscles also seems to play 
a key role in controlling transplantation outcome, as intramus-
cular coinjection of macrophages with myoblasts enhanced their 
engraftment (168). Moreover, intramuscular overexpression of 
the cytokine HMGB1 and the antiinflammatory action of a nitric 
oxide–releasing derivative of flurbiprofen increase the efficacy 
of MAB therapy (169, 170).

One of the greatest challenges for cell therapy in muscu-
lar dystrophies is effective systemic delivery. The selection of 
a proper route of administration appears to be crucial. Arterial 
delivery seems to be an absolute requirement to escape filter 
organs, which are likely to prevent any intravenously delivered 
cells from reaching muscles throughout the body, and to ensure 
muscle targeting with consequent genetic complementation 
(54, 171). Another important aspect influencing the outcome of 
systemic delivery is the ability of the transplanted cells to cross 
the blood vessels and colonize the recipient muscles. Notably, 
promising attempts were recently made to enhance transendo-
thelial migratory ability in MuSC-derived myoblasts (172). Fur-
thermore, specific molecules have been shown to modulate the 
muscle homing of systemically injected CD133+ cells, MDSCs, 
SP cells, and MABs (159, 173–175). These initial studies call for 
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