## Supplemental data for:

# IL-1β-driven osteoclastogenic T regulatory cells accelerate bone erosion in arthritis

Anaïs Levescot<sup>1</sup>, Margaret H. Chang<sup>1,2</sup>, Julia Schnell<sup>1,3</sup>, Nathan Nelson-Maney<sup>1</sup>, Jing Yan<sup>1,4</sup>, Marta Martínez-Bonet<sup>1</sup>, Ricardo Grieshaber-Bouyer<sup>1</sup>, Pui Y. Lee<sup>1,2</sup>, Kevin Wei<sup>1</sup>, Rachel B. Blaustein<sup>1</sup>, Allyn Morris<sup>1</sup>, Alexandra Wactor<sup>1</sup>, Yoichiro lwakura<sup>5</sup>, James A. Lederer<sup>6</sup>, Deepak A. Rao<sup>1</sup>, Julia F. Charles<sup>1,4</sup>, and Peter A. Nigrovic<sup>1,2</sup>

<sup>1</sup>Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston MA, USA

<sup>2</sup>Division of Immunology, Boston Children's Hospital, Boston MA, USA

<sup>3</sup>Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany

<sup>4</sup>Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston MA, USA

<sup>5</sup>Center for Experimental Animal Models, Research Institute for Science & Technology, Tokyo University of Science, Tokyo, Japan

<sup>6</sup>Department of Surgery, Brigham and Women's Hospital, Boston MA, USA

#### Correspondence:

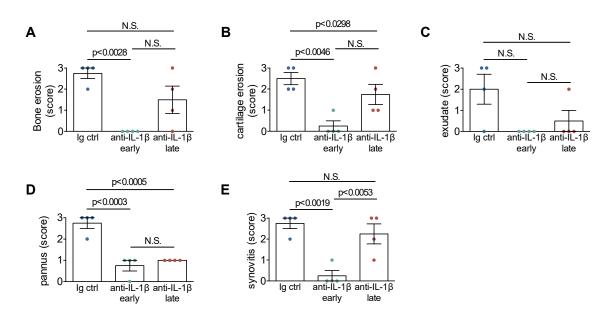
Peter A. Nigrovic, MD Chief, Division of Immunology Boston Children's Hospital Karp Family Research Building, Room 10211 One Blackfan Circle Boston, MA 02115

Ph: 617-905-1373

Email: <a href="mailto:peter.nigrovic@childrens.harvard.edu">peter.nigrovic@childrens.harvard.edu</a>

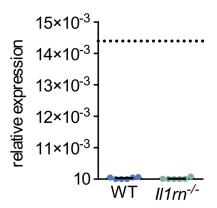
All authors declare no related conflicts of interest.

# Extended Data Table 1 $\mid$ Mass cytometry panels for analysis of $in\ vitro$ differentiated Tregs

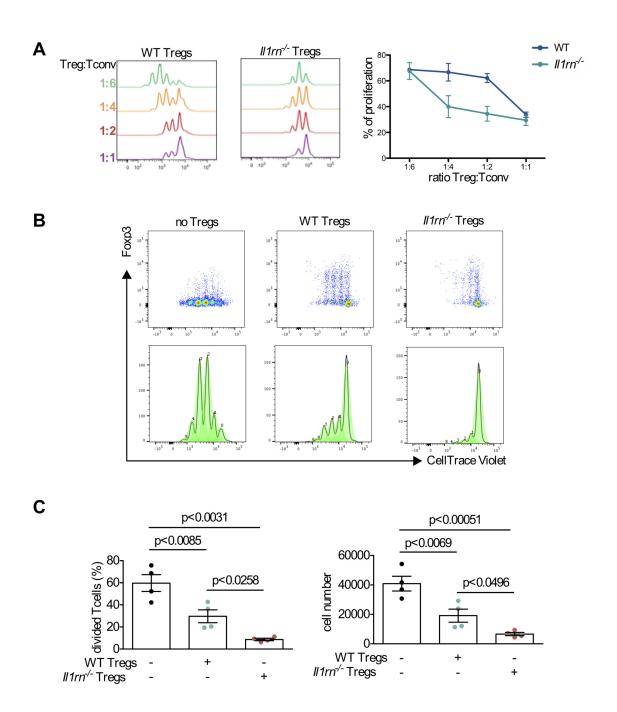

# Synovial Panel

| Target        | Clone    | Metal |
|---------------|----------|-------|
|               |          |       |
| pSTAT3(Y705)  | D3A7     | 169Tm |
| pSTAT1 (Y701) | 58D6     | 160Gd |
| pSTAT5 (Y694) | D47E7    | 174Yb |
| CD62L         | MEL-14   | 146Nd |
| Tbet          | 4B10     | 158Gd |
| CCR6          | G034E3   | 169Tm |
| CTLA-4        | UC10-4B9 | 176Yb |
| Eomes         | Dan11mag | 156Gd |
| RORgt         | AFKJS-9  | 160Gd |
| CXCR4         | L276F12  | 144Nd |
| Helios        | 22F6     | 168Er |
| CD44          | IM7      | 115In |
| CD73          | TY/11.8  | 143Nd |
| CD25          | 3C7      | 167Er |
| Foxp3         | FJK-16s  | 162Dy |
| PD-1          | 29F.1A12 | 171Yb |
| CD39          | Duha59   | 159Tb |
| CD69          | H1.2F3   | 173Yb |
| RANKL         | IK22/5   | 166Er |
| CD103         | 2E7      | 154Sm |

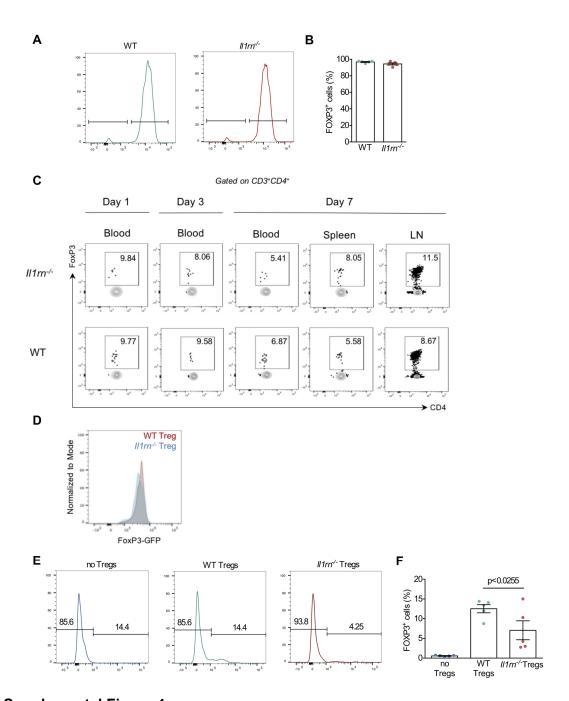
# Extended Data Table 2 | Mass cytometry panels for analysis of human synovial cells


# Synovial Panel

| Target           | Clone    | Metal |
|------------------|----------|-------|
| CD45             | HI30     | 141Pr |
| CD19             | HIB19    | 142Nd |
| RANKL            | MIH24    | 143Nd |
| CD64             | 10,1     | 144Nd |
| CD16             | 3G8      | 145Nd |
| CD8a             | RPA T8   | 146Nd |
| FAP              | Poly     | 147Sm |
| CD20             | 2H7      | 148Nd |
| CD45RO           | UCHL1    | 149Sm |
| CD38             | HIT2     | 150Nd |
| CD279/PD-1       | EH12.2H7 | 151Eu |
| CD14             | M5E2     | 152Sm |
| CD69             | FN50     | 153Eu |
| CD185/CXCR5      | J252D4   | 154Sm |
| CD4              | RPA T4   | 155Gd |
| Podoplanin       | NC-08    | 156Gd |
| CD3              | UCHT1    | 158Gd |
| CD11c            | Bu15     | 159Tb |
| CD307d/FcRL4     | 413D12   | 160Gd |
| CD138            | MI15     | 161Dy |
| CD90             | 5E10     | 162Dy |
| CCR2             | K036C2   | 163Dy |
| Cadherin 11      | 3C10     | 164Dy |
| FoxP3            | PCH101   | 165Ho |
| CD34             | 581      | 166Er |
| CD146/MCAM       | SHM-57   | 167Er |
| IgA              | 9H9H11   | 168Er |
| TCRgd            | B1       | 169Tm |
| ICOS             | C398.4A  | 170Er |
| CD66b            | G10F5    | 171Yb |
| IgM<br>CD144/VE- | MHM-88   | 172Yb |
| Cadherin         | BV9      | 173Yb |
| HLA-DR           | L243     | 174Yb |
| IgD              | IA6-2    | 175Lu |
| CD106/VCAM-1     | STA      | 176Yb |



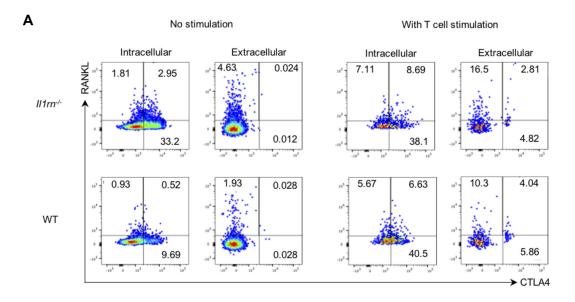

(**A,E**) *Il1rn*<sup>-/-</sup> mice were treated with anti-IL-1 $\beta$  or isotype-matched IgG (n=4) (5mg/kg i.p. 1 time per week) for 2 weeks either at weaning (early treatment, n=4) or 14 days after weaning (late treatment n=4). d, Histological evaluation of bone erosion in knee joints (**A**), cartilage erosion (**B**), exudate (**C**), pannus (**D**) and synovitis (**E**).

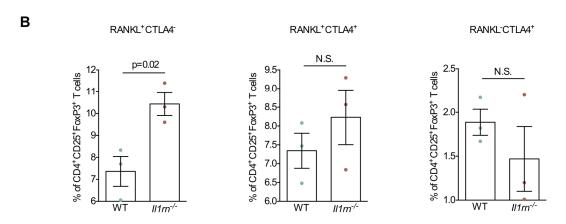





**Supplemental Figure 2** RT-PCR of II17a in sorted CD4+Foxp3eGFP+ Treg cells from WT and *II1rn*<sup>-/-</sup> mice, n=6 per group (dotted line: limit of detection).




(A) Foxp3<sup>+</sup> cells from WT mice or *ll1rn*<sup>-/-</sup> mice were cocultured with WT Foxp3<sup>-</sup> cells stained with CellTrace Violet (n=4 per group). Tregs (CD3<sup>+</sup>Foxp3<sup>+</sup>) and Tconv (CD3<sup>+</sup>Foxp3<sup>-</sup>) were co-cultured in different ratios. (1:6, 1:4, 1:2, 1:1). Proliferation of WT and *ll1rn*<sup>-/-</sup> CD3<sup>+</sup>Foxp3<sup>-</sup> cells was measured following 72 h of coculture. (**B,C**) Tconv were stained with CellTrace Violet and cultured without Tregs, with WT Tregs or *ll1rn*<sup>-/-</sup> Tregs and CellTrace Violet staining was assayed by flow cytometry. (**C**) Percentage of divided Tconv and cell number after. 72h of co-culture (n=4 per group). (**C**) One-way ANOVA.




(**A,B**) Foxp3<sup>eGFP+</sup> cells from WT and *ll1rn*-/- mice were sorted and stimulated in vitro from 72h with CD3/CD28 beads. (**C**) T cells from FoxP3-GFP+ WT or *ll1rn*-/- mice were transfused into WT mice at Day 0. Representative flow cytometry plots show percentage of FoxP3+ T cells in blood and tissues at various timepoints after adoptive transfer. (**D**) Histogram depicting FoxP3 protein expression in donor FoxP3+ CD4 T cells at Day 7 after transfer. (**E,F**) Foxp3<sup>eGFP+</sup> and Foxp3- cells stained with CellTrace Violet from WT mice or *ll1rn*-/- mice were cocultured for 72h with CD3/CD28 beads. Foxp3 expression by CellTrace+ cells (n=5 per group).



Sorted CD3<sup>+</sup>TCR $\gamma\delta$ <sup>+</sup> and CD3<sup>+</sup>FOXP3<sup>eGFP-</sup> (Tconv) from WT and *Il1rn*<sup>-/-</sup> were sorted and co-cultured with macrophage precursor cells (n=4 per group). After 5 days of co-culture, cells were stained with tartrate-resistant acid phosphatase (TRAP) and TRAP<sup>+</sup> multinucleated cells were measured. Scale bar, 1mm





T cells purified from WT or *ll1rn*-/- mice were assessed for RANKL and CTLA4 expression. T cells stimulated with anti-CD3/anti-CD28 beads for 48 hours. (**A**) Representative dot plots showing intracellular and extracellular protein expression. (**B**) RANKL and CTLA4 cell surface expression in stimulated T regs. Mann and Whitney *t* test.