

Endothelial C3a receptor mediates vascular inflammation and BBB permeability during aging

Nicholas E. Propson, Ethan R. Roy, Alexandra Litvinchuk, Jorg Köhl, Hui Zheng

J Clin Invest. 2020. <https://doi.org/10.1172/JCI140966>.

Research In-Press Preview **Aging**

Graphical abstract

□

Find the latest version:

<https://jci.me/140966/pdf>

Endothelial C3a receptor mediates vascular inflammation and BBB permeability during aging

Nicholas E. Propson^{1,2}, Ethan R. Roy², Alexandra Litvinchuk^{2*}, Jörg Köhl³ and Hui Zheng^{1,2,4**}

¹Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA

²Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA

³Institute for Systemic Inflammation Research, Center for Infectiology and Inflammation Research Lübeck, University of Lübeck, Lübeck, Germany

⁴Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA

*Present address: Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA

****Corresponding author:** Hui Zheng, Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. Phone: 713-798-1568. E-mail: huiz@bcm.edu

The authors have declared that no conflict of interest exists.

24 **Abstract**

25 Dysfunction of immune and vascular systems has been implicated in aging and Alzheimer's
26 disease; however, their interrelatedness remains poorly understood. The complement pathway is
27 a well-established regulator of innate immunity in the brain. Here, we report robust age-dependent
28 increases in vascular inflammation, peripheral lymphocyte infiltration, and blood-brain barrier
29 (BBB) permeability. These phenotypes were subdued by global inactivation and by endothelial-
30 specific ablation of *C3ar1*. Using an *in vitro* model of the BBB, we identify intracellular Ca²⁺ as a
31 downstream effector of C3a-C3aR signaling and a functional mediator of VE-cadherins junction
32 and barrier integrity. Endothelial *C3ar1* inactivation also dampened microglia reactivity and
33 improved hippocampal and cortical volumes in the aging brain, demonstrating a crosstalk
34 between brain vasculature dysfunction and immune cell activation and neurodegeneration.
35 Further, prominent C3aR-dependent vascular inflammation is also observed in a tau transgenic
36 mouse model. Our studies suggest that heightened C3a-C3aR signaling through endothelial cells
37 promotes vascular inflammation and BBB dysfunction and contribute to overall neuroinflammation
38 in aging and neurodegenerative disease.

39

40 **Keywords:** Aging; Blood-Brain Barrier; C3aR; Complement; Endothelial Cells; Peripheral
41 Infiltration; Vasculature

42

43

44

45

46

47

48

49

50

51 **Introduction**

52 The natural aging process includes functional and structural changes within the brain (1, 2), and
53 these changes have been shown to play a role in decreased neural stem cell fitness, altered
54 cognition, and increased susceptibility for neurodegenerative disease (1, 3, 4). One such age-
55 dependent change with potentially causal association to both normal decline and disease is
56 dysfunction of the blood-brain barrier (BBB). The BBB is composed of endothelial cells,
57 astrocytes, and pericytes, and an intact BBB is essential for brain health (5). Loss of vessel
58 integrity is thought to drive BBB dysfunction, and can be found in numerous neurological disease
59 conditions, namely traumatic brain injury (6), stroke (7), and often comorbidly in
60 neurodegeneration (8). However, mechanisms controlling changes in brain vasculature and their
61 consequence to CNS function, in particular during aging, remain ill-defined.

62 Recent work has demonstrated a vascular component to age-related changes in the brain,
63 deterioration in cognition, and eventual dementia (9, 10). Furthermore, evidence that vascular
64 inflammation, marked by increased endothelial expression of vascular cell adhesion molecule
65 VCAM1, stokes CNS aging by decreasing neural stem cell number and increasing microglial
66 reactivity has been reported (11). Elevated levels of VCAM1 have also been found to correlate
67 with Parkinson's disease severity (12) and, recently, lymphocytes known to bind VCAM1 in brain
68 vasculature were found in aged and AD patient brains (13, 14). Single-cell transcriptomic analysis
69 of hippocampal brain endothelial cells (BECs) has shown that age-related changes in these cells
70 are rooted in responses to innate inflammatory cues, hypoxic stimuli, and oxidative stress (15).
71 Together, these studies suggest a significant inflammatory transition in brain vasculature with age
72 and the potential for causal connection to CNS diseases.

73 While studies of blood plasma components have implicated circulating factors in
74 maintaining or diminishing brain health during aging (16), others exploring local inflammatory cues
75 in the CNS have highlighted the inherent capacity of glia to modulate neuroinflammation (17).

76 One of the primary innate immune signaling mechanisms involved in neuroinflammation is the
77 complement pathway. Complement components are expressed by cells of the CNS and are
78 reported to influence CNS aging and neurodegenerative disease progression (18). In particular,
79 complement component C3 is capable of potentiating age-related and neurodegenerative
80 changes in the CNS (19-22). The active signaling peptide of C3, C3a, is released via cleavage
81 by the extracellular enzyme C3 convertase. Once cleaved, C3a signals through its cognate
82 receptor C3aR, which has been detected on microglia (23), choroid plexus epithelium (24) , and
83 vascular endothelial cells (25) in the brain. C3 is upregulated in astrocytes during aging and
84 disease (22, 26), and the intimate relationship of astrocytes with the BBB supports the premise
85 that C3 produced by these cells may play a direct role in age-related changes in brain vasculature.

86 Using *in vivo* and *in vitro* models we identify a mechanism by which the C3a-C3aR
87 signaling axis modulates VCAM1 expression, influences peripheral immune cell infiltration, alters
88 vascular morphology, increases BBB permeability, and potentiates microglial reactivity and
89 neurodegeneration in aged mice. We further show that this C3aR-dependent endothelial
90 phenotype is exacerbated in PS19 tau transgenic mice, a model in which elevated C3-C3aR
91 signaling was shown to modulate CNS inflammation and tau pathology (22). This study identifies
92 complement signaling as a key mediator of vascular dysfunction in brain aging and disease.

93

94 **Results**

95 **C3a-C3aR signaling regulates age-associated endothelial VCAM1 expression and immune 96 cell infiltration**

97 C3 mRNA has been shown to be upregulated in aged astrocytes (20, 26). To corroborate this
98 finding, we measured C3 protein in lysates of mouse brains at 2, 12, and 20 months of age by
99 ELISA. We detected a significant increase at 12 months, with a further increase at 20 months,
100 over levels detected in the young mice (Figure 1A). Consistent with our earlier reports in disease
101 models (21, 22), co-immunofluorescent labelling of the hippocampus showed C3 expression

102 predominantly colocalized in GFAP⁺ astrocytes where its levels were elevated during aging
103 (Figure 1, B and C, Supplemental Figure 1A). Increased C3 mRNA was further validated in FACS-
104 sorted aged astrocytes using our previously published method (27) (Supplemental Figure 1B). To
105 examine the expression of C3aR in brain vasculature, we isolated vessels from wild-type and
106 *C3ar1*^{-/-} mouse brains (28), and immunostained them with antibodies against GFAP, VE-
107 cadherin, and C3aR. Positive C3aR staining can be readily detected in VE-cadherin⁺ BECs in
108 wild-type, but not *C3ar1*^{-/-} vessels (Figure 1D). High resolution confocal imaging analysis of CD31,
109 Glut1, and C3aR on mouse brain vasculature revealed a greater polarization of C3aR toward the
110 basolateral surface whereas Glut1 localized predominantly toward the vessel lumen (Figure 1E,
111 Supplemental Figure 1C). In contrast to the endothelial expression, co-staining for C3aR and the
112 pericyte marker PDGFR β did not detect appreciable colocalization (Figure 1E). Flow cytometry
113 analysis of human brain microvascular endothelial cells (HBMECs) showed high levels of
114 positivity for VE-Cadherin (80.9%) and Glut1 (94.2%) as expected, and this positivity was also
115 observed for C3aR although to a lesser degree (34.3%) (Supplemental Figure 1D). Together,
116 these results establish C3aR expression in brain vascular endothelial cells and support a signaling
117 axis involving astroglial C3 and endothelial C3aR at the BBB.

118 To assess the functional role of this signaling pathway, we first analyzed the expression
119 of VCAM1, as it has been implicated in complement-mediated activation of BECs in both LPS-
120 induced neuroinflammation (29) and ischemia models (30). Co-immunofluorescent labelling of
121 brain cortical vasculature revealed that VCAM1 expression was restricted to CD31⁺ vasculature,
122 where its levels were increased with age in wild-type mice, but not in *C3ar1* null mice (Figure 1,
123 F and G). A similar reduction in vascular VCAM1 was also seen after treating 2-, 12-, and 20-
124 month-old mice with the C3aR antagonist (C3aRA) SB290157 (Supplemental Figure 2, A and B),
125 further confirming our genetic study and validating the inhibitory effect of the C3aRA. The same
126 is true when hippocampal samples were analyzed (Supplemental Figure 2C). We then performed
127 deeper analysis by measuring *Vcam1* mRNA levels in FACS-sorted mouse BECs from 2-, 12-,

128 and 20-month-old cohorts treated with vehicle or C3aRA, which showed increased *Vcam1*
129 expression with age in vehicle treated samples, but blunted expression with C3aRA treatment
130 (Supplemental Figure 2D).

131 To substantiate this signaling pathway in human cells and to test a direct effect of C3a-
132 C3aR signaling, we treated primary HBMECs with recombinant human C3a, with or without
133 C3aRA, and found a robust increase in *Vcam1* expression by C3a treatment, which was quelled
134 in the presence of C3aRA (Supplemental Figure 2E). Interestingly, other adhesion molecules,
135 namely *Sele* and *Icam1*, were not significantly changed by this treatment (Supplemental Figure
136 2, F and G). Additionally, similar ICAM1 immunointensities (Supplemental Figure 2, H-J) and
137 *Icam1* mRNA levels (Supplemental Figure 2K) were detected in 2- and 20-month-old mouse
138 brains. Together, these data support both the necessity and sufficiency of C3a signaling in
139 modulating VCAM1 expression in brain endothelial cells.

140 Next, we examined the functional consequence of C3-mediated VCAM1 upregulation. It
141 has been previously shown that increased numbers of peripheral lymphocytes are found in the
142 aged brain (31) and reside in the neural stem cell niche of the subventricular zone (13). Since
143 adhesion molecules regulate the process of rolling adhesion and extravasation of immune cells,
144 we hypothesized that increased brain VCAM1 expression in vasculature during aging may be
145 associated with increased peripheral immune cell infiltration. Using FACS to discriminate
146 CD45^{hi}/CD11b⁻ lymphocytes (LY) from CD45^{hi/mid}/CD11b⁺ monocytes (MN) and microglia (MG) in
147 dissociated brain tissues, we found increasing proportions of CD45^{hi}/CD11b⁻ infiltrates at 12 and
148 20 months compared to 2-month-old controls (Figure 2, A and B). In contrast, monocytes were
149 not significantly changed with age (Supplemental Figure 3A). We next asked whether, in addition
150 to reducing VCAM1 expression levels, blocking C3aR signaling could reduce age-related
151 lymphocyte infiltration. Flow cytometry analysis of 12- to 14-month-old *C3ar1*^{-/-} mice revealed a
152 reduction in the total percentage of CD45^{hi}/CD11b⁻ infiltrating lymphocytes in the brain compared
153 to wild-type controls (Figure 2, C and D), while monocytes were unaffected (Supplemental Figure

154 3B). Similar reductions in CD45^{hi}/CD11b⁻ infiltrating lymphocytes but not monocytes were
155 observed after treating 20-month-old wild-type mice with C3aRA (Supplemental Figure 3, C-E).

156 Since acute neuroinflammation induces peripheral immune cell infiltration (29), we tested
157 the role of C3aR in recruiting these cells following intracerebroventricular (i.c.v.) administration of
158 LPS in 3- to 4-month-old wild-type and *C3ar1*^{-/-} mice (Supplemental Figure 4A). As expected,
159 LPS challenge led to increased lymphocyte (Supplemental Figure 4B) and monocyte
160 (Supplemental Figure 4C) infiltration in the brains of wild-type mice. In contrast, genetic ablation
161 of *C3ar1* blunted the infiltration of CD45^{hi}/CD11b⁻ peripheral lymphocytes (Supplemental Figure
162 4B) while monocyte cell numbers were only marginally affected (Supplemental Figure 4C).
163 Consistent with the specific regulation of VCAM1 by C3a-C3aR signaling, deletion of *C3ar1*
164 significantly suppressed *Vcam1* gene expression induced by LPS without affecting *Sele* and
165 *lcam1* in FACS-sorted BECs (Supplemental Figure 4D).

166 To access whether the LPS-induced acute neuroinflammation affects BBB permeability,
167 we analyzed each group using a tail-vein injection of a BBB impenetrable TRITC-Dextran dye
168 (65-85 kDa). Interestingly there was no significant increase in BBB permeability under acute
169 neuroinflammatory stimuli that contributed to this infiltration event (Supplemental Figure 4E). To
170 confirm the induction of neuroinflammation by LPS, we analyzed sorted microglia from the vehicle
171 and LPS treated animals and found consistent microglial gene response signatures as we have
172 previously reported (27) (Supplemental Figure 4F).

173 Together these results suggest that C3a acts through endothelial C3aR to promote
174 VCAM1 expression, and that during both aging and acute neuroinflammation, this pathway plays
175 a role in selective infiltration of lymphocytes into the brain.

176

177 **CD8⁺ T cells preferentially infiltrate the aged brain**

178 We next examined the lymphocyte sub-types infiltrating the aged brain and compared these with
179 the cells of the aged spleen to better understand the global changes to lymphocyte composition

180 in aged tissues. Dissociated cells from 20-month-old wild-type brain or spleen were
181 immunostained using anti-CD45, anti-CD11b, anti-CD3 ϵ , anti-CD19, anti-CD8a, and anti-CD4
182 antibodies. Following antibody staining cells were analyzed by flow cytometry to differentiate
183 monocytes (MN), microglia (MG), and lymphocytes (LY) (Figure 3A, left panels). Further
184 subtyping was carried out analyzing T-lymphocyte (TC) vs. B-lymphocyte (BC) composition
185 (Figure 3A, middle panels), and T-lymphocyte subtyping to differentiate CD8 $^{+}$ vs. CD4 $^{+}$ T cells
186 (Figure 3A, right panels). In 20-month-old wild-type mice, we found infiltrating lymphocytes were
187 predominantly CD3 $^{+}$ (75%) vs. CD19 $^{+}$ (10%), while analysis of matched spleens showed
188 significantly more CD19 $^{+}$ (65%) cells vs. CD3 $^{+}$ (25%) cells (Figure 3B), suggesting that the aged
189 brain preferentially recruits CD3 $^{+}$ T cells compared to aged spleen. Further analysis of brain CD3 $^{+}$
190 T cells showed that the majority were CD8 $^{+}$ T cells (75%) instead of CD4 $^{+}$ T cells (15%), which
191 also inversely correlated with the peripheral splenic tissue where CD4 $^{+}$ T cells were significantly
192 more abundant than CD8 $^{+}$ T cells (Figure 3C). This data suggests that CD8 $^{+}$ T cells are
193 preferentially recruited to the aged brain compared to other lymphocyte subsets.

194 To further evaluate whether this age-dependent change was specific to brain parenchyma
195 representing potential infiltration we isolated the choroid plexus tissue from brain ventricles of 2-
196 and 20-month-old mice prior to dissociation, using the spleen as a control, and performed similar
197 analyses as stated above. Using the same flow cytometry gating strategy, we saw increased
198 numbers of CD3 $^{+}$ and CD8 $^{+}$ lymphocytes only in aged brains, but not in aged choroid plexus tissue
199 (Supplemental Figure 5, A-C) or spleen (Supplemental Figure 5, D-F). These data suggest that
200 age-related CD8 $^{+}$ lymphocyte infiltration is specific to brain parenchyma, and not present in other
201 immune cell rich regions of the brain or peripheral tissues.

202 To confirm that peripheral cells are recruited and infiltrate into the aged brain, we
203 employed an mT/mG reporter mouse model which produces tdTomato under the ROSA26 locus
204 (32). When crossed with Mx1-Cre mice and activated by peripheral poly I:C
205 (polyinosinic:polycytidylic acid) treatment, Cre-responsive cells in the periphery recombine to

206 express EGFP, generating a chimeric mouse (MXG) (Supplemental Figure 6A). Analysis of
207 peripheral blood mononuclear cells (PBMCs) confirmed that approximately 40% of PBMCs were
208 converted to express EGFP in MXG mice (Supplemental Figure 6, B-D). To assess brain
209 infiltration of EGFP⁺ peripheral cells during aging, we injected mice with poly I:C at 2 months of
210 age and allowed mice to age to 15 months. Flow cytometry analysis of dissociated brains showed
211 approximately half of infiltrating CD45^{hi}/CD11b⁻ lymphocytes expressed EGFP in 15-month-old
212 MXG brains (Supplemental Figure 6, E-G), demonstrating that lymphocytes in aged brains are
213 peripherally derived. Confocal imaging of the aged brain tissue confirmed the presence of EGFP⁺
214 infiltrated peripheral immune cells along the basolateral surface of tdTomato⁺EGFP⁻ brain
215 vessels, further indicating the peripheral origin of the cells (Supplemental Figure 6H).

216 To better understand the regional distribution of these CD8⁺ infiltrates we analyzed 2- and
217 20-month-old mouse brain tissue by immunostaining with antibodies against CD8 to mark the T
218 cells of interest and Col IV to mark the endothelial basement membrane (Figure 3, D and E).
219 Besides the SVZ as previously reported (13), it was clear that CD8 T cells were present in other
220 brain regions as well. Notably, the cortex (CTX), thalamus (THAL), caudate putamen (CPu), and
221 the hippocampus (HPC), all had a significant presence of CD8 T cells with age (Figure 3F). These
222 cells were found either residing along the basolateral surface with colocalized Col IV (Figure 3G
223 left panel), extravasating with minimally colocalized Col IV (Figure 3G middle panel), or fully
224 extravasated into the tissue parenchyma (Figure 3G right panel). Overall, these findings
225 demonstrate that during aging peripherally derived CD8⁺ T cells preferentially infiltrate and take
226 up residence inside the brain parenchyma in numerous tissue regions.

227

228 **Inhibition of C3aR rescues age-related changes in vascular morphology and BBB
229 permeability**

230 We next determined the effect of C3a-C3aR signaling on brain vascular morphology at different
231 ages. We performed confocal imaging and 3D reconstruction of the vasculature, visualized by

232 collagen IV (Col IV) staining, and measured the average cross-sectional area of hippocampal
233 capillaries by dividing the total Col IV⁺ volume by the total capillary length in each reconstructed
234 image. Capillaries in young mice showed an average cross-sectional area of ~60 μm^2 , whereas
235 capillaries in 12- and 20-month-old mice averaged ~40 μm^2 (Figure 4A). This reduction was
236 partially, but significantly, rescued in 20-month-old aged *C3ar1*^{-/-} mice, and in mice treated with
237 the C3aRA (Figure 4B). Analysis of each component of this measurement demonstrates a
238 decrease in total vascular volume (Supplemental Figure 7A) and an increase in vessel length
239 (Supplemental Figure 7B) during aging, both of which contribute to decreased average cross-
240 sectional area. Additionally, CD31⁺ vessels showed a higher degree of tortuosity in the aged
241 hippocampus, as previously defined by their corkscrew-like morphology (33, 34) (Figure 4C,
242 marked by rectangles). This phenomenon has been linked to decreased hemodynamic flow and
243 hypoxia in affected brain regions (33, 34). The overall incidence of tortuous vessel segments was
244 increased ~2- and ~4-fold by 12 and 20 months, respectively, over that observed in 2-month-old
245 mice (Figure 4, C and D). This vascular phenotype was rescued by both genetic ablation of *C3ar1*
246 and C3aRA treatment in 20-month-old mice (Figure 4, C and D). Thus, blocking C3aR significantly
247 improves vascular morphology in aged mice.

248 Given the observed age-associated changes in lymphocyte infiltration and vascular
249 morphology, we tested whether BBB integrity was affected by C3a-C3aR signaling. We used a
250 previously reported method allowing detection of peripherally-administered fluorescent dextran
251 leakage into the brain (35) (Figure 4E). At 2 months there was almost no detection of fluorescent
252 dextran in brain tissues, while there was a robust increase in fluorescent signal in 20-month-old
253 brains, localized around lectin⁺ vasculature (Figure 4E). Quantification of dextran levels in brain
254 homogenates of 2-, 12-, and 20-month-old mice showed an age-dependent tracer leakage into
255 the brain at 12 months (~2 fold) and 20 months (~3-fold) (Figure 4F). Treating 20-month-old mice
256 with C3aRA modestly, but significantly, reduced tracer leakage (Figure 4G).

257 To further characterize age-associated changes of BBB integrity, we examined VE-
258 cadherin⁺ intercellular junctions by confocal microscopy in vessels isolated from 2-, 12-, and 20-
259 month-old mouse brains (28), with or without C3aRA treatment (Figure 4H and Supplemental
260 Figure 7C). Quantification of immunoreactivity in both large vessels (Figure 4I) and capillaries
261 (Supplemental Figure 7D) revealed age-associated downregulation of VE-cadherin, with modest
262 but significant rescue by C3aRA treatment. Consistent with this, gene expression analysis of
263 FACS-sorted brain endothelial cells showed age-dependent reduction of *Cdh5* (encoding VE-
264 cadherin) at 12 and 20 months, along with reductions in *Ocln*, *Tjp1*, and *Cldn5* mRNAs
265 (Supplemental Figure 7E), reflecting impaired expression of junctional components. These age-
266 dependent reductions were either trending or significantly restored with C3aRA treatment
267 (Supplemental Figure 7E). Together these data suggest that C3aR inhibition partially restores
268 BBB integrity in aged brains.

269

270 **C3a-mediated barrier disruption involves Ca²⁺ mobilization, cytoskeletal activation, and**
271 **VE-Cadherin disruption**

272 To elucidate the mechanism of C3a-mediated BBB permeability *in vitro* we employed the use of
273 trans-endothelial electrical resistance (TEER) measurements. Using chopstick electrodes and an
274 EVOM2 ohmmeter to measure the resistance of electrical current in an isolated system, we could
275 directly test the effect of various molecules in an *in vitro* barrier model (Figure 5A). Our model
276 contained a co-culture of primary human astrocytes (HAssts) cultured for 2 days on the abluminal
277 surface of a semi-permeable membrane prior to the addition of HBMECs, which were cultured on
278 the luminal surface for another 4 days, while TEER was monitored for optimal resistance prior to
279 beginning treatment. We first validated the capability of this system to generate a reproducible
280 barrier. Using the TEER as a readout, we compared resistance of a cell-free membrane to barriers
281 formed by primary astrocytes or endothelial cells, or by endothelial cells co-cultured with HeLa
282 cells or primary astrocytes. We found that endothelial cells co-cultured with astrocytes, but not

283 with HeLa cells, significantly increased TEER (Supplemental Figure 8, A and B), demonstrating
284 that astrocytes promote BBB integrity *in vitro*.

285 To test the effect of C3aR signaling we treated human endothelial-astrocyte co-cultures
286 with recombinant human C3a, and used IL-1 β treatment, known to disrupt barrier integrity, as a
287 positive control (36). After a 24-hour treatment we found that C3a treatment resulted in a
288 significant reduction of TEER, similar to IL-1 β (Figure 5, B and C). C5a treatment had a marginal,
289 but not statistically significant effect (Supplemental Figure 8, C and D). C3a-induced barrier
290 dysfunction was blocked when cultures were co-treated with C3aRA (Figure 5, B and C).

291 To further elucidate the mechanism of C3aR-mediated BBB permeability we interrogated
292 intracellular Ca $^{2+}$ as a potential second messenger, given previous reports that activation of C3aR
293 triggers Ca $^{2+}$ release (37). Treating the co-cultures with ionomycin resulted in a drastic reduction
294 of TEER (Supplemental Figure 8, E and F), suggesting Ca $^{2+}$ release is sufficient to increase
295 barrier permeability. Co-treatment with C3a and the calcium chelator BAPTA-AM, to block Ca $^{2+}$
296 signaling, led to a rescue of C3a-mediated TEER reduction to the level observed with C3aRA
297 intervention (Figure 5, D and E), suggesting that calcium release is the primary mechanism of
298 barrier permeability downstream of C3a-C3aR signaling.

299 Next, we aimed to dissect the connection between changes in VE-Cadherin and Ca $^{2+}$ that
300 may result in increased barrier permeability downstream of C3aR activation. Previous work has
301 shown that various endothelial cell lines respond to C3a by forming actin stress fibers within the
302 cell (25). Following activation of the calcium-dependent kinase calmodulin, myosin light chain
303 kinase is able to phosphorylate myosin light chain (MLC) motor protein at Ser19 (pMLC) resulting
304 in stress fiber formation (38). Activation of this pathway is known to initiate a physical, tensile
305 stress at the cell membrane, disrupting VE-Cadherin $^{+}$ junctions and BBB integrity (39). Therefore,
306 we hypothesized that C3a might trigger the calcium release needed to disrupt VE-Cadherin $^{+}$
307 junctions resulting in BBB permeability.

308 To test this hypothesis, we treated endothelial cell monolayers with C3a alone or together
309 with C3aRA, BAPTA-AM, or calmodulin inhibitor W7. Immunofluorescence staining of cells
310 treated with C3a alone for 2 hrs showed a robust increase in both phalloidin⁺ F-actin stress fibers
311 and overlapping pMLC signal (Supplemental Figure 9A). To quantify the dynamics of this cellular
312 response, we analyzed changes at 2 hours, during the downward slope of barrier integrity, as
313 measured by TEER analysis, following C3a stimulation. We saw a robust increase in pMLC by
314 both immunofluorescence (Figure 5, F and G) and immunoblotting (Supplemental Figure 9, B and
315 C), both of which were blocked by C3aRA, BAPTA, or W7 treatment. When analyzing the effect
316 on VE-Cadherin we did not see overt changes by either immunofluorescence (Figure 5, F and G)
317 or by immunoblotting (Supplemental Figure 9, B and D) under all conditions, suggesting that F-
318 actin stress fiber formation and activation of pMLC, but not VE-Cadherin protein alteration, is
319 involved in the early phase of C3a-C3aR signaling. However, following 24 hours of C3a treatment,
320 pMLC levels normalized but VE-Cadherin levels were significantly reduced by both
321 immunofluorescence staining (Figure 5, H and I) and by immunoblotting (Supplemental Figure 9,
322 E and G). Co-treatment with C3aRA, BAPTA, or W7 normalized VE-Cadherin without affecting
323 pMLC (Figure 5I, Supplemental Figure 9, E-G).

324 Overall, these data establish intracellular Ca²⁺ as a second messenger downstream of
325 C3a-C3aR signaling to mediate pMLC activity and VE-Cadherin homeostasis in endothelial cells.
326 These findings suggest that there are two phases in endothelial response to C3a. First a transient
327 phase (2 hr) where endothelial cells respond quickly and rapidly to C3a signaling by forming stress
328 fibers, followed by a failed ability to maintain VE-Cadherin protein levels leading to barrier
329 permeability (24 hr).

330

331 **Endothelial-specific deletion of C3ar1 rescues vascular phenotypes, reduces microglial**
332 **reactivity, and corrects age-related neurodegeneration**

333 As *C3ar1* genetic ablation and C3aR pharmacologic inhibition were able to rescue age-related
334 changes in brain vasculature, we hypothesized that specific endothelial ablation would show
335 similar effects as global targeting, and that such a manipulation would influence age-related
336 neuroinflammation overall. The above *in vitro* studies support a role of endothelial C3aR in
337 mediating the barrier permeability. To test this hypothesis directly, we produced mice with
338 conditional deletion of *C3ar1* in endothelial cells by crossing a *C3ar1* floxed allele (40) with the
339 *Tie2-Cre* (41) mice to generate *C3ar1*^{fl/fl}; *Tie2-Cre* (T2KO) mice. Littermate *C3ar1*^{+/+} and *C3ar1*^{fl/fl}
340 mice were used as controls (CTRL). The cell-type specific knockout was confirmed by
341 immunofluorescent imaging (Supplemental Figure 10A).

342 Co-immunofluorescent staining of CTRL and T2KO mice at 3 and 12-14 months of age
343 with anti-VCAM1 and anti-CD31 antibodies revealed significant increases in cortical vascular
344 VCAM1 signal at 12-14 months of age in the CTRL group (Figure 6A). Similar to the germline
345 deletion, age-associated elevation of VCAM1 expression was almost completely attenuated in the
346 T2KO mice (Figure 6, A and B), which was also seen in hippocampus (Supplemental Figure 10,
347 B and C). Analysis of vessel morphology by CD31 staining and 3D reconstruction showed a
348 significant reduction in vessel cross sectional area in 12-14-month-old CTRL mice compared to
349 that of 3-month-old mice (Figure 6, C and D). Consistent with the VCAM1 staining, endothelial
350 deletion of *C3ar1* was sufficient to rescue the age-associated changes of vessel morphology
351 (Figure 6, C and D). These data demonstrate that specifically ablating *C3ar1* in endothelial cells
352 rescues age-related changes in brain vasculature similar to the global ablation and
353 pharmacological inactivation. Thus, endothelial C3aR plays a cell-autonomous role in mediating
354 age-dependent changes of vascular inflammation and morphology.

355 It was previously reported that reducing VCAM1 expression in endothelial cells can benefit
356 brain function (11). Thus, we tested whether inhibiting the C3aR-VCAM1 axis at the endothelial
357 cells could influence microglial reactivity. Co-immunostaining of 2- and 12-month-old wild-type
358 and *C3ar1*^{-/-} mice with microglia marker IBA1 and a marker for phagocytic microglia, CD68,

359 followed by colocalization analysis identified higher percentage of CD68 signal colocalized with
360 IBA1 in 12-month-old wild-type mice, which was completely normalized by global C3aR
361 inactivation (Figure 7, A and B). Analysis of T2KO mice and their littermate controls at 12-14
362 months showed a partial but significant reduction of CD68 immunoreactivity (Figure 7, C and D).
363 This result suggests that although C3aR is expressed in other cell types, notably microglia, it also
364 plays a role in mediating neuroinflammation in the brain by modulating the endothelial C3aR -
365 VCAM1 axis and promoting peripheral immune cell interaction at the brain vasculature.

366 To determine whether the changes of immune cells detected in the middle age (12-14M)
367 may lead to neuronal loss later in life, we performed Nissl staining of brain sections from young
368 (3M) and old (20M) wild-type CTRL mice and 20M *C3ar1*^{-/-} and T2KO mice (Supplemental Figure
369 11) and quantified hippocampal and piriform/entorhinal cortical volumes (Figure 7, E and F). We
370 found a mild, but significant reduction in tissue volumes with age in the control animals.
371 Interestingly, global and endothelial-specific ablation of C3aR lead to the comparable degree of
372 rescue (Figure 7, E and F). Together these data suggest that blocking the endothelial C3aR-
373 VCAM1 axis and restoring endothelial vascular morphology can both restore microglial function
374 and restore brain health during aging.

375

376 **C3aR modulates vascular changes in PS19 tau transgenic mice**

377 Our previous analysis of the widely used PS19 tau transgenic mouse model reported heightened
378 C3-C3aR signaling associated with hyperphosphorylated tau pathology, such that genetic
379 deletion of *C3ar1* effectively reduced tau pathology and neuroinflammation (22). Examination of
380 the previously reported brain transcriptomes of PS19 and PS19;*C3ar1*^{-/-} mice (22) clearly
381 demonstrated the capacity for C3aR to modulate the innate immune response. Further,
382 overrepresentation analysis of this gene expression data, found KEGG and Reactome pathways
383 upregulated in PS19 and downregulated in PS19;*C3ar1*^{-/-} consistent with cytokine activation,
384 leukocyte activation and migration, cell adhesion molecule interactions, and regulation or

385 activation of the cytoskeleton; all of which are consistent with endothelial responses to C3a
386 (Figure 8A). In addition to leukocyte transcripts in our pathway analysis, specific transcripts
387 identifying peripheral immune cell infiltration (*Vcam1*, *Ptpn22*, *Cd3e*, and *Cd8a*) were also
388 significantly elevated in PS19 brains (Figure 8A, Supplemental Figure 12).

389 Given the changes in endothelial processes, and peripheral immune cell response, we
390 hypothesized that the elevated C3a-C3aR-VCAM1 pathway contributes to vascular changes in
391 PS19 mice. Indeed, co-immunofluorescent analysis of cortical vasculature of 9-month-old PS19
392 mice labelled with CD31 and VCAM1 revealed a significant increase in VCAM1 expression
393 colocalized with CD31⁺ vasculature, and this phenotype was rescued to control levels by ablating
394 *C3ar1* (Figure 8, B and C). Increased VCAM1 expression in PS19 mice was accompanied by
395 drastic reduction in the average cross-sectional area of cortical brain vasculature (Figure 8, D and
396 E). Consistent with aging analysis, *C3ar1* ablation in PS19 animals significantly improved vascular
397 morphology (Figure 8, D and E). These data reveal a novel vascular phenotype associated with
398 tau pathology and suggest that the endothelial C3aR-VCAM1 axis contributes to vascular
399 dysfunction in tauopathy.

400

401 **Discussion**

402 Our data provide evidence that activated C3a-C3aR signaling in brain endothelial cells triggers
403 an increase in cell adhesion molecule VCAM1 and initiates an inflammatory transition affecting
404 brain vascular structure and function during aging. This is associated with lymphocyte infiltration,
405 altered vascular morphology, increased BBB permeability, and ultimately age-related
406 neurodegeneration. Genetic or pharmacological C3aR inhibition rescues these age-associated
407 phenotypes. Our *in vitro* BBB model implicates endothelial C3aR in the barrier disruption, and
408 downstream intracellular Ca²⁺ signaling and VE-Cadherin localization and expression as the
409 underlying mechanisms. A cell autonomous effect of endothelial C3aR is further validated by our
410 demonstration that endothelial-specific ablation of *C3ar1* phenocopies germline deletion with

411 regard to vascular phenotypes. Analysis of the endothelial-specific *C3ar1* knockout mice also
412 supports the notion that morphological and functional changes in vasculature contribute to
413 microglial reactivity and age-related neurodegeneration. Finally, we document that similar
414 vascular phenotypes and their C3aR dependency are observed in PS19 tau transgenic mice,
415 supporting a common C3a-C3aR-VCAM1 signaling pathway in mediating neuroinflammation in
416 aging and neurodegenerative disease.

417 To determine the functional consequence of the activated endothelial C3a-C3aR axis
418 during aging, we analyzed VCAM1 expression and peripheral immune cell infiltration in the brain
419 and found a substantial increase in CD8⁺ T cells, whereas genetic and pharmacologic inhibition
420 of the C3a-C3aR pathway reduced these phenotypes. This likely occurs through a VCAM1-
421 regulated manner, since the interaction of vascular VCAM1 and its lymphocyte-expressed ligand
422 VLA-4 is well established (42). These findings point toward a strong shift toward vascular
423 inflammation in brain endothelial cells during aging.

424 A recent report by Yousef et al. concluded that elevated brain VCAM1 expression
425 activated microglia and decreased neural stem cell number in aged mice (11). They also
426 addressed the peripheral immune cell contribution by using α VLA-4 blocking antibodies in 16-
427 month-old mice, showing a rescue of these phenotypes. Work by Dulken et al. also suggested
428 that increased prevalence of clonally expanded CD8⁺ T cells in the brains of 28-29-month-old
429 mice significantly hindered neural stem cell fitness in the subventricular zone (13). These findings,
430 along with ours, support a model of periodic immune cell infiltration and eventual clonal expansion
431 during aging. Our C3aR inhibition studies and the VLA-4 blockade by Yousef et al. suggest
432 blocking peripheral immune cell recruitment during aging may reduce microglial reactivity and
433 dampen the activated neuroimmune environment, whereas allowing this to go unchecked in old
434 mice results in further CD8⁺ T cell infiltration and clonal expansion (of both early and late recruits).
435 The partial rescue of infiltration in our 20-month-old pharmacologic inhibition model supports this
436 supposition of periodic, age-dependent waves of infiltration. Though our study does not address

437 neural stem cell fitness or fate, we did show a C3aR-dependent effect on age-related
438 neurodegeneration in our *C3ar1* null and T2KO mouse models. Together the current findings
439 suggest that, in part, age-related neurodegeneration might be provoked by peripheral immune
440 cell interaction with or signaling to microglia. Future studies should analyze more time points
441 specifically in later stage of life to determine the exact windows of infiltration that affect brain
442 function, and clearly identify the role of these CD8⁺ T cell infiltrates. Recent work by Kolev et al.
443 showed that peripheral immune cells elevate intrinsic C3 production following diapedesis into
444 peripheral tissues (43). They suggest a prominent role for the CD4⁺ T cell interaction (via LFA-1)
445 with endothelia (via ICAM1), but also identify a similar effect in CD8⁺ T cells stimulated with
446 VCAM1, showing intrinsic upregulation of IFN- γ and C3 (43). Further dissecting this mechanism
447 with respect to CD8⁺ T cells and VCAM1 could shed light on potential feed-forward mechanisms
448 affecting microglial reactivity during aging.

449 We also analyzed structural and morphological characteristics of brain vasculature in the
450 hippocampus, as this region was previously reported to undergo age-related vascular dysfunction
451 in the form of BBB disruption and reduced cerebral blood flow (CBF) (44, 45). We found that C3a-
452 C3aR signaling induced structural changes in vasculature affecting vessel cross sectional area
453 and vessel tortuosity, characteristics previously associated with impaired CBF and abnormal
454 angiogenesis (34). Additional work is needed to understand the exact impact of C3a on
455 hemodynamics. Work by the Zlokovic group has shown that the BBB undergoes aged-related
456 permeability in the hippocampus prior to disease (10, 44-46). We found that aged mouse brain
457 vessels were more permeable to a BBB impenetrable tracer dye and confirmed the loss of barrier
458 integrity by analyzing FACS-isolated endothelial cells, which showed impaired gene expression
459 of critical BBB genes (*Cdh5*, *Ocln*, *Tjp1*, and *Cldn5*). Our data shows that C3a-C3aR signaling is
460 partly responsible for these structural and functional changes in BBB integrity during aging.

461 Our data using dextran indicate that the immune cell infiltration by acute LPS treatment is
462 an active process rather than the result of compromised BBB. This interpretation differs from a

463 previous report using heavy isotope and radio-labeled proteins, which revealed increased BBB
464 permeability by LPS induction (47). While the exact cause for this discrepancy is not clear, recent
465 work from the Wyss-Coray lab identified novel, age-related receptor-mediated transcytosis
466 mechanisms for protein transfer across the BBB (48). It is possible that a similar transcytosis
467 mechanism could underlie the presence of heavy isotope or radio-labeled proteins in the brain of
468 acute neuroinflammatory models. Given this new development, further work should be done to
469 better understand BBB permeability in acute neuroinflammation.

470 Mechanistic analysis of the endothelial barrier phenotype suggests a role for calcium-
471 mediated signaling in an *in vitro* model of the BBB. Further analysis identified a potential phase
472 response where initial calcium-mediated signaling induces phosphorylation of myosin light chain
473 protein resulting in VE-cadherin protein loss at intercellular junctions. These effects were rescued
474 by inhibition of C3aR or calmodulin in endothelial cell cultures, establishing a strong link between
475 C3a-C3aR activation and calcium-mediated effects in brain endothelial cells. Together, these
476 findings show that changes in brain vessel structure, hemodynamics, and BBB permeability may
477 be directly modulated by glial reactivity and other complement-related changes seen in aged
478 brains.

479 The major focus of this study addresses the role of age-related vascular changes due to
480 C3a-C3aR signaling; however, we observed similar activation in the PS19 model of tauopathy. In
481 our previous study of this model (22), we identified a key C3aR-dependent microglial activation
482 network, and showed that blocking C3aR corrected microglial activation and other transcriptional
483 changes. Activation of the C3a-C3aR network also influenced gene expression signatures
484 consistent with peripheral immune cell activation, a phenomenon previously reported in other AD
485 mouse models (49, 50). Given this, we reasoned that impaired vasculature and endothelial cell
486 response may be partly responsible for the presence of peripheral immune cell signatures.
487 Indeed, RNA-seq analysis revealed increased levels of *Vcam1*, *Cd3e*, *Cd8a*, and *Ptpn22* genes
488 in PS19 hippocampi, and histology revealed highly altered vessel morphology. Previous work by

489 Faraco et al. demonstrated a role of hypertension in potentiating accumulation of
490 hyperphosphorylated tau, a finding which corroborates our belief that endothelial structure and
491 function may influence disease pathogenesis (51). The study by Laurent et al. used a CD3 T cell
492 depletion strategy showing that *Clec7a*, *Itgax*, *Cd68*, and even astrocytic *Gfap* mRNA levels are
493 reduced by depleting T cells. Though our current study does not address the downstream effect
494 of these vascular changes as it relates to disease progression, it does highlight a possible role for
495 endothelial cells in potentiating microglial reactivity through vascular function and peripheral
496 immune cell interactions. Together these studies position endothelial cells as the gatekeepers to
497 disease progression through the C3a-C3aR-VCAM1 axis.

498 In conclusion, our work identifies a novel complement regulatory axis at the BBB through
499 endothelial C3aR. It implicates a critical role for a C3aR-dependent endothelial inflammatory
500 transition which results in increased VCAM1 expression in the aged brain. Our data suggest that
501 blocking complement-mediated effects can have a substantial impact in improving vascular
502 health, rescuing BBB permeability, and decreasing neuroinflammation in aging and
503 neurodegeneration. Since the complement pathway is upregulated in both acute inflammatory
504 conditions, such as stroke and traumatic brain injury, and in neurodegenerative diseases, in
505 particular AD of which age is the greatest risk factor, our findings have direct implications to the
506 pathogenesis and therapeutic targeting of these age-related diseases of the brain.

507

508 **Materials and Methods**

509 **Mice and treatment**

510 The aged C57BL/6J mice were obtained from the NIH-NIA aging rodent colony. *C3ar1*-deficient
511 mice (*C3ar1*^{-/-}) mice were obtained from the Jackson Laboratory and backcrossed to C57BL/6J
512 for 5 generations. Mice were housed 2-4 per cage in a pathogen free mouse facility with ad libitum
513 access to food and water on a 12 hr light/dark cycle. Mice for the conditional knockout studies
514 were bred from a mixed background of Tie2^{cre} mice (C57BL/6J) and the *C3ar1*^{fl/fl} mice (BALB/c)
515 (40). The breeding scheme for PS19 studies was previously published by Litvinchuk et al (22).
516 Both males and females with approximately equal numbers were used for all experiments.

517 Vehicle (0.5% DMSO) or C3aR antagonist (C3aRA 1 mg/kg) were injected
518 intraperitoneally (i.p.) every other day for 4 weeks. For intracerebroventricular (i.c.v.)
519 administration of LPS, mice were placed in a Kopf stereotaxic instrument, and glass needles were
520 inserted through bore holes using coordinates to target lateral ventricles (-0.4 mm anteroposterior,
521 ± 1.0 mm mediolateral, and -2.0 mm dorsoventral from the surface of the skull at bregma). LPS
522 (2 µg/ml) or vehicle (PBS) was administered bilaterally (2 µl each side).

523 BBB analysis was followed as previously described (35). Briefly, mice were injected via
524 tail vein with 100 µls of 10 mg/ml stock TRITC–Dextran (MW 65-85 kDa; Sigma T1162). Dye was
525 allowed to naturally perfuse for 2 hours and were then perfused with PBS. One hemisphere was
526 used to determine TRITC fluorescence signal in tissue homogenates (excitation λ 550 nm,
527 emission λ 580 nm) using a plate reader (Molecular Devices Spectra Max i3x). The other
528 hemisphere was fixed in 4% PFA overnight at 4°C and switched to 30% sucrose. Sagittal brain
529 sections (30 µm) were cut on a sliding microtome, washed in PBS, and stained with Lectin-649
530 (Vector Labs DL-1178) for 30 mins at RT in PBS containing 0.4% Triton X-100, 4% donkey serum,
531 and 1% BSA to mark brain vasculature. The sections were imaged on a Leica TCS laser confocal
532 microscope at 40x under oil immersion, with a z-step of 0.5 µm over a total range of 30 µm.

533

534 **Cell culture**

535 Primary HBMECs were obtained from Cell Systems (ACBRI 376). Cells were thawed and plated
536 into T75 flasks for expansion in Lonza EGM2-MV medium (CC-3202) to reach a P4 culture. Cells
537 were sub-cultured until confluent, passaged at a 1:4 ratio into T75 flasks for P5 cultures, and
538 allowed to expand until confluent prior to freezing (EGM2-MV + 10% DMSO). Fresh vials were
539 thawed to obtain P6 cultures which were used for all further experiments.

540 Primary human astrocytes were obtained from ScienCell Research Laboratories (AM
541 1800). Cells were thawed and plated into a T75 flask for expansion in ScienCell's Astrocyte
542 Medium (AM 1801). Cells were sub-cultured until near confluence (80-90%), passaged at a 1:4
543 ratio into T75 flasks, and allowed to expand until near confluence prior to freezing (AM + 10%
544 DMSO). Fresh vials were thawed and used for all further experiments.

545 Primary mouse astrocyte cultures were prepared as described previously (20) and purified
546 using negative selection by magnetic CD11b beads (Miltenyi Biotec 130-049-601). Primary
547 HBMECs were cultured on 100 µg/ml fibronectin and collagen IV coated 24 well or 48 well plates.
548 Cells were seeded at a density of 2.5×10^5 cells/cm². When confluent cells were treated with IL-1 β
549 (10 ng/ml, R&D 201-LB-005), C3a (500 nM, R&D 3677-C3-025), C5a (250 nM, R&D 2037-C5-
550 025), Ionomycin (10 µM, Cayman 10004974), or in combination with one of the inhibitors
551 SB290157 (5 µM, Calbiochem 559410), W7 (50 µM TOCRIS 0369) or BAPTA-AM (1 µM,
552 TOCRIS 2787). Cells were analyzed after 2 hr or 24 hr treatment.

553 Trans-endothelial electrical resistance (TEER) analysis was performed using
554 combinations of primary HBMECs and primary human or mouse astrocytes in a co-culture. Briefly,
555 semi-permeable transwell inserts (Corning 3470) were coated with 100 µg/ml Fibronectin and
556 Collagen IV on the luminal surface, for 2 hours at 37°C in PBS. The remaining coating solution
557 was aspirated and the transwells were flipped over and placed into 12 well culture plates. The
558 abluminal surface was coated with poly-D-lysine (PDL) at 37°C for 2 hr and the remaining solution
559 was aspirated. While inverted, primary astrocytes were seeded to the abluminal surface at a

560 density of 1.5×10^5 cells/cm² and allowed to attach for 4-6 hrs at 37°C in 100µl AM from ScienCell.
561 The membranes were then reverted to normal position in their original culture plate and the
562 astrocytes were cultured in AM placed into the tissue culture plate (abluminal). The cells were
563 cultured for 48 hours at 37°C and endothelial cells were seeded in the luminal compartment at a
564 density of 1.5×10^5 cells/cm² in EGM2-MV. All TEER readings were measured using STX2
565 chopstick electrodes with an EVOM2 volt/ohm meter (World Precision Instruments). Cultures
566 matured over 3-4 days, and when TEER stabilized (~160-180Ω) treatments were added and
567 TEER was monitored over 24 hours. All TEER readings were normalized to the average reading
568 from two cell free inserts for each time-point recording prior to normalization to the control
569 samples.

570

571 **Brain vessel preparations**

572 Isolation of mouse brain vessels was carried out as previously described (28) with minor
573 modifications. Briefly, mice were perfused with PBS, brains were removed, and cerebellum
574 olfactory bulb and brain stem were discarded. They were stripped of dura and meninges, gently
575 sliced with a razor blade, and gently homogenized using a glass Dounce homogenizer (Kontes
576 Glass 19) all on ice. The homogenate was centrifuged, supernatant was discarded, and the pellet
577 was resuspended in a dextran solution to remove myelin debris. The resulting pellet was then
578 filtered over a 40 µm filter and vessel fragments were retained in the filter. The filter was then
579 turned over, placed on a 50 ml conical tube, and rinsed. Vessel fragments were pelleted at 300xg
580 for 5 minutes and fixed in 4% PFA for 30 minutes on ice. Fixed fragments were pelleted at 300xg
581 for 5 minutes, washed with PBS, and mounted onto manually gridded slides for staining. Vessels
582 were blocked with PBS containing 0.4% Triton X-100, 4% donkey serum, and 1% BSA for 30 min,
583 and incubated in blocking solution with primary antibody overnight at 4°C. Depending on the
584 experiment primary antibodies were used as follows: rabbit anti-GFAP (Millipore, G9269), rat anti-
585 C3aR (Hycult, 10130173), and goat anti-mVE-cadherin (AF1002). Imaging was performed on a

586 Leica TCS laser confocal microscope at 63x under oil immersion, with a z-step of 0.5 μ m over a
587 total range of 10 μ m.

588

589 **Flow cytometry analysis**

590 Flow cytometry analysis of aged brain lymphocytes was performed using CoBrA dissociation
591 strategy as previously described (27) with slight modifications for myelin/debris removal, antibody
592 staining, and for dissociation to sub-type lymphocyte markers. Briefly, adult mice were perfused
593 with PBS, brain tissues were gently minced with sterile razor blades, digested in papain
594 (Worthington Biochemical, LK003172) and DNase (Worthington Biochemical, LK003178), then
595 triturated 3-4 times using a fire-polished glass Pasteur pipette. After incubation, papain digestion
596 was neutralized with HBSS+ and the suspension was pelleted at 310 g for 5 minutes at 4°C. The
597 pellet was resuspended in 1 ml of HBSS+, transferred to an ice-cold 1.7 ml Eppendorf tube and
598 further triturated 3 times, and collecting the supernatant following a brief, low speed centrifugation.
599 The supernatant at the end of each brief centrifugation was filtered through a prewetted 40 μ m
600 cell strainer (BD, 352340) into a chilled 50-ml conical tube and centrifuged at 310 g for 5 minutes
601 at 4°C. The resulting pellet was depleted of myelin and other debris using a 20% isotonic Percoll
602 PLUS (Millipore Sigma, E0414-250ML) separation. The resulting pellet contains dissociated
603 single cells. For myeloid vs. lymphoid discrimination cells were incubated in 500 μ l HBSS+
604 containing 1:100 Mouse BD Fc Block (BD Biosciences, 553141), 1:500 rat anti-CD45-BV421 (BD
605 Biosciences, 563890), and 1:500 rat anti-CD11b-FITC (BD Biosciences, 553310) on ice for 15-
606 20mins. For subtyping the lymphocyte populations, the tissue dissociation strategy was changed
607 using Collagenase/Dispase (Millipore Sigma 10269638001) in place of papain to preserve the
608 epitopes for CD19, CD8a, and CD4. All other steps of the dissociation strategy remained the
609 same. Following tissue dissociation, cells were incubated in 1:500 rat anti-CD45-BUV395 (BD
610 Biosciences, 564279), 1:500 rat anti-CD11b-FITC (BD, 553310), hamster anti-CD3 ϵ -BV650 (BD,
611 564378), 1:500 rat anti-CD19-BV480 (BD, 566167), 1:500 rat anti-CD4-PE (BD, 553730), and

612 1:500 rat anti-CD8a-APC (BD, 553035) on ice for 15-20mins. Cells were washed twice with
613 HBSS+ and resuspended in 500 μ l of HBSS+ prior to flow cytometry analysis. Flow analysis was
614 performed using a BD LSR Fortessa equipped with 355 nm, 405 nm, 488 nm, 561 nm, and 640
615 nm lasers to minimize spectral overlap.

616 For FACS of astrocytes and endothelial cells see the tissue preparation methods using
617 papain. Following tissue dissociation cells were incubated in 500 μ l HBSS+ containing 1:100
618 Mouse BD Fc Block (BD Biosciences, 553141) LIVE/DEAD Fixable Blue Dead Cell (Thermo
619 Fisher, catalog L23105), 1:500 rat anti-CD45-BV421 (BD Biosciences, 563890), and 1:500 rat
620 anti-CD11b-FITC (BD Biosciences, 553310), 1:250 anti-CD49a-VioBright PE (Miltenyi Biotec,
621 130-107-632); and 1:100 anti-ACSA-2-APC (Miltenyi Biotec, 130-116-245), on ice for 15 20 mins.
622 Endothelial cells were sorted by first excluding CD45 $^{+}$ and CD11b $^{+}$ cells, and gating around
623 CD49a $^{+}$ cells. Astrocytes were sorted by gating triple-negativity for the former markers and finally
624 gating around ACSA2 $^{+}$ cells. Sorting was performed using a BD Aria II on the 100-micron nozzle.
625 Cells were sorted into 1.7 ml Eppendorf tubes containing 200 μ l HBSS+ followed by centrifugation
626 and lysis of pellets in Qiagen RLT buffer containing 1% β -mercaptoethanol.

627 For flow cytometry of HBMECs, cells were singularized with Trypsin EDTA (Thermo Fisher
628 25200056) for 5 minutes and trypsin was neutralized using HBSS+. Cells were pelleted by
629 centrifugation at 1500rpm and washed three times with HBSS+. Cells were fixed in 4% PFA for
630 20-30mins at 37° C. Following fixation, HBSS+ was added to tube prior to centrifugation to
631 minimize cell loss. Cells were centrifuged at 1500rpm and washed three times with HBSS.
632 Antibodies were diluted in HBSS+ and cells were stained with either appropriate IgG controls, or
633 combination of rat anti-C3aR 1:500 (R&D MAB10417), mouse anti-Glut1 1:1000 (Thermo Fisher
634 MA1-37783), and goat anti-VE-Cadherin 1:1000 (R&D MAB9381). Cells were incubated in
635 antibody solution on a benchtop rotator for 30 minutes, then washed three times with HBSS+ and
636 incubated in appropriate secondary antibodies for 30mins at room temperature in benchtop
637 rotator. Cells were washed in HBSS+ three times prior to flow cytometry analysis.

638

639 **Quantitative RT-PCR**

640 RNA was extracted from cells using the RNeasy Micro kit (Qiagen, 74004). Reverse transcription
641 was performed using the iScript Reverse Transcription Supermix (Bio-Rad, 1708840) according
642 to the manufacturer's protocol. All RNA isolated from cell pellets was converted into cDNA.
643 Quantitative RT-PCR was performed using iTaq Universal SYBR Green Supermix (Bio-Rad, 172-
644 5120) on a CFX384 Touch Real-Time PCR Detection System.

645

646 **Immunostaining and image analysis**

647 Cultured cells were fixed with 4% PFA for 20 mins at 37°C. Samples were washed with PBS and
648 then blocked and permeabilized with PBS containing 0.4% Triton X-100, 4% donkey serum, and
649 1% BSA for 30 min. Samples were incubated in blocking solution containing primary antibody
650 overnight at 4°C. Depending on the experiment primary antibodies were used as follows: rabbit
651 anti-pMLC2 S19 (Cell Signaling 3671), goat anti-hVE-cadherin (R&D AF938), or Phalloidin
652 CruzFluor 555 (sc-363794). All images were taken on a Leica TCS laser confocal microscope at
653 40x or 63x under oil immersion, with a z-step of 0.5 µm over a total range of 5 µm. Mean
654 fluorescence intensity was normalized to cell number per image and each condition consisted of
655 8-10 images (n=250-300 cells).

656 For mouse brain analysis, mice were perfused with 4% PFA, followed by 4% PFA post-fix
657 overnight at 4°C and finally transferred into 30% sucrose solution until sectioning. Sagittal brain
658 sections (30 mm) were cut on a sliding microtome and stored at -20°C in cryoprotectant. After
659 washing in PBS, sections were blocked with PBS containing 0.4% Triton X-100, 4% donkey
660 serum, and 1% BSA for 30 min, and then incubated in blocking solution containing primary
661 antibody overnight at 4°C. Depending on the experiment primary antibodies were used as follows:
662 rabbit anti-GFAP (Millipore, G9269), rat anti-C3 (Hycult, 10129042), rat anti-C3aR (Hycult,
663 10130173), anti-CD106 (Biolegend 305802) rat anti-CD31 (BD Biosciences 550274), goat anti-

664 mVE-cadherin (AF1002), goat anti-PDGFR β (R&D AF 1042), mouse anti-Glut1 (Thermo Fisher
665 MA1-37783) and rabbit anti-CollIV (Abcam ab6586). Following primary antibody staining sections
666 were washed in 1x PBS three times and stained with appropriate secondary antibodies for 1-2
667 hours and washed again before mounting.

668 For quantification of VCAM1 in the mouse cortex and hippocampus, sections were stained
669 with CD31 and VCAM1, then fluorescent signal was scanned using an EVOS FL Auto system at
670 10x. Images were then processed by ImageJ and background was subtracted before
671 quantification. Total VCAM1 positive signal was quantified as percent area for each region,
672 hippocampus or cortex. Colocalization of this signal with CD31 was confirmed for accuracy.

673 For quantification of percent occupancy of C3 in astrocytes Z-stacks (~30 μ m thick with
674 0.5 μ m step-size) were taken under 40x oil immersion, with labelling for C3, analyzed using the
675 “Spots” feature of IMARIS 9.2.1 software. Spots were generated automatically for C3
676 representation. Subsequently, Z-stacks were analyzed using the “Co-loc” feature where GFAP $^+$
677 signal was used to mask astrocyte outlines, and thresholds applied to remove background. Data
678 were then recorded as percent of ROI (GFAP $^+$ signal mask) occupied by the C3 (Spots) signal.
679 Eight images spanning CA1-CA3 were taken across 5 mice per group.

680 For quantification of average vessel cross-sectional area Z-stacks (~30 μ m thick with 0.5
681 μ m step-size) were taken under 40x oil immersion, with labelling for CollIV. Images were first
682 analyzed using the “Surfaces” feature of IMARIS 9.2.1 software to generate 3D reconstruction of
683 the vessel and a total vessel volume in μ m³. Subsequently, using the “Filaments” function, the
684 total vessel length per image was estimated by calculating individual vessel branch
685 measurements in μ m. Average cross-sectional area was determined by the proportional
686 measurement of total vessel volume by total vessel length per image. Six images spanning CA1-
687 CA3 were taken across 5 mice per group.

688 For quantification of tortuous vessel morphology Z-stacks (~30 μ m thick with 0.5 μ m step-
689 size) were taken under 40x oil immersion, with labelling for CD31. Images were manually

690 quantified by counting the number of corkscrew vessels present in projected z-stack image.
691 Images were projected in Leica LAS X software and manually scrolled through to count the
692 number of corkscrew features in hippocampal vasculature. To represent this morphology
693 representative images were taken under the same imaging parameters but under 63x oil
694 immersion. The “Surfaces” function of IMARIS 9.2.1 software was used to generate 3D
695 reconstruction of the CD31 vessel, and the animation tab was used to create movies. Six images
696 spanning CA1-CA3 were taken across 5 mice per group for imaging quantification.

697 For quantification of microglial reactivity, CD68 colocalization in Iba1 signal was quantified
698 using Z-stacks imaged on a Leica confocal microscope, with 40X oil objective, a 1.0 digital zoom,
699 a total thickness of 25 μ m, and with 1 μ m step-size. Percent colocalization of CD68 signal within
700 the masked Iba1 ROI was calculated using the “Co-loc” feature in IMARIS and represented as a
701 fold change of this percentage.

702 To quantify the volume of hippocampus and entorhinal cortex mouse frozen brain tissues
703 were serially cut at 50 μ m. Sections containing hippocampus or entorhinal cortex (every sixth
704 section, 300 μ m apart) between bregma +2.1mm and bregma -3.9 mm to the dorsal end of the
705 hippocampus or entorhinal cortex were stained with 0.25% cresyl violet solution, dehydrated in
706 ethanol and then mounted. Slides were imaged using Nanozoomer 2.0-HT system (Hamamatsu),
707 and areas of interest were traced using NDP Viewer software. The volume of the region of interest
708 was quantified using the following formula: volume = (sum of area) * 0.5 mm.

709

710 **RNA-sequencing analysis**

711 RNA sequencing data containing fold changes and adjusted p values from our previous study
712 (22) was used (GEO: GSE114910). For pathway analyses, differentially expressed genes with p
713 (adj) values of <0.05 were uploaded into the InnateDB website, and overrepresentation analysis
714 was used to calculate significant terms from KEGG and REACTOME databases. Selected

715 significant terms were plotted by p value based on their involvement in vascular biology and
716 immune cell infiltration, and representative genes contributing to the hits were listed. For individual
717 gene plots, FPKM values were used and significance was calculated using one-way ANOVA.

718

719 **Statistical Analysis**

720 All statistical analysis was performed using GraphPad Prism software v8.0.2. All data are
721 presented as mean \pm SEM. Unless otherwise noted, all grouped comparisons were made by one-
722 way ANOVA with Tukey's correction, and all pairwise comparisons by two-sided Student's t-tests,
723 depending on experimental design. For all tests P values less than 0.05 were considered
724 significant, and those over 0.05 were considered non-significant.

725

726 **Study Approvals**

727 All animal procedures were performed in accordance with NIH guidelines and with the approval
728 of the Baylor College of Medicine Institutional Animal Care and Use Committee.

729

730

731 **Author Contributions**

732 NEP and HZ conceived of the project and designed the experiments. NEP performed all
733 experiments and data analysis unless otherwise noted. ER provided reagents, technical
734 assistance for IMARIS imaging analysis, performed pathway analysis, and edited the manuscript.
735 AL provided samples, technical assistance, and performed brain volumetric tissue analysis. JK
736 provided the *C3ar1* floxed mice. NEP wrote the manuscript with input and revision from HZ. All
737 authors read and approved the final manuscript.

738

739 **Acknowledgements**

740 We are indebted to D. Holtzman (Wash U. St Louis) for the generous support with the brain
741 volumetric analysis. We are most appreciative to NIA for offering aged C57BL6/J mice that made
742 this work possible. We thank C. Beeton, J. Sederstrom and the Baylor College of Medicine
743 Cytometry and Cell Sorting Core supported by grant NCI-CA125123 for FACS analysis. We are
744 grateful to N. Aithmitti and B. Contreras for expert technical support and members of the Zheng
745 laboratory for stimulating discussions. This study was supported by grants from the NIH (R01
746 NS093652, R01 AG020670, R01 AG057509, RF1 AG054111 and RF1 AG062257 to HZ).

747

748

749

750

751

752

753

754 **References**

755 1. Lindenberger U. Human Cognitive Aging: *Corriger la fortune?* *Science* 2014;346(6209):572-8.

756 2. Maniega SM, Valdes Hernandez MC, Clayden JD, Royle NA, Murray C, Morris Z, et al. White
757 matter hyperintensities and normal-appearing white matter integrity in the aging brain.
758 *Neurobiol Aging*. 2015;36(2):909-18.

759 3. Kalamakis G, Brüne D, Ravichandran S, Bolz J, Fan W, Ziebell F, et al. Quiescence Modulates
760 Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. *Cell*. 2019;176(6):1407-
761 19.e14.

762 4. Miranda CJ, Braun L, Jiang Y, Hester ME, Zhang L, Riolo M, et al. Aging brain microenvironment
763 decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. *Aging Cell*.
764 2012;11(3):542-52.

765 5. Sweeney MD, Kisler K, Montagne A, Toga AW, and Zlokovic BV. The role of brain vasculature in
766 neurodegenerative disorders. *Nat Neurosci*. 2018;21(10):1318-31.

767 6. Sun D, McGinn M, Hankins JE, Mays KM, Rolfe A, and Colello RJ. Aging- and injury-related
768 differential apoptotic response in the dentate gyrus of the hippocampus in rats following brain
769 trauma. *Front Aging Neurosci*. 2013;5:95.

770 7. Dhungana H, Malm T, Denes A, Valonen P, Wojciechowski S, Magga J, et al. Aging aggravates
771 ischemic stroke-induced brain damage in mice with chronic peripheral infection. *Aging Cell*.
772 2013;12(5):842-50.

773 8. Sweeney MD, Sagare AP, and Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease
774 and other neurodegenerative disorders. *Nat Rev Neurol*. 2018;14(3):133-50.

775 9. Marchant NL, Reed BR, Sanossian N, Madison CM, Kriger S, Dhada R, et al. The aging brain and
776 cognition: contribution of vascular injury and abeta to mild cognitive dysfunction. *JAMA Neurol*.
777 2013;70(4):488-95.

778 10. Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, et al. APOE4 leads
779 to blood-brain barrier dysfunction predicting cognitive decline. *Nature*. 2020;581(7806):71-6.

780 11. Yousef H, Czupalla CJ, Lee D, Chen MB, Burke AN, Zera KA, et al. Aged blood impairs
781 hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1.
782 *Nat Med*. 2019;25(6):988-1000.

783 12. Perner C, Perner F, Gaur N, Zimmermann S, Witte OW, Heidel FH, et al. Plasma VCAM1 levels
784 correlate with disease severity in Parkinson's disease. *J Neuroinflammation*. 2019;16(1):94.

785 13. Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R, Leeman DS, et al. Single-cell
786 analysis reveals T cell infiltration in old neurogenic niches. *Nature*. 2019;571(7764):205-10.

787 14. Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, et al. Clonally expanded
788 CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. *Nature*. 2020;577(7790):399-
789 404.

790 15. Chen MB, Yang AC, Yousef H, Lee D, Chen W, Schaum N, et al. Brain Endothelial Cells Are
791 Exquisite Sensors of Age-Related Circulatory Cues. *Cell Rep*. 2020;30(13):4418-32 e4.

792 16. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. Vascular
793 and neurogenic rejuvenation of the aging mouse brain by young systemic factors. *Science*.
794 2014;344(6184):630-4.

795 17. Baker DJ, and Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases:
796 evidence and perspectives. *J Clin Invest*. 2018;128(4):1208-16.

797 18. Stephan AH, Barres BA, and Stevens B. The complement system: an unexpected role in synaptic
798 pruning during development and disease. *Annu Rev Neurosci*. 2012;35:369-89.

799 19. Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, et al. Complement C3 deficiency
800 protects against neurodegeneration in aged plaque-rich APP/PS1 mice. *Sci Transl Med.*
801 2017;9(392).

802 20. Shi Q, Colodner KJ, Matousek SB, Merry K, Hong S, Kenison JE, et al. Complement C3-Deficient
803 Mice Fail to Display Age-Related Hippocampal Decline. *J Neurosci.* 2015;35(38):13029-42.

804 21. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, et al. NFkappaB-activated astroglial release
805 of complement C3 compromises neuronal morphology and function associated with Alzheimer's
806 disease. *Neuron.* 2015;85(1):101-15.

807 22. Litvinchuk A, Wan YW, Swartzlander DB, Chen F, Cole A, Propson NE, et al. Complement C3aR
808 Inactivation Attenuates Tau Pathology and Reverses an Immune Network Deregulated in
809 Tauopathy Models and Alzheimer's Disease. *Neuron.* 2018;100(6):1337-53 e5.

810 23. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and
811 microglia mediate early synapse loss in Alzheimer mouse models. *Science.* 2016;352(6286):712-
812 6.

813 24. Boire A, Zou Y, Shieh J, Macalinao DG, Pentsova E, and Massague J. Complement Component 3
814 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. *Cell.* 2017;168(6):1101-13 e13.

815 25. Schraufstatter IU, Trieu K, Sikora L, Sriramarao P, and DiScipio R. Complement c3a and c5a
816 induce different signal transduction cascades in endothelial cells. *J Immunol.* 2002;169(4):2102-
817 10.

818 26. Boisvert MM, Erikson GA, Shokhirev MN, and Allen NJ. The Aging Astrocyte Transcriptome from
819 Multiple Regions of the Mouse Brain. *Cell Rep.* 2018;22(1):269-85.

820 27. Swartzlander DB, Propson NE, Roy ER, Saito T, Saido T, Wang B, et al. Concurrent cell type-
821 specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease. *JCI
822 Insight.* 2018;3(13).

823 28. Boulay A-C, Saubaméa B, Declèves X, and Cohen-Salmon M. Purification of Mouse Brain Vessels.
824 *J Vis Exp.* 2015;105(105).

825 29. Wu F, Zou Q, Ding X, Shi D, Zhu X, Hu W, et al. Complement component C3a plays a critical role
826 in endothelial activation and leukocyte recruitment into the brain. *J Neuroinflammation.*
827 2016;13:23.

828 30. Van Beek J, Bernaudin M, Petit E, Gasque P, Nouvelot A, MacKenzie ET, et al. Expression of
829 receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral
830 ischemia in the mouse. *Exp Neurol.* 2000;161(1):373-82.

831 31. Ritzel RM, Crapser J, Patel AR, Verma R, Grenier JM, Chauhan A, et al. Age-Associated Resident
832 Memory CD8 T Cells in the Central Nervous System Are Primed To Potentiate Inflammation after
833 Ischemic Brain Injury. *J Immunol.* 2016;196(8):3318-30.

834 32. Pi J, Cheng Y, Sun H, Chen X, Zhuang T, Liu J, et al. Apln-CreERT:mT/mG reporter mice as a tool
835 for sprouting angiogenesis study. *BMC Ophthalmol.* 2017;17(1):163.

836 33. Thore CR, Anstrom JA, Moody DM, Challa VR, Marion MC, and Brown WR. Morphometric
837 Analysis of Arteriolar Tortuosity in Human Cerebral White Matter of Preterm, Young, and Aged
838 Subjects. *Journal of Neuropathology and Experimental Neurology.* 2007;66(5):337-45.

839 34. Bullitt E, Zeng D, Gerig G, Aylward S, Joshi S, Smith JK, et al. Vessel Tortuosity and Brain Tumor
840 Malignancy. *Academic Radiology.* 2005;12(10):1232-40.

841 35. Hu J, Dziumbla S, Lin J, Bibli S-I, Zukunft S, De Mos J, et al. Inhibition of soluble epoxide hydrolase
842 prevents diabetic retinopathy. *Nature.* 2017;552(7684):248-52.

843 36. Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, and O'Banion MK. Chronic
844 interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-
845 independent blood brain barrier permeability without overt neurodegeneration. *J Neurosci.*
846 2007;27(35):9301-9.

847 37. Wu MC, Brennan FH, Lynch JP, Mantovani S, Phipps S, Wetsel RA, et al. The receptor for
848 complement component C3a mediates protection from intestinal ischemia-reperfusion injuries
849 by inhibiting neutrophil mobilization. *Proc Natl Acad Sci U S A.* 2013;110(23):9439-44.

850 38. Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, et al. Rapid endothelial cytoskeletal reorganization
851 enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury.
852 *Nature Communications.* 2016;7(1):10523.

853 39. Tietz S, and Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and
854 adherens junctions. *J Cell Biol.* 2015;209(4):493-506.

855 40. Quell KM, Karsten CM, Kordowski A, Almeida LN, Briukhovetska D, Wiese AV, et al. Monitoring
856 C3aR Expression Using a Floxed tdTomato-C3aR Reporter Knock-in Mouse. *J Immunol.*
857 2017;199(2):688-706.

858 41. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, and Yanagisawa M. Tie2-Cre
859 transgenic mice: a new model for endothelial cell-lineage analysis in vivo. *Dev Biol.*
860 2001;230(2):230-42.

861 42. Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, and Shaw S. T-cell adhesion induced by
862 proteoglycan-immobilized cytokine MIP-1 β . *Nature.* 1993;361(6407):79-82.

863 43. Kolev M, West EE, Kunz N, Chauss D, Moseman EA, Rahman J, et al. Diapedesis-Induced Integrin
864 Signaling via LFA-1 Facilitates Tissue Immunity by Inducing Intrinsic Complement C3 Expression
865 in Immune Cells. *Immunity.* 2020;52(3):513-27 e8.

866 44. Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M, et al. Blood-brain
867 barrier breakdown is an early biomarker of human cognitive dysfunction. *Nat Med.*
868 2019;25(2):270-6.

869 45. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier
870 breakdown in the aging human hippocampus. *Neuron.* 2015;85(2):296-302.

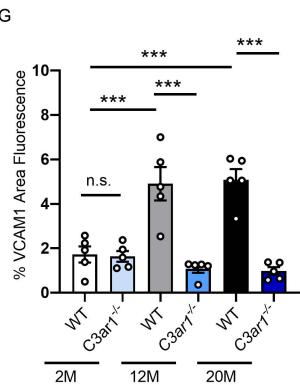
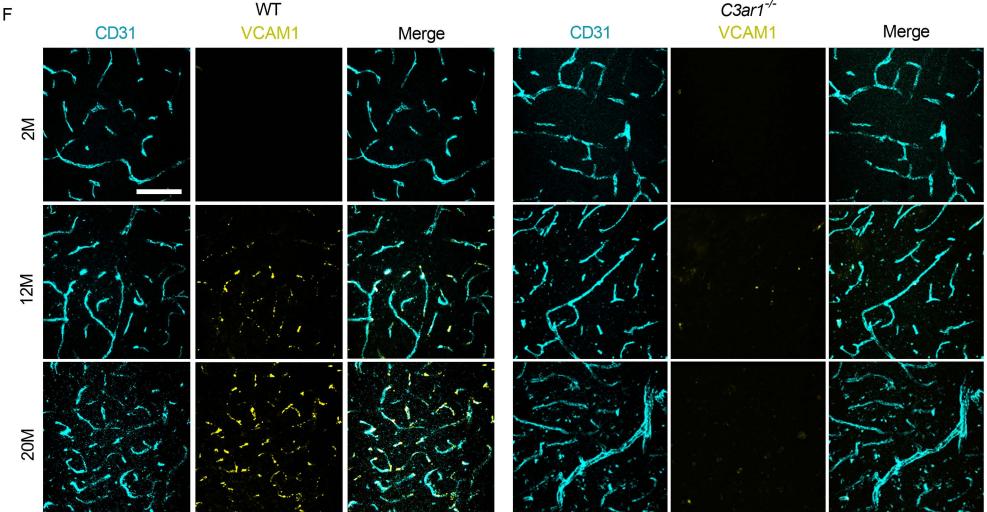
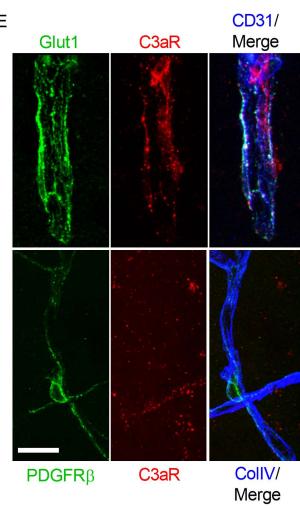
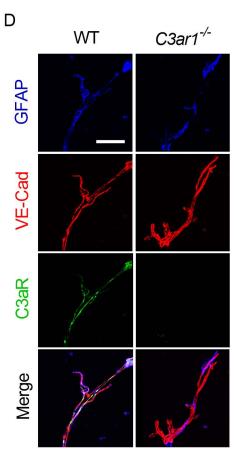
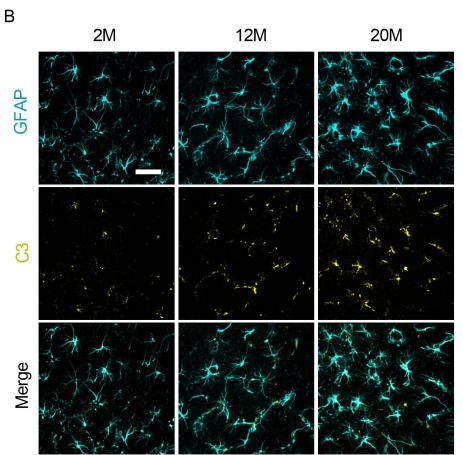
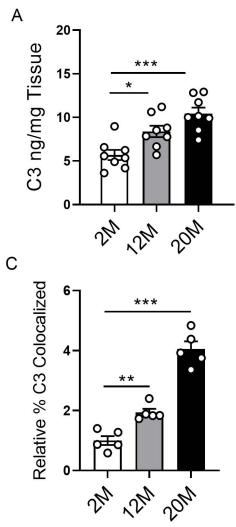
871 46. Iadecola C. Dangerous leaks: blood-brain barrier woes in the aging hippocampus. *Neuron.*
872 2015;85(2):231-3.

873 47. Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, et al.
874 Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative
875 stress, neuroinflammation, and elements of the neurovascular unit. *J Neuroinflammation.*
876 2015;12:223.

877 48. Yang AC, Stevens MY, Chen MB, Lee DP, Stahli D, Gate D, et al. Physiological blood-brain
878 transport is impaired with age by a shift in transcytosis. *Nature.* 2020;583(7816):425-30.

879 49. Marsh SE, Abud EM, Lakatos A, Karimzadeh A, Yeung ST, Davtyan H, et al. The adaptive immune
880 system restrains Alzheimer's disease pathogenesis by modulating microglial function. *Proc Natl
881 Acad Sci U S A.* 2016;113(9):E1316-25.

882 50. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell
883 infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy.
884 *Brain.* 2017;140(1):184-200.

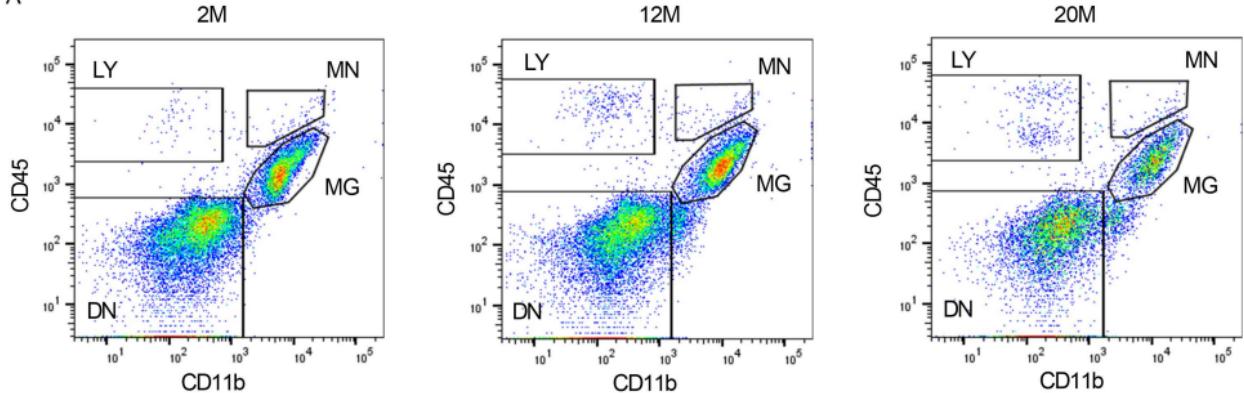






885 51. Faraco G, Hochrainer K, Segarra SG, Schaeffer S, Santisteban MM, Menon A, et al. Dietary salt
886 promotes cognitive impairment through tau phosphorylation. *Nature.* 2019;574(7780):686-90.

887

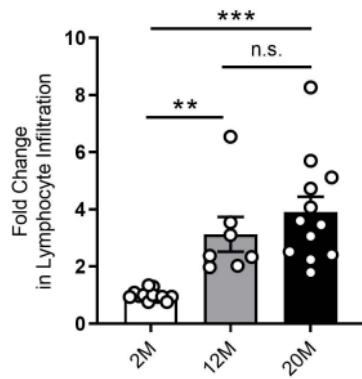
888

889

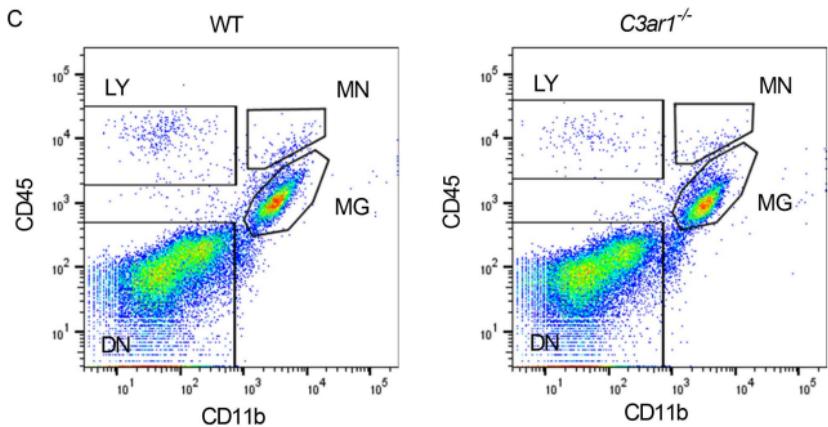
890

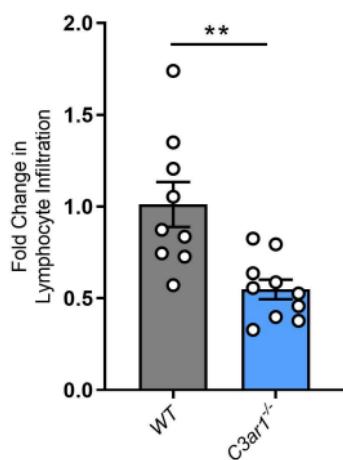


891 **Figure 1. C3a-C3aR signaling regulates age-associated endothelial VCAM1 expression. (A)**
892 ELISA measurement of C3 levels in wild-type mouse brain lysates at 2, 12 and 20 months
893 (n=8/group). **(B)** Immunofluorescence staining using anti-GFAP and anti-C3 antibodies
894 demonstrates localization of C3 to astrocytes. **(C)** Quantification confirming increased C3 staining
895 within GFAP⁺ astrocytes in the hippocampus with age (n=5/age). **(D)** Triple immunostaining of
896 isolated vessels from wild-type (WT) and *C3ar1*^{-/-} brains using anti-GFAP, anti-VE-Cadherin and
897 anti-C3aR antibodies showing positive C3aR staining along endothelial cell surface which is not
898 present in *C3ar1*^{-/-} vessels. **(E)** Triple immunostaining of brain tissue with anti-Glut1, and anti-
899 CD31 or anti-PDGFR β , anti-C3aR, anti-Col IV demonstrating expression of C3aR on brain
900 endothelial cells but not pericytes. **(F, G)** Immunofluorescence staining and quantification using
901 anti-CD31 and anti-VCAM1 antibodies, of WT or *C3ar1*^{-/-} mouse cortices at 2, 12, and 20 months
902 demonstrates an increase in VCAM1 with age in WT mice but rescued in the absence of C3aR.
903 All data are means \pm SEM. Significance was calculated using one-way ANOVA with Tukey's post
904 hoc test (*p <.05, **p<.01, ***p<.001). n.s.: not significant. Scale bar (B) = 20 μ m, (D) = 10 μ m,
905 (E) = 15 μ m, and (F) = 50 μ m.

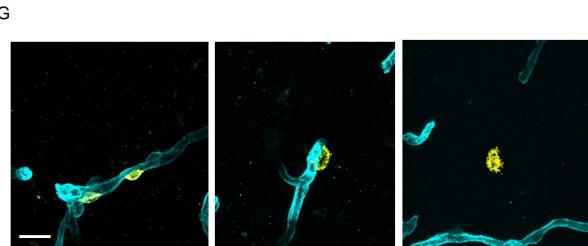
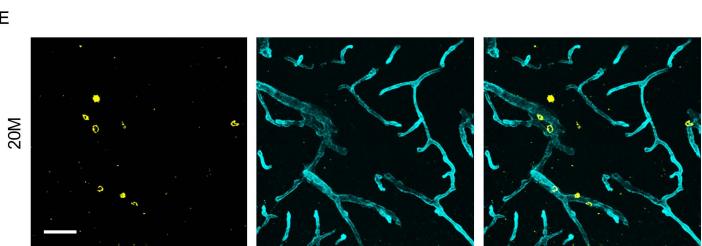
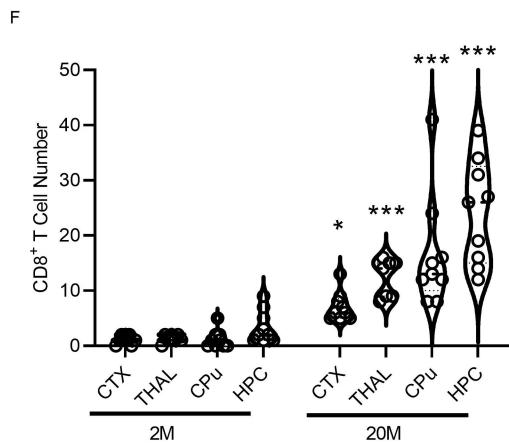
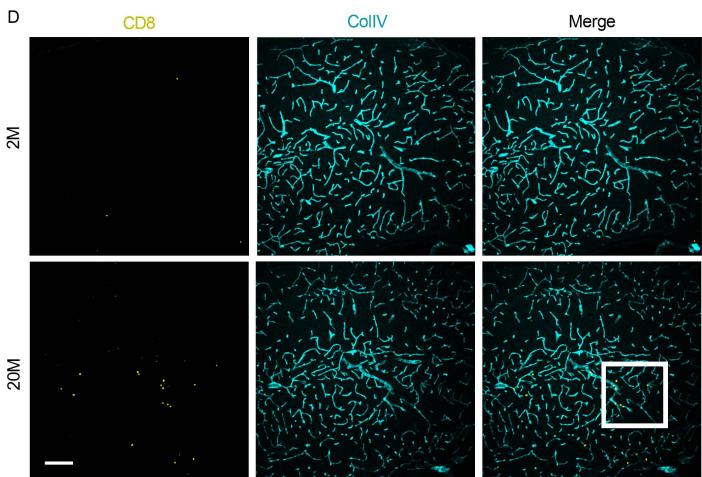
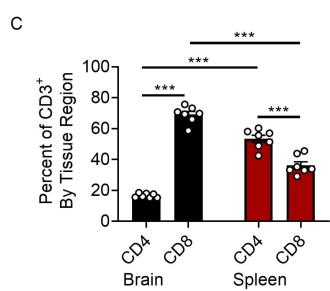
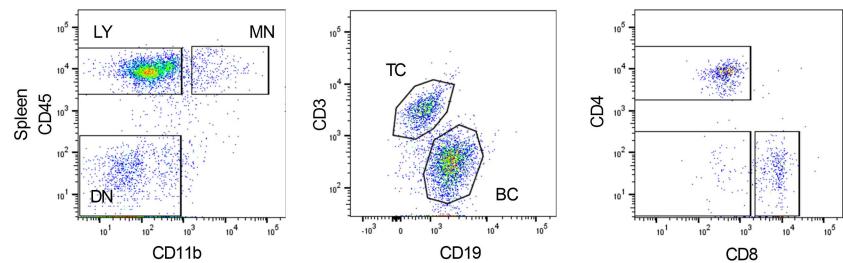

906

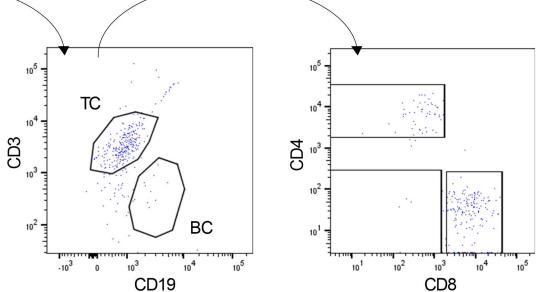
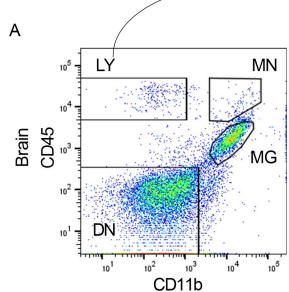
907


A


B

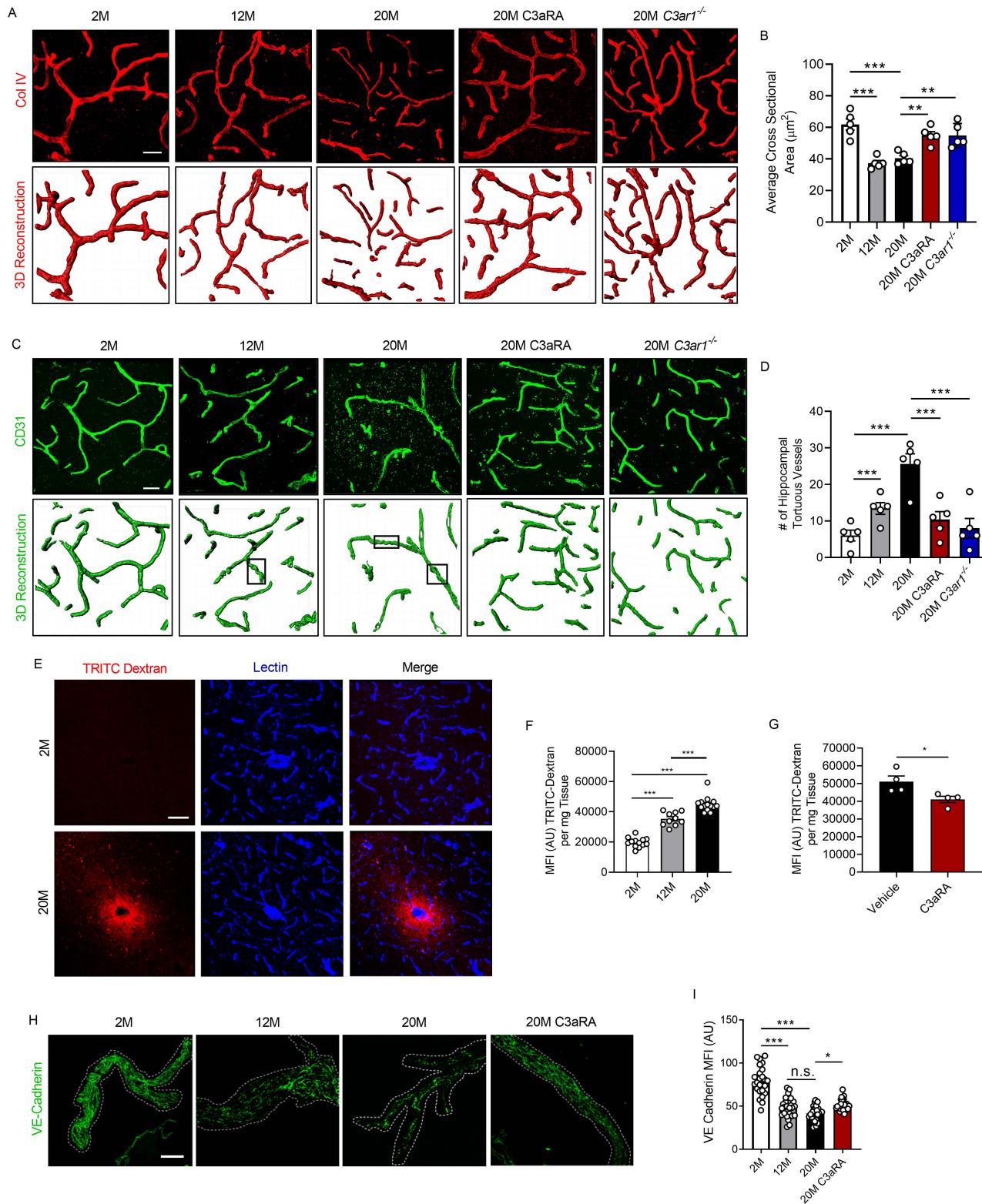
C

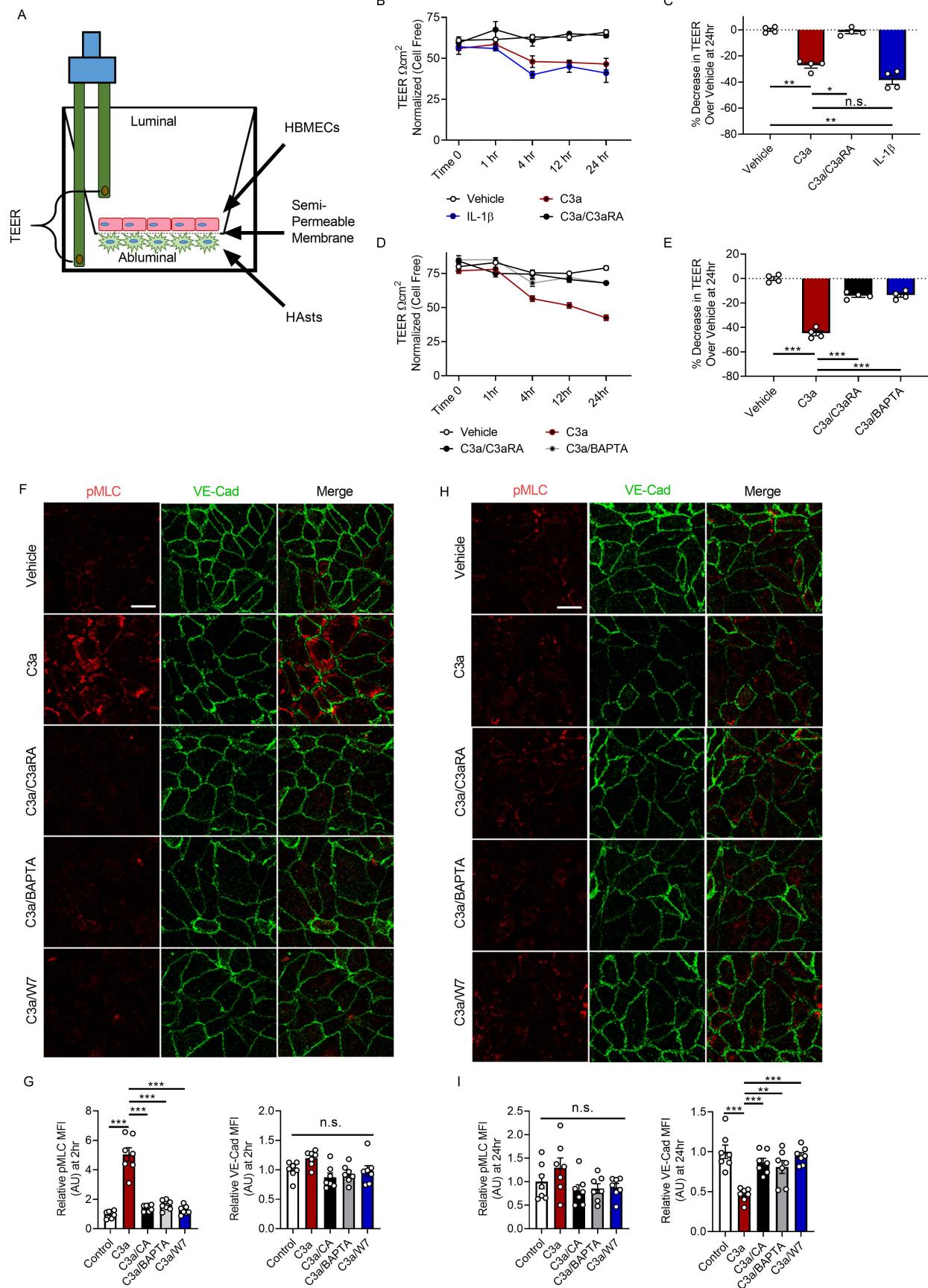
D

908 **Figure 2. C3aR-VCAM1 axis promotes peripheral lymphocyte infiltration during aging. (A)**
909 Representative CD45 and CD11b flow cytometry plots and gating strategy of dissociated mouse
910 brain at 2M, 12M and 20M; LY: lymphocyte; MN: monocyte; MG: microglia; DN: double-negative.
911 **(B)** Flow cytometry analysis and quantification of percentage of infiltrating lymphocytes (2M n=12,
912 12M n=7, 20M n=12) shows age-related increase. **(C and D)** Flow cytometry analysis and
913 quantification of brain lymphocytes in 12-14-month-old wild-type (WT, n=9) and *C3ar1*^{-/-} (n=10)
914 mice shows reduction in aged *C3ar1*^{-/-} mice. All data are means \pm SEM. Significance was
915 calculated using one-way ANOVA with Tukey's post hoc test (**p<.01, ***p<.001). n.s.: not
916 significant.


917
918

919 **Figure 3. CD8⁺ T cells are preferentially recruited and infiltrate the aged brain. (A)** Schematic
920 for flow cytometry analysis of dissociated infiltrating cells in the 20M brain or spleen using antibody
921 staining against CD45, CD11b, CD3ε, CD19, CD8a, and CD4. LY: lymphocyte; MN: monocyte;
922 MG: microglia; DN: double-negative; TC: T cells; BC: B cells. **(B)** Quantification of flow cytometry
923 analysis shows predominantly CD3⁺ T cells in the brain compared to the spleen which shows
924 predominantly CD19⁺ B cells (n=7/group). **(C)** Quantification of T cells shows the predominant
925 sub-type enriched in the brain is CD8⁺ T cells compared to CD4⁺ T cells in the spleen (n=7/group).
926 **(D)** Representative immunostaining of 2M and 20M brain tissue using anti-CD8a and anti-Col IV
927 to determine regional immune cell infiltration within the brain. **(E)** Magnified image from (D)
928 highlighting the infiltrated cell types which were counted for analysis. **(F)** Quantification of regional
929 distribution of CD8⁺ T cell infiltrates in four major brain regions (n=4/group, 2 tissue sections per
930 mouse). CTX: cortex; THAL: thalamus; CPu: caudate putamen (CPu); HPC: hippocampus. **(G)**
931 Representative images of three distinct stages of infiltration observed in all brain regions:
932 perivascular residence (left panel), extravasation (middle panel), and parenchymal surveillance
933 (right panel). Data in (B) and (C) are means ± SEM. Analysis was done using One-way ANOVA
934 with Tukey's post hoc test (**p<.001). Data in (F) are violin plots displaying medians and quartile
935 ranges. Analysis was done using Two-way ANOVA with Holm-Sidak's post hoc test (*p <.05,
936 ***p<.001). Scale Bar (D) = 100 μ m, (E) = 50 μ m, (G) = 10 μ m.

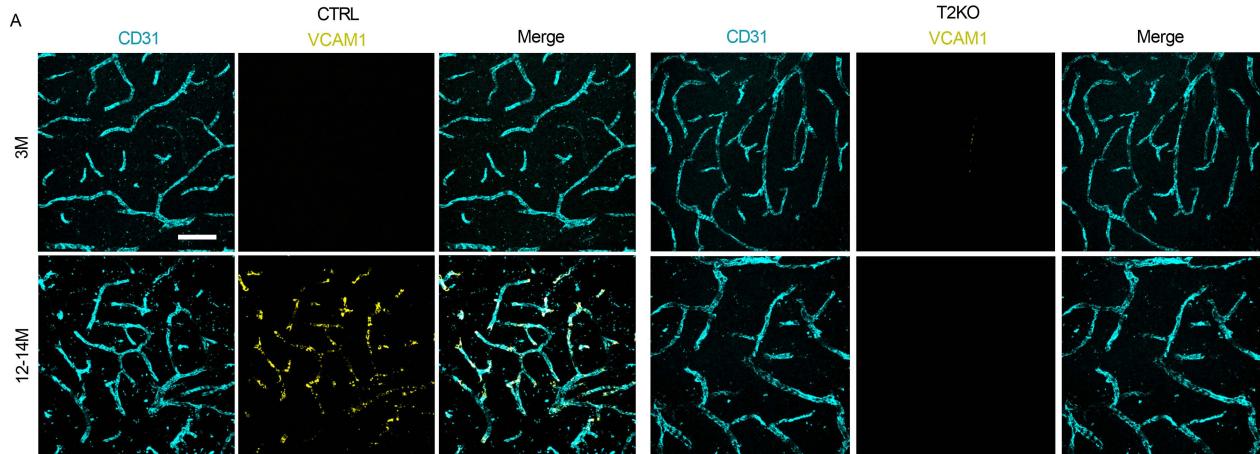
937


938

939 **Figure 4. Inhibition of C3aR rescues age-related changes in vascular morphology and BBB**
940 **permeability.** **(A)** Representative Collagen IV⁺ (Col IV) staining and IMARIS-aided 3D
941 reconstruction of vasculature in hippocampal sections from 2M, 12M and 20M WT mice, 20M WT
942 mice treated with C3aRA, or 20M *C3ar1*^{-/-} mice. **(B)** Quantification of capillary average cross-
943 sectional area in (A) (n=5/group, 8 images per mouse). **(C)** Representative CD31⁺ staining and
944 3D reconstruction of hippocampal vasculature in 2M, 12M and 20M WT mice, 20M WT mice
945 treated with C3aRA or 20M *C3ar1*^{-/-} mice. Representative tortuous vessels are marked by
946 rectangles. **(D)** Quantification of number of tortuous vessels per hippocampal areas (n=5/group,
947 8 images per mouse). **(E)** Representative lectin and TRITC-Dextran co-labeling in 2M and 20M
948 hippocampi. **(F)** Quantification of TRITC-Dextran mean fluorescence intensity (MFI) from brain
949 lysates of 2M (n=13), 12M (n=10) and 20M (n=14) mice. **(G)** Quantification of TRITC-Dextran MFI
950 of 20-month-old mice treated with vehicle or C3aRA (n=4/group). **(H)** Representative image of
951 vessels isolated from 2M and 12M mice or 20M mice treated with vehicle or C3aRA and stained
952 with anti-VE-Cadherin. **(I)** Quantification of VE-Cadherin staining shows reduced VE-Cadherin
953 expression in 12M and 20M mice, which is partially rescued in 20M mice treated with C3aRA
954 (n=5/group, 5 vessel fragments/mouse). All data are means \pm SEM. Significance was calculated
955 using one-way ANOVA with Tukey's post hoc test (*p <.05, **p<.01, ***p<.001). n.s.: not
956 significant. Scale bar (A) and (C) = 20 μ m; (E) = 50 μ m.

957

958

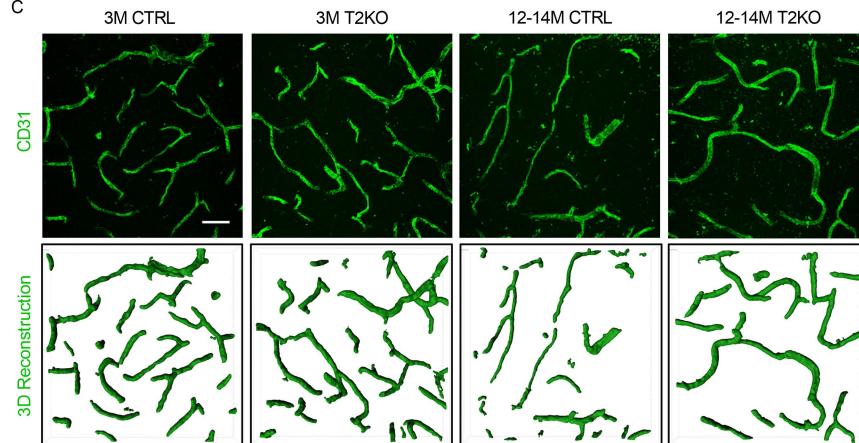


959 **Figure 5. C3a-mediated barrier disruption is dependent on Ca^{2+} mobilization and alters VE-
960 Cadherin through cytoskeletal activation.** **(A)** Schematic of TEER analysis using a co-culture
961 of astrocytes and endothelial cells. **(B)** TEER values in co-cultures treated with vehicle, C3a, C3a
962 with C3aRA, or IL-1 β for 0, 1, 4, 12 and 24 hrs. **(C)** Quantification of percent reduction of TEER
963 at 24 hrs from treatments recorded in (B). **(D)** TEER values in co-cultures treated with vehicle,
964 C3a or C3a with C3aRA or BAPTA-AM over 24 hrs. **(E)** Quantification of percent reduction in
965 TEER at 24 hrs from treatments recorded in (D). All TEER experiments were performed two times
966 with duplicates each and normalized to time-point control wells of cell free membranes. **(F)**
967 Representative immunofluorescence images of human brain microvascular endothelial cells
968 (HBMECs) treated with vehicle, C3a, or a combination of C3a plus C3aRA (C3a/C3aRA), BAPTA-
969 AM (C3a/BAPTA), or W7 (C3a/W7) for 2 hrs and stained with anti-pMLC and anti-VE-Cadherin
970 antibodies. **(G)** Quantification of pMLC or VE-Cadherin MFI shows increase in pMLC, but not VE-
971 cadherin, (n=7 areas from three replicates of 250-300 cells/condition). **(H)** Representative
972 immunofluorescence images of HBMECs treated as stated in (F) using anti-pMLC and anti-VE-
973 Cadherin antibodies 24 hrs post-treatment. **(K)** Quantification of pMLC or VE-Cadherin MFI shows
974 normalized pMLC levels but decreased VE-Cadherin (n=7 areas from three replicates of 250-300
975 cells/condition). All data are means \pm SEM. Analysis was performed on average percent decrease
976 in TEER using one-way ANOVA with Tukey's post hoc test (*p <.05, **p<.01, ***p<.001). n.s.: not
977 significant. Scale bar = 10 μm .

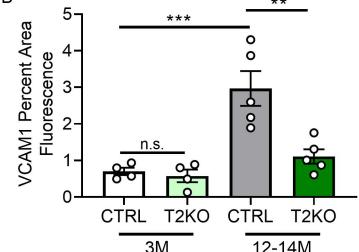
978

979

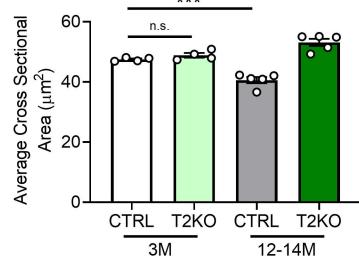
A



T2KO

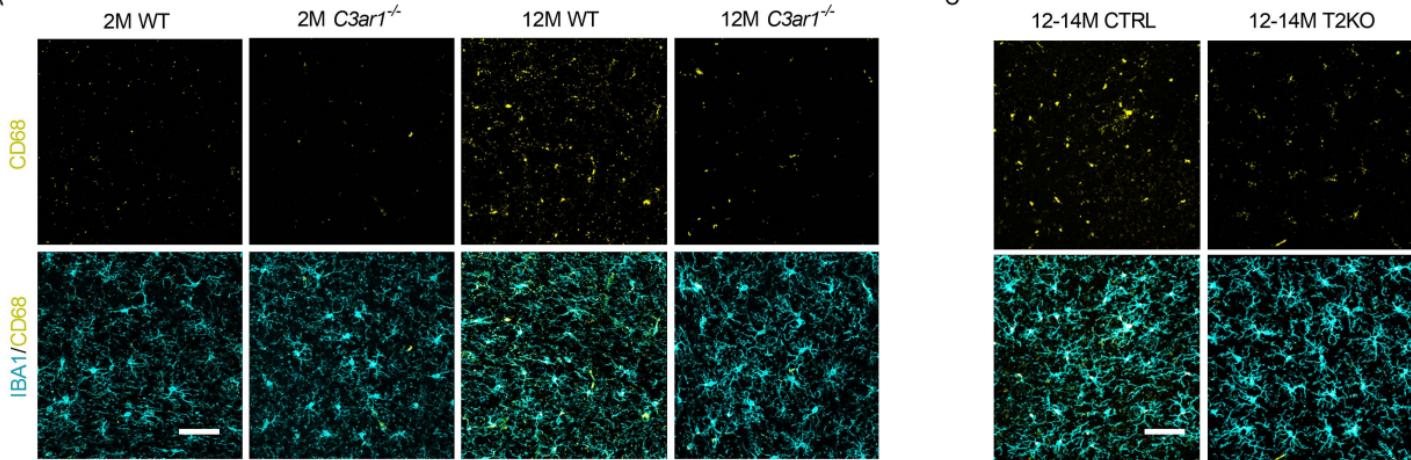

VCAM1

Merge

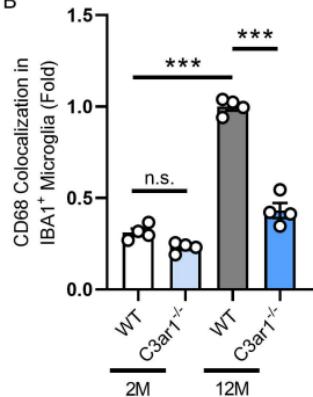

C

B

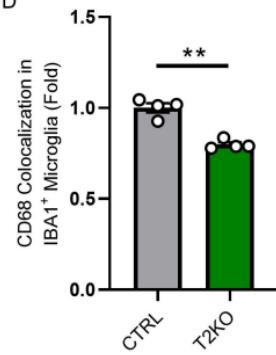
D

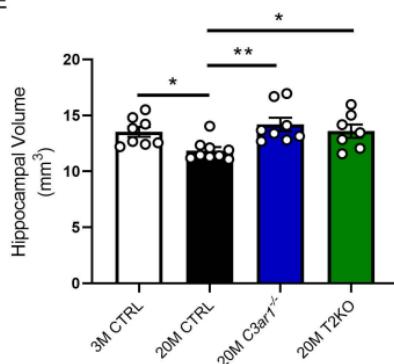


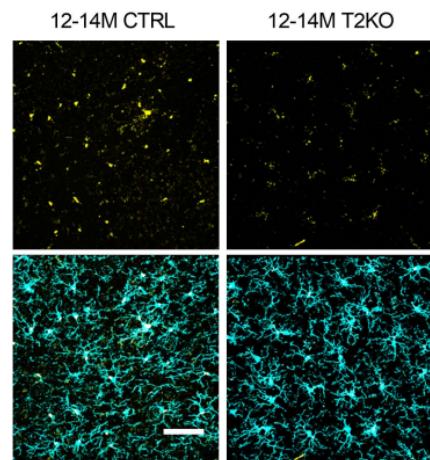
980 **Figure 6. Conditional knockout of *C3ar1* in brain endothelial cells rescues age-related**
981 **vascular phenotypes. (A)** Representative VCAM1 and CD31 double staining images from 3M
982 and 12-14M endothelial *C3ar1* conditional knockout (T2KO) mice and littermate controls (CTRL)
983 showing increased in VCAM1 expression with age in CTRL mice but suppressed in T2KO. **(B)**
984 Quantification of VCAM1 intensity of (A). **(C)** Representative CD31 staining and 3D reconstruction
985 of 3M and 12-14M CTRL and T2KO mice. **(D)** Quantification of average CD31⁺ cross sectional
986 areas. All data are means \pm SEM of n=4/group. Analysis for (A-F) was performed using one-way
987 ANOVA with Tukey's post hoc test (**p<.01, ***p<.001). n.s.: not significant. Scale bar = 50 μ m.

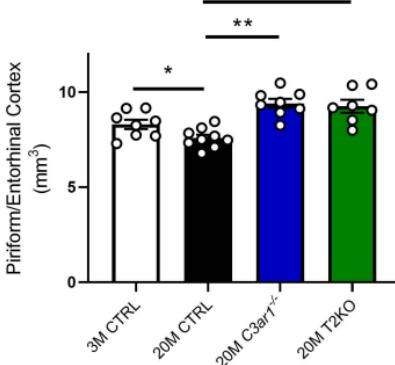

988

989

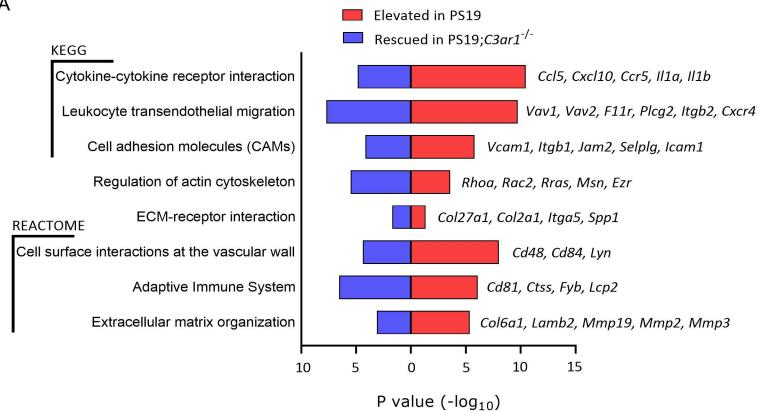

A


B

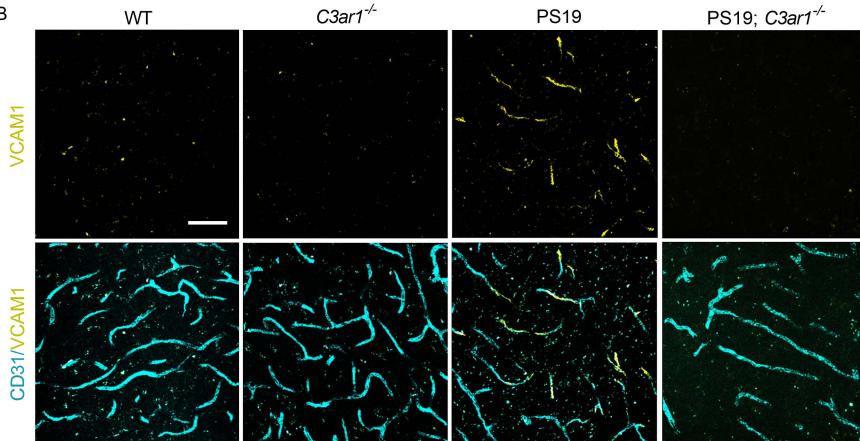

D


E

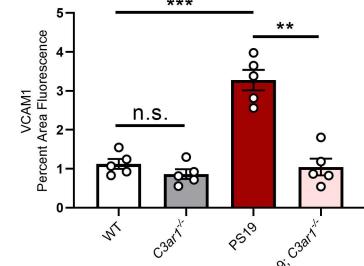
C

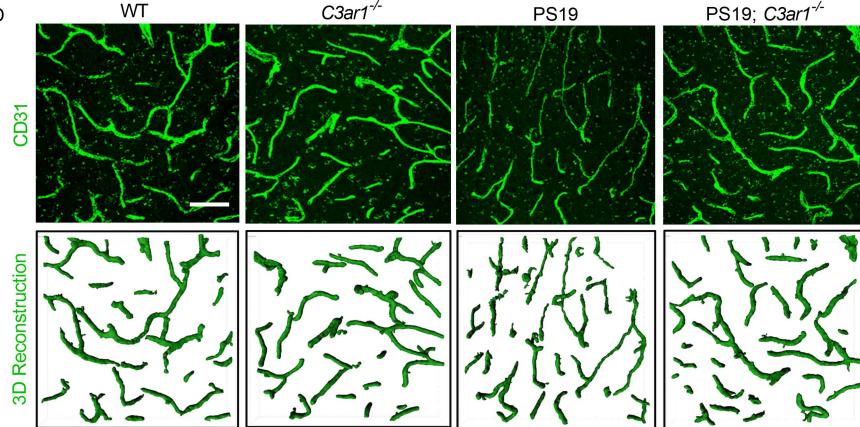


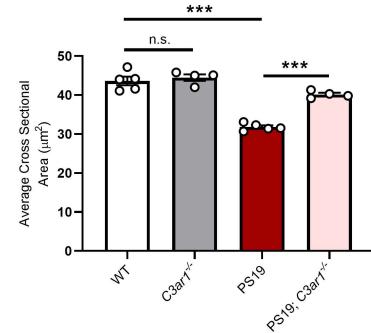
F



990 **Figure 7. Germline and conditional knockout of *C3ar1* rescues age-related microglial**
991 **reactivity and neurodegenerative phenotypes. (A)** Representative IBA1 and CD68 double
992 immunostaining in WT and *C3ar1*^{-/-} hippocampus at 2M and 12M. **(B)** Quantification of CD68
993 immunoreactivity within IBA1⁺ microglia (n=4/group). **(C)** Representative IBA1 and CD68 double
994 immunostaining in CTRL and T2KO hippocampus at 3M and 12-14M. **(D)** Quantification of CD68
995 immunoreactivity within IBA1⁺ microglia (n=4/group). **(E)** Quantification of hippocampal volume
996 through coronal, serially sectioned tissue samples (n=7-9/group, 9 sections/animal quantified).
997 **(F)** Quantification of entorhinal cortex volume through coronal, serially sectioned tissue samples
998 (n=7-9/group, 9 sections/animal quantified). Data for (B) and (E) are means \pm SEM and analysis
999 was performed using one-way ANOVA with Tukey's post hoc test (*p <.05, **p<.01, ***p<.001).
1000 n.s.: not significant. Data for (D) are means \pm SEM and analysis was performed using a two-tailed
1001 student's t-test (**p<.01). Data for (F) are means \pm SEM and analysis was performed using one-
1002 way ANOVA with Holm-Sidak's post hoc test (*p <.05, **p<.01). Scale bar (A) and (C) = 50 μ m.
1003
1004


A


B


C

D

E

1005 **Figure 8. Vascular abnormalities in PS19 tau transgenic mice and C3aR-dependency. (A)**
1006 RNA-seq analysis revealed significantly overrepresented pathways in the DEGs that were
1007 increased in 9 month-old PS19 compared to wild-type animals (red), and that were decreased in
1008 PS19;C3ar1^{-/-} compared to PS19 animals (blue). Terms were selected from results based on their
1009 involvement in vascular biology and immune cell infiltration, plotted by p value, and representative
1010 rescued genes contributing to the terms are listed (right). **(B)** Cortical staining of 9 month-old WT,
1011 C3ar1^{-/-}, PS19, and PS19;C3ar1^{-/-} hippocampal vasculature with CD31 and VCAM1 demonstrate
1012 a significant increase in VCAM1 expression in PS19 mice, and a rescue of this phenotype in PS19
1013 mice harboring C3ar1 deletion. **(C)** Quantification of VCAM1 immuno-intensity. **(D)** CD31 staining
1014 and IMARIS-aided 3D reconstruction of 9 month-old WT, C3ar1^{-/-}, PS19, and PS19;C3ar1^{-/-}
1015 hippocampal vasculature. **(E)** Quantification of average vessel cross-sectional area. All data are
1016 means \pm SEM of n=5/group. Analysis for all results was performed using one-way ANOVA with
1017 Tukey's post hoc test (*p <.05, **p<.01, ***p<.001). n.s.: not significant. Scale bar = 50 μ m.

1018
1019

1020