Abstract

Dysfunction of immune and vascular systems has been implicated in aging and Alzheimer’s disease; however, their interrelatedness remains poorly understood. The complement pathway is a well-established regulator of innate immunity in the brain. Here, we report robust age-dependent increases in vascular inflammation, peripheral lymphocyte infiltration, and blood-brain barrier (BBB) permeability. These phenotypes were subdued by global inactivation and by endothelial-specific ablation of C3ar1. Using an in vitro model of the BBB, we identify intracellular Ca2+ as a downstream effector of C3a-C3aR signaling and a functional mediator of VE-cadherins junction and barrier integrity. Endothelial C3ar1 inactivation also dampened microglia reactivity and improved hippocampal and cortical volumes in the aging brain, demonstrating a crosstalk between brain vasculature dysfunction and immune cell activation and neurodegeneration. Further, prominent C3aR-dependent vascular inflammation is also observed in a tau transgenic mouse model. Our studies suggest that heightened C3a-C3aR signaling through endothelial cells promotes vascular inflammation and BBB dysfunction and contribute to overall neuroinflammation in aging and neurodegenerative disease.

Authors

Nicholas E. Propson, Ethan R. Roy, Alexandra Litvinchuk, Jorg Köhl, Hui Zheng

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement