1 SUPPLEMENTAL DATA

3	WWP1 inactivation enhances efficacy of PI3K inhibitors while suppressing their toxicities
4	in breast cancer models
5	
6	Takahiro Kishikawa, Hiroshi Higuchi, Limei Wang, Nivedita Panch, Valerie Maymi, Sachem
7	Best, Samuel Lee, Genso Notoya, Alex Toker, Lydia E. Matesic, Gerburg M. Wulf, Wenyi Wei,
8	Motoyuki Otsuka, Kazuhiko Koike, John G. Clohessy, Yu-Ru Lee, and Pier Paolo Pandolfi
9	
10	Supplemental Figure Legends
11	Supplemental Figure 1 - 8
12	Supplemental Table 1
13	
14	Supplemental Figure legends
15	Supplemental Figure 1. PTEN was dissociated from the plasma membrane upon PI3K
16	inhibition through the membrane recruitment of WWP1.
17	(A) Negative loading controls of subcellular fractionation in MDA-MB-231 cells treated with
18	multiple PI3K inhibitors. Related to Fig. 1C. (B) Representative immunofluorescent images of
19	PTEN subcellular localization. MDA-MB-231 cells stably expressing shWWP1 were treated
20	with BKM120 for 12 h. Bar, 10 µm. (C) Binding of WWP1 to PTEN in MCF7 and MDA-MB-

21 231 cells upon PI3K inhibitor treatment. Total lysate from each cell was immunoprecipitated 22 with anti-PTEN beads 24 h after the treatment with 1 µM of PI3K inhibitors. (D) PIP binding 23 assay for WWP1. 293T cells were transfected with MYC-WWP1 and subsequently 24 immunoprecipitated with $PI(4,5)P_2$, $PI(3,4,5)P_3$, or control beads. 25 26 Supplemental Figure 2. WWP1 depletion improved the efficacy of BKM120 in a PTENdependent manner. 27 28 (A) Dose response curve of BKM120 in indicated breast caner cell lines. The upper panels show 29 cells in which PTEN is expressed and the lower panels shows cell lines where PTEN is not 30 expressed. Each dot shows mean \pm SD of duplicated assay. (B) Dose response curve of BKM120 31 in MDA-MB-468 cells stably expressing Flag-PTEN and shWWP1. Each dot shows mean \pm SD 32 of triplicated assay. (C) Evaluation of AKT activity in MDA-MB-468 cells upon PTEN 33 expression in WWP1 deficient setting. Cells were treated with 1 µM of BKM120 for 48 h and 34 subjected to WB. 35 36 Supplemental Figure 3. WWP1 was upregulated in isogenic resistant cells and its inhibition 37 improved the sensitivity to PI3K inhibitors. 38 (A) and (B) Dose response curve of BKM120 and IC_{50} values in isogenic resistant MDA-MB-39 231 (A) and MCF7 (B) cells. Each dot is shown as mean \pm SD in duplicated assay. (C) Relative 40 expression levels of WWP1 mRNA in isogenic resistant cells. Each plot is shown as mean \pm SD

41 in triplicated assay (*p < 0.05, **p < 0.01, one-way ANOVA followed by Tukey-Kramer

42 multiple comparisons test). (D) ChIP qPCR assay to evaluate MYC binding capacity on WWP1

43	promotor region. Chromatin fractions of MDA-MB-231 parental/resistant cells were
44	immunoprecipitated with anti-Myc or H3 beads and subjected to qPCR. JunB served as positive
45	control for MYC binding site. Data are shown as mean \pm SD (**P < 0.01, ***P < 0.005,
46	triplicate experiments, Student's t test). (E) Membrane and cytosol fractions of MCF7 cells
47	overexpressing HA-WWP1. Cells were treated with 1.0 μ M of BYL719 for 48 h and subjected to
48	WB. LRP6 and HSP90 served as membrane and cytosol markers, respectively. (F) Analysis of
49	AKT and S6 activity in MCF7 resistant HD cells upon stable expression of WWP1 shRNA. Cells
50	were treated with 1.0 μ M of BYL719 for indicated time and subjected to WB.
51	
52	Supplemental Figure 4. Combination therapy with PI3K and WWP1 inhibitor
53	synergistically suppressed cell growth in a PTEN dependent manner.
53 54	synergistically suppressed cell growth in a PTEN dependent manner.(A) and (B) 3-D plot of synergy score and dose response curve of BYL719 in MCF7 parental
54	(A) and (B) 3-D plot of synergy score and dose response curve of BYL719 in MCF7 parental
54 55	(A) and (B) 3-D plot of synergy score and dose response curve of BYL719 in MCF7 parental and resistant HD cells in combination with I3C treatment. Each dot is presented as mean ± SD of
54 55 56	(A) and (B) 3-D plot of synergy score and dose response curve of BYL719 in MCF7 parental and resistant HD cells in combination with I3C treatment. Each dot is presented as mean \pm SD of triplicated experiments. (C) 3-D plot of synergy score and dose response curve of combination
54 55 56 57	(A) and (B) 3-D plot of synergy score and dose response curve of BYL719 in MCF7 parental and resistant HD cells in combination with I3C treatment. Each dot is presented as mean \pm SD of triplicated experiments. (C) 3-D plot of synergy score and dose response curve of combination therapy of BKM120 and I3C in MDA-MB-468 cells. Each dot is presented as mean \pm SD of

- 61 in the muscle tissue upon PI3K inhibition.
- 62 (A) Normalized mRNA expression levels of AMPKα1 and AMPKα2 in multiple human normal
- 63 tissues. Data was obtained from the Human Protein Atlas database
- 64 (<u>https://www.proteinatlas.org/</u>). (**B**) and (**C**) Analysis of the expression profile of AMPKα

65 isoforms in mouse tissues (B) and human breast cancer cell lines (C). Bar plots are shown as 66 mean \pm SD of triplicated experiments. (D) Assessment of the phosphorylation of AMPK α in 67 293T cells. Cells were transfected with wild-type and catalytically inactive (CA) MYC-WWP1, 68 and HA-AMPK α 2 upon treatment with 1.0 μ M BKM120 for 3 h and subjected to WB. (E) 69 Evaluation of AMPK expression in C2C12 cells upon BKM120 and I3C combination treatment. 70 Differentiated C2C12 cells were pretreated with I3C (150 μ M) for 3 days followed by BKM120 71 (2.0 µM) treatment for 24 h. (F) Assessment of AMPK activity in MCF7 cells upon stable 72 expression of shWWP1. Cells were treated with 1.0 μM of BYL719 for 24 h. (G) Intracellular 73 ADP/ATP ratio of C2C12 cells upon stable expression of shWWP1. Cells were treated with 1.0 74 μ M of BKM120 for 2h (n = 4, one-way ANOVA followed by Tukey-Kramer multiple 75 comparisons test). *p < 0.05, **p < 0.01.

76

Supplemental Figure 6. Reduction of glucose uptake upon PI3K inhibitor treatment was restored by WWP1 inhibition through the activation of AMPKα2.

79 (A) Relative expression levels of pAMPK in quadriceps muscle (representative image in Fig.

80 3G). Measured intensity of the bands in WB was normalized by total AMPK with Image J

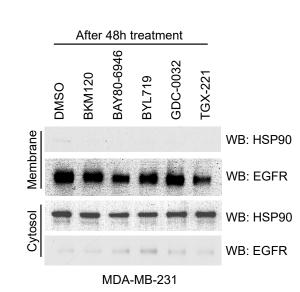
81 software (n = 5, one-way ANOVA followed by Tukey-Kramer multiple comparisons test). (B)

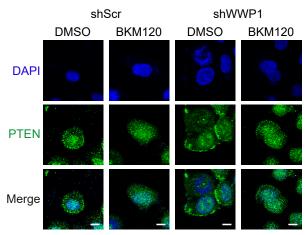
82 Assessment of cell surface GLUT4 upon BKM120 treatment and Wwp1 silencing in C2C12-

- 83 Myc-GLUT4-mCherry cells. Histograms show the representative distribution of Myc-tag-
- 84 GLUT4 intensity in indicated cells measured by flowcytometry. (C) Longitudinal measurement
- 85 of blood glucose levels upon BKM120 and AMPK inhibitor (Compound C) treatment.
- 86 Compound C (CC) or PBS were administrated intraperitoneally into $Wwp1^{-/-}$ and $Wwp1^{+/+}$ mice
- 87 30 min before peroral treatment of BKM120 (50 mg/kg). Data represent mean \pm SD of blood

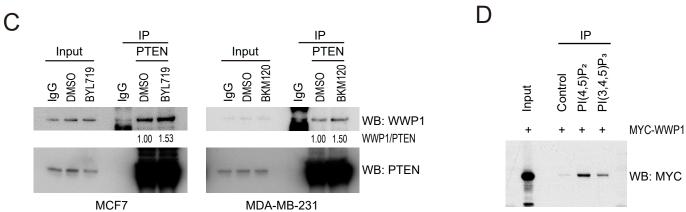
glucose levels (n = 6 in each arm, two-tailed Student *t* test). (**D**) Glucose uptake in MDA-MB-231 cells upon BKM120 treatment. Cells upon stable expression of WWP1 shRNA were treated with BKM120 for 17h along with starvation. Each plot shows mean \pm SD of triplicated assay (one-way ANOVA followed by Tukey-Kramer multiple comparisons test). *p < 0.05, **p < 0.01.

93

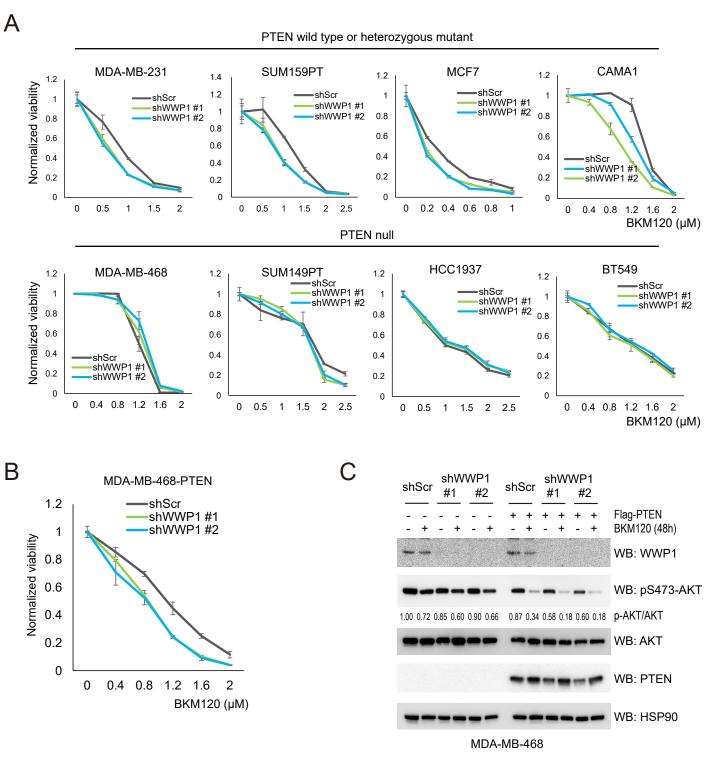

94 Supplemental Figure 7. Combination therapy with I3C enhanced the efficacy of PI3K
95 inhibitor.

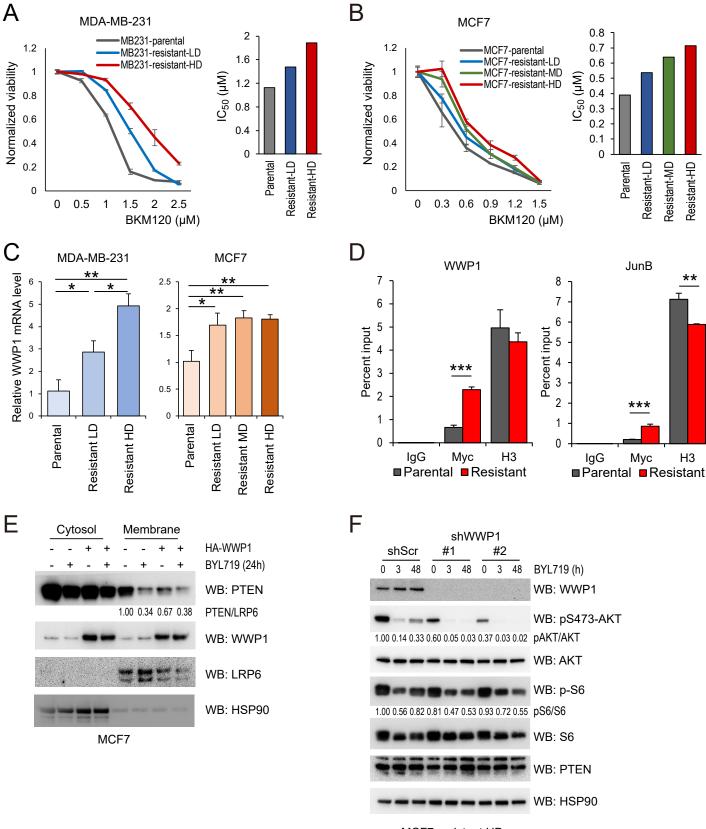

96 (A) Soft agar colony formation assay with MDA-MB-231 cells treated with multiple PI3K 97 inhibitors. Cells with the expression of Scramble (shScr) or WWP1 shRNA (shWWP1) were 98 seeded in agarose gel and treated with indicated drugs for 28 days (n = 3 each). (B) and (C) Soft 99 agar colony formation assay of MDA-MB-231 parental (B) and resistant (C) cells. Each plot is 100 shown as mean \pm SD of triplicated assays. (D) Representative images of immunohistochemistry 101 staining with Ki-67 in tumor xenograft model. Scale bar represents 100 µm. Bar plot shows 102 mean percentage \pm SD of Ki-67 positive cells in three independent eye fields. (E) Activation of 103 caspase-3 in xenograft tumors. Dissected tumor derived from MDA-MB-231 resistant cells in 104 each treatment arm was subjected to WB. Relative expression levels of cleaved caspase-3 (CC3) 105 were plotted with mean value \pm SD (triplicated). *p < 0.05, **p < 0.01. One-way ANOVA 106 followed by Tukey-Kramer multiple comparisons test was used in A, B, C, D, and E. 107

Supplemental Figure 8. Combination therapy with I3C enhanced PI3K inhibitor efficacy
 concomitantly mitigating drug induced hyperglycemia.


- 110 (A) and (B) Tumor xenograft assay was performed with subcutaneous implantation of MCF7 111 cells. Mice were treated orally with vehicle, BYL719 (20 mg/kg), I3C (100 mg/kg), or 112 combination of them 5 day a week from 7 days after implantation. Tumors were extracted at day 113 52 followed by weight measurement. Data are shown as mean \pm SD in weight. (n = 8 in BYL719 114 + I3C arm and n = 10 in the other arms). (C) and (D) Blood insulin measurement of mice bearing 115 MDA-MB-231 resistant (C) or MCF7 (D) xenografts upon indicated treatment (n = 5 per group). 116 (E) Blood insulin levels of mice bearing PDX TNBC tumors. Peripheral blood was obtained 3 h 117 after the treatment at the day of euthanasia (n = 7 in vehicle arm and n = 6 in the other arms). *p < 0.05, **p < 0.01, and ***p < 0.001. One-way ANOVA followed by Tukey-Kramer multiple 118
- 119 comparisons test was used in A, C, D, and E.

Α



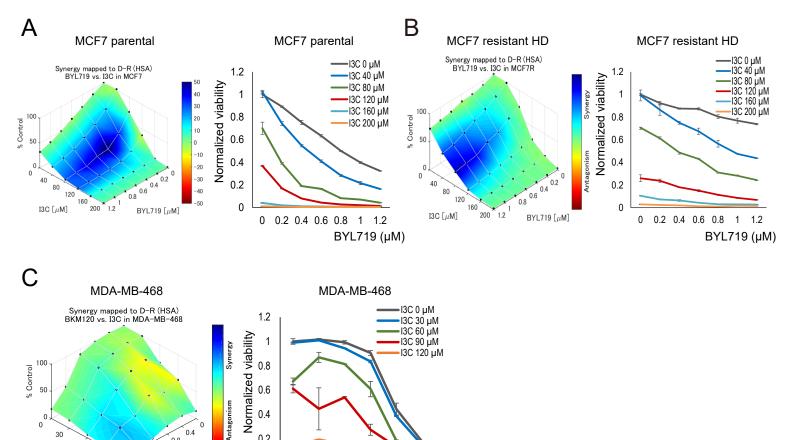

MDA-MB-231

В

293T

MCF7 resistant HD

0.1


30

I3C [µM]

60

90

120 2

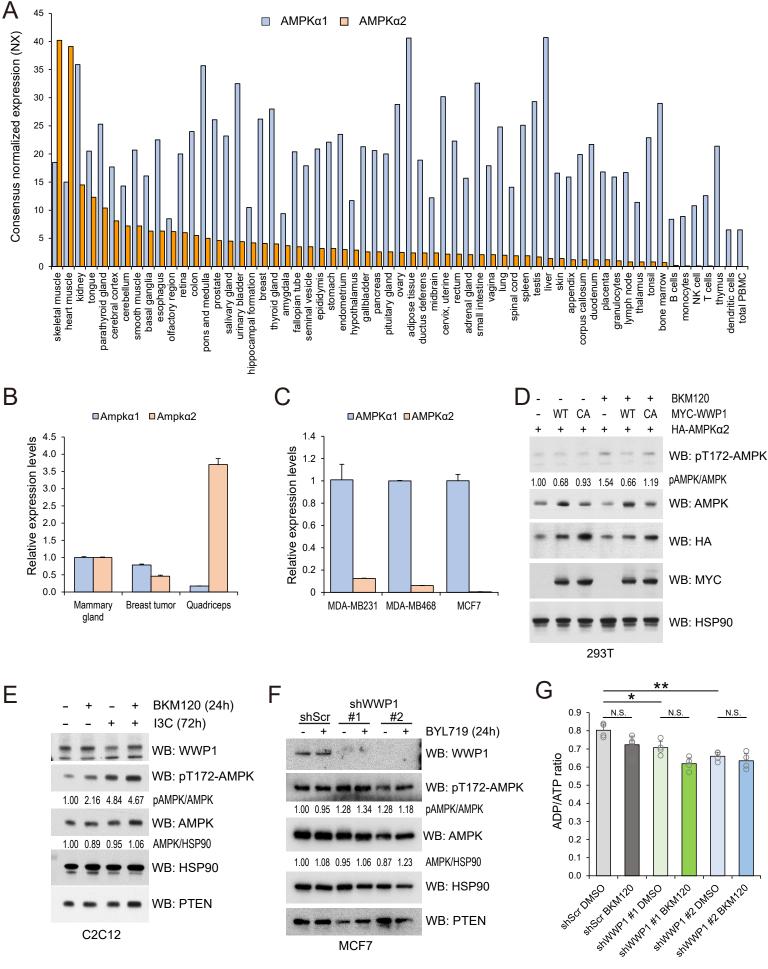
1.2 1.6 2 BKM120 (µM)

0.4

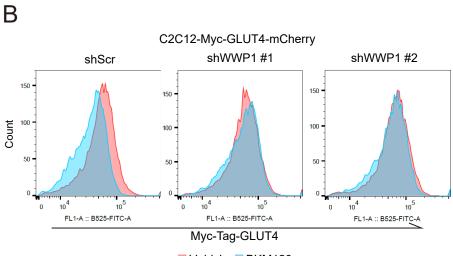
0.2

0

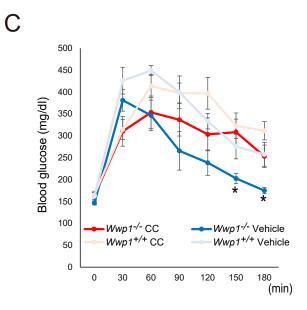
0 0.4 0.8

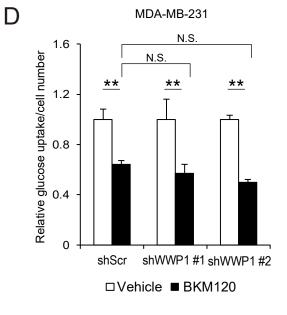

0 0.4

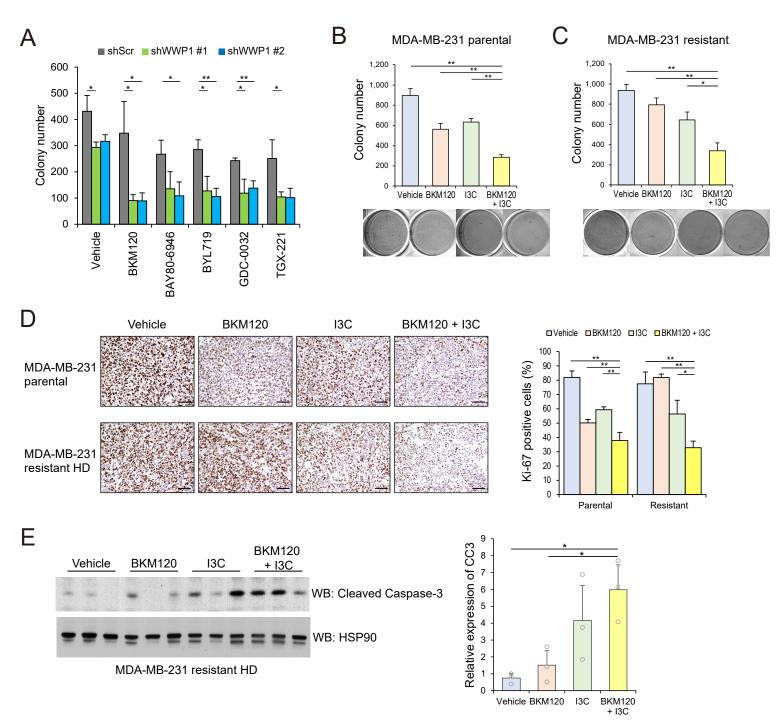
0.8

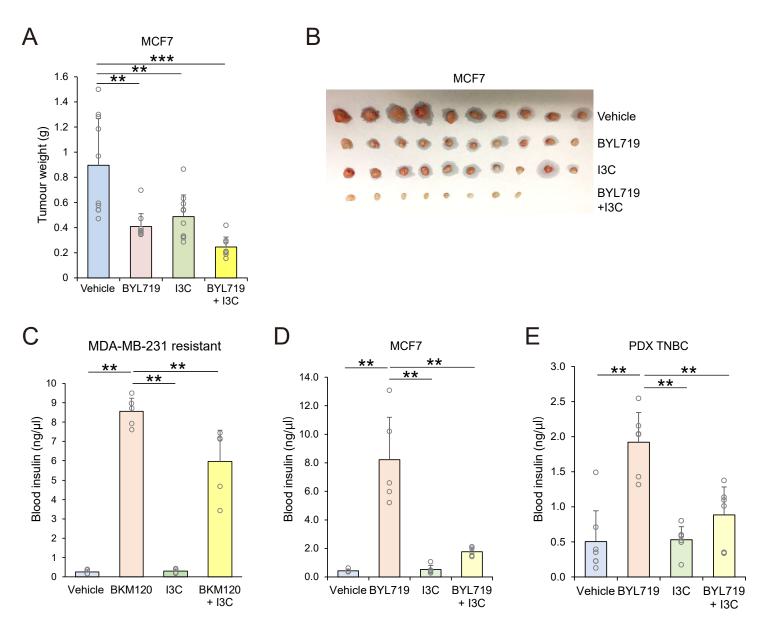

BKM120 [µM]

1.2


1.6







Vehicle BKM120

MDA-MB-				MDA-MB-				
Cell line	231	SUM159PT	MCF7	CAMA-1	468	SUM149PT	HCC1937	BT549
Lineage subtype	TNBC	TNBC	ER+, PR+, HER2-	ER+ HER2+	TNBC	TNBC	TNBC	TNBC
Molecular subtype	Basal B	Basal B	Luminal	Luminal	Basal A	Basal B	Basal A	Basal B
PTEN	WT	WT	WT	p.D92H, p.T277fs	c.G253+1T	Epigeneticall y silenced	Homozygous deletion	p.V275fs*
PIK3CA	WT	H1047R	E545K	WT	WT	WT	WT	WT
AKT1	WT	WT	WT	WT	WT	WT	WT	WT
AKT2	WT	WT	WT	WT	WT	WT	WT	WT
AKT3	WT	WT	WT	WT	WT	WT	WT	WT
TSC1	WT	WT	WT	WT	WT	WT	WT	WT
TSC2	WT	WT	WT	WT	WT	WT	WT	WT
MTOR	WT	WT	WT	WT	WT	WT	WT	WT
RHEB	WT	WT	WT	WT	WT	WT	WT	WT
TP53	p.R280K	p.157_158ins L	WT	p.R280T	p.R273H	p.M237I	p.R306*	p.R249S
RB1	WT	p.K530N	WT	WT	c.265_2787d el2523	WT	c.2222_2326- 20del	WT
RAS	KRAS p.G13D	HRAS p.G12D	WT	WT	WT	WT	WT	WT
BRAF	p.G464V	WT	WT	WT	WT	WT	WT	WT
BRCA1/2	WT	WT	WT	WT	BRCA2 p.M965I	BRCA1 p.N723fs	WT	WT

120

121 Supplemental Table 1. Subtype and mutational landscape in breast cancer cell lines tested in this study.

122 Mutational information was obtained from COSMIC database (www.sanger.ac.uk/genetics/CGP/cosmic/). TNBC subtype

123 classification according to Lehmann et al. (40).