

Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer

Xu Chen, Jingtong Zhang, Weimei Ruan, Ming Huang, Chanjuan Wang, Hong Wang, Zeyu Jiang, Shaogang Wang, Zheng Liu, Chunxiao Liu, Wanlong Tan, Jin Yang, Jiaxin Chen, Zhiwei Chen, Xia Li, Xiaoyu Zhang, Peng Xu, Lin Chen, Ruihui Xie, Qianghua Zhou, Shizhong Xu, Darryl Irwin, JIAN-BING FAN, Jian Huang, Tianxin Lin

J Clin Invest. 2020. <https://doi.org/10.1172/JCI139597>.

Clinical Research and Public Health **In-Press Preview** **Genetics** **Oncology**

BACKGROUND. Current methods for the detection and surveillance of bladder cancer (BCa) are often invasive and/or possess suboptimal sensitivity and specificity, especially in early stage, minimal, residual tumors.

METHODS. We developed a novel method for the detection of urine tumor DNA Methylation at multiple genomic regions by Mass Array, termed utMeMA. We identified the BCa-specific methylation markers by combined analyses of Sun Yat-sen Memorial Hospital (SYSMH), TCGA and GEO cohorts. The BCa diagnostic model was built in a retrospective cohort (n=313) and validated in a multicenter, prospective cohort (n=175). The performance of this diagnostic assay was analyzed and compared with urine cytology and FISH.

RESULTS. We first discovered 26 significant methylation markers of BCa in combined analyses. We build and validate a two-marker-based diagnostic model that discriminated patients with BCa with high accuracy (86.7%), sensitivity (90.0%) and specificity (83.1%). Furthermore, utMeMA based assay achieved a great improvement in sensitivity over urine cytology and FISH, especially in the detection of early stage (Ta and low grade tumor, 64.5% vs. 11.8%, 15.8%), minimal (81.0% vs. 14.8%, 37.9%), residual (93.3% vs. 27.3%, 64.3%) and recurrent (89.5% vs. 31.4%, 52.8%) tumors. The urine diagnostic score (UD-score) from this assay was better associated with tumor malignancy and burden.

CONCLUSIONS. Urine tumor DNA methylation assessment for early diagnosis, minimal, residual tumor detection and surveillance in bladder [...]

Find the latest version:

<https://jci.me/139597/pdf>

Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer

Authors

Xu Chen^{1, #}, Jingtong Zhang^{1, #}, Weimei Ruan^{2, #}, Ming Huang^{1, #}, Chanjuan Wang³, Hong Wang², Zeyu Jiang², Shaogang Wang⁴, Zheng Liu⁴, Chunxiao Liu⁵, Wanlong Tan⁶, Jin Yang⁷, Jiaxin Chen², Zhiwei Chen², Xia Li², Xiaoyu Zhang³, Peng Xu⁵, Lin Chen⁷, Ruihui Xie¹, Qianghua Zhou¹, Shizhong Xu¹, Darryl Luke Irwin⁸, Jian-Bing Fan^{3, 2, *}, Jian Huang^{1, 9, 10, *} and Tianxin Lin^{1, 9, 10, 11, *}

Affiliations

¹ Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China;

² AnchorDx Medical Co., Ltd., Guangzhou, China

³ School of Basic Medical Sciences, Southern Medical University, Guangzhou, China

⁴ Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

⁵ Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China

⁶ Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China

⁷ Department of Urology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China

⁸ Agena bioscience, Inc., San Diego, USA

⁹ Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China

¹⁰ Guangdong Provincial Clinical Research Center for Urinary Diseases, Guangzhou, China

¹¹ Department of Urology, The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, China.

27 **Authorship note** [#] Xu Chen, Jingtong Zhang, Weimei Ruan and Ming Huang contributed
28 equally to this work.

29

30 **The authors have declared that no conflict of interest exists.**

31

32 **Correspondence should be addressed to:**

33 Tianxin Lin,

34 Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou
35 510120, China.

36 E-mail: lintx@mail.sysu.edu.cn

37 Tel: +86-13724008338

38

39 Jian Huang,

40 Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou
41 510120, China.

42 E-mail: huangj8@mail.sysu.edu.cn

43 Tel: +86-13600054833

44

45 Jian-Bing Fan,

46 School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.

47 E-mail: jianbingfan1115@smu.edu.cn

48 Tel: +86-18701841892

49

50

51 **ABSTRACT**

52 **BACKGROUND.** Current methods for the detection and surveillance of bladder cancer (BCa)
53 are often invasive and/or possess suboptimal sensitivity and specificity, especially in early-stage,
54 minimal, residual tumors.

55 **METHODS.** We developed a novel method for the detection of urine tumor DNA Methylation
56 at multiple genomic regions by MassARRAY, termed utMeMA. We identified the BCa-specific
57 methylation markers by combined analyses of Sun Yat-sen Memorial Hospital (SYSMH),
58 TCGA and GEO cohorts. The BCa diagnostic model was built in a retrospective cohort (n=313)
59 and validated in a multicenter, prospective cohort (n=175). The performance of this diagnostic
60 assay was analyzed and compared with urine cytology and FISH.

61 **RESULTS.** We first discovered 26 significant methylation markers of BCa in combined
62 analyses. We build and validate a two-marker-based diagnostic model that discriminated
63 patients with BCa with high accuracy (86.7%), sensitivity (90.0%) and specificity (83.1%).
64 Furthermore, utMeMA based assay achieved a great improvement in sensitivity over urine
65 cytology and FISH, especially in the detection of early-stage (Ta and low grade tumor, 64.5%
66 vs. 11.8%, 15.8%), minimal (81.0% vs. 14.8%, 37.9%), residual (93.3% vs. 27.3%, 64.3%) and
67 recurrent (89.5% vs. 31.4%, 52.8%) tumors. The urine diagnostic score (UD-score) from this
68 assay was better associated with tumor malignancy and burden.

69 **CONCLUSIONS.** Urine tumor DNA methylation assessment for early diagnosis, minimal,
70 residual tumor detection and surveillance in bladder cancer is a rapid, high-throughput, non-
71 invasive and promising approach, which may reduce the burden of cystoscopy and blind second
72 surgery.

73 **FUNDING.** This study was supported by the National Key Research and Development
74 Program of China (Grant No. 2018YFA0902803, 2017YFC1309002), the National Natural
75 Science Foundation of China (Grant No. 81825016, 81961128027, 81702523, 81772719,
76 81772728).

77

78

79 **Introduction**

80 Bladder cancer (BCa) is the most common malignancy of the urinary system, with an estimated
81 ~549,393 new cases and ~199,922 deaths worldwide each year (1). Approximately 75% of
82 patients present with non-muscle-invasive (NMIBC) disease, and 70% of these tumors will
83 recur while 15% will progress in stage and grade (2). Therefore, patients diagnosed with
84 NMIBC undergo frequent treatment and monitoring, resulting in BCa achieving the highest
85 lifetime treatment costs per patient among all cancers (3). The current gold standard for the
86 monitoring of bladder cancer recurrence involves the use of cystoscopy and cytology (4).
87 Cystoscopy is highly sensitive but is invasive, costly, and often associated with discomfort,
88 while urine cytology is highly specific but lacks sensitivity (25-35%), especially for low grade
89 BCa (4-15%) (4-6). The UroVysion fluorescence in situ hybridization (FISH) has a higher
90 sensitivity of 60-80% and is widely utilized in the routine clinical detection of BCa, but it shows
91 low sensitivity in low-grade or small tumors (5, 6). In addition, repeated transurethral resection
92 of bladder tumor (Re-TURBT) is recommended for patients with high grade and T1 tumors (4).
93 However, we still lack effective means to estimate if the patient has residual tumors. Therefore,
94 there is an urgent need to develop effective methods for the detection of early stage, minimal,
95 residual and recurrent tumors, which in turn, may improve disease management.

96 DNA methylation is a key epigenetic regulator of gene expression that usually causes defective
97 gene expression (7). Increased methylation of tumor suppressor genes is an early event in many
98 tumors, and altered DNA methylation patterns could be one of the first detectable neoplastic
99 changes associated with tumorigenesis (8, 9). Therefore, DNA methylation makers were widely
100 used in the diagnosis and prognosis of common cancers (10-13). Several studies have also
101 shown that methylation CpG sites in urine can be promising markers to detect or monitor BCa
102 (14-16). In a multicenter study, Bladder EpiCheckTM, a commercial application in Europe, used
103 a panel of 15 methylation markers to monitor recurrence in patients with NMIBC undergoing
104 surveillance, and its overall sensitivity was 68.2% and specificity was 88.0% (17). Another
105 multicenter study found that a three-gene methylation classifier showed overall sensitivity of
106 89.6 % and specificity of 30.5% for monitoring bladder cancer (18). However, the performance
107 of these assays still needs to be improved and validated in multicenter and large-scale cohorts
108 in Asia. Hence, these assays have not been completely adopted in routine clinical practice in

109 Asia.

110 In this study, we developed a novel method for the detection of urine tumor DNA (utDNA)
111 methylation at multiple regions by MassARRAY, termed utMeMA. Importantly, we applied it
112 to a retrospective cohort and LASSO to build a two-marker-based diagnostic model of BCa,
113 and performed further validation in a prospective multicenter cohort. Furthermore, we
114 systematically evaluated the performance of the utMeMA in the diagnoses of early-stage,
115 minimal, residual and recurrent tumors of BCa, in comparison with routine urine cytology and
116 FISH.

117

118 **Results**

119 **Discovery of DNA methylation markers to distinguish bladder cancer from normal tissue.**

120 The design and implementation of this study are shown in detail in Figure 1. To investigate
121 specific DNA methylation markers in the detection of BCa, we first performed DNA
122 methylation profiling by high throughput DNA bisulfite targeted sequencing in 11 pairs of BCa
123 and normal adjacent tissue (NAT) from the SYSMH cohort. Next, we analyzed DNA
124 methylation data of 21 pairs of BCa and NATs from The Cancer Genome Atlas (TCGA) cohort.
125 It is well known that urine is considered as the best sample to non-invasively diagnoses bladder
126 cancer. However, the leukocytes are common in the urine of urinary diseases and an interference
127 factor to distinguish malignant and benign diseases. To eliminate the influence of leukocyte
128 DNA in urine, we further analyzed DNA methylation profile of 412 BCa tissues from TCGA
129 and 656 normal blood samples from a dataset (GSE40279) (19). Through differential
130 methylation analysis, 2030 markers in SYSMH cohort and 3205 markers in combined TCGA
131 and GEO cohorts were markedly changed between BCa and normal tissue (Supplementary
132 Figure 1). Furthermore, we applied a series of statistical filters to reduce the number of markers
133 and sought the most important and specific markers of BCa. Finally, we identified 26 markers
134 that displayed high and stable methylation in tumors, but remained at very low levels in normal
135 tissue and leukocytes (Figure 2, A-B, Supplementary Figure 2). These data suggested that DNA
136 methylation markers could be used to distinguish BCa.

137

138 **Development of a novel urine DNA methylation assay for bladder cancer detection**

139 To detect multiple markers in a fast, cost-effective and high throughput way in clinics, we
140 developed a novel method called urine tumor DNA Methylation MassARRAY (utMeMA) to
141 diagnose BCa, which allows simultaneous multiplex quantification of CpG sites from various
142 genomic regions at a low methylation frequency with high resolution. To validate whether 26
143 markers could be used to distinguish BCa from normal tissue, we perform utMeMA to detect
144 the methylation levels of 21 pairs of BCa and NATs, and 18 matched urine samples (Figure 2C).
145 There were 25 markers which showed high methylation levels in cancer tissue and urine, but
146 showed low methylation levels in NATs, except cg12350762 (Figure 2D, Supplementary Figure
147 3). The methylation levels of tissues both in NMIBC and MIBC were higher than those in NATs,
148 suggesting that these 25 markers may be used in detection both of NMIBC and MIBC
149 (Supplementary Figure 4). Furthermore, correlation analysis shows that 23 out of 26 markers
150 in urine were significantly and positively correlated with matched cancer tissue, such as
151 cg21472506 which had the highest R^2 of 0.625, except 3 markers (cg12350762, cg23180938,
152 cg06782686). These findings indicated that urine DNA methylation could represent cancer
153 tissue methylation levels using utMeMA, and these 23 markers could be used as diagnostic
154 markers in BCa (Figure 2E, Supplementary Figure 5).

155
156 **Construction and validation of urine diagnostic model to detect bladder cancer in three**
157 **cohorts by using 2 markers.**

158 To build the diagnostic model, we enrolled 142 patients diagnosed with BCa, 159 non-cancer
159 patients with benign diseases of the urinary system and 12 healthy participants from the
160 SYSMH cohort. We analyzed the methylation status of 23 markers by utMeMA, and used the
161 Least Absolute Shrinkage and Selection Operator (LASSO) for marker selection and model
162 development. We achieved an excellent performing model which included only two CpG
163 markers (cg21472506 and cg11437784), which exhibited a high Area Under Curve (AUC) of
164 0.919 and 0.903 in the training and test dataset, respectively (Figure 3, A-B, Table 1,
165 Supplementary Figure6, A-B). Remarkably, we observed a high consistency between predicted
166 results and pathological diagnosis results in both the training and test datasets using this model
167 (Figure 3, C-D).

168 To further assess the performance of the utMeMA-based diagnostic model for clinical

169 application, we performed a prospective, multicenter, blinded study. This independent
170 validation cohort enrolled 109 patients diagnosed with BCa and 66 controls with benign
171 diseases from 5 hospitals in China. Similarly, this model showed good concordance with
172 pathological diagnosis (Figure 3E). We then assessed a urine diagnostic score (UD-score) of
173 the model for differentiating between BCa and benign diseases. The UD-score was significantly
174 high in cases with BCa, but displayed very low levels in patients with benign diseases and
175 healthy people (Figure 3F). Importantly, this model achieved a high sensitivity of 88.1%, 90.2%
176 and 91.7%, and specificity of 86%, 84% and 77.3% in the training, test and validation dataset,
177 respectively. In addition, the value of accuracy, PPV and NPV of this model were almost more
178 than 85% and showed great performance (Figure 3G). The performance of this model was better
179 than either cg21472506 or cg11437784 (Supplementary Figure 6, C-D). Taken together, the
180 utMeMA-based model showed high sensitivity and strong diagnostic power in the detection of
181 BCa.

182

183 **The performance of utMeMA to diagnose bladder cancer in comparison with urine
184 cytology and FISH.**

185 We found that the UD-score was positively correlated with advanced grade, stage, number of
186 tumor and number of Red Blood Cells (RBC) in urine, but no obvious difference in age, gender,
187 smoking status, the type of non-cancer disease and number of White Blood Cells (WBC) in
188 urine (Figure 4, A-D, Supplementary Figure 7). From the integrated analysis of 488 cases in
189 this study, this model showed an overall sensitivity of 90.0% and specificity of 83.1%. From
190 further analysis of the sensitivity and specificity using various clinical characteristics, the
191 sensitivity was significantly higher in patients with old age, high grade and MIBC, but no
192 obvious difference was observed in gender and smoking status. In addition, the specificity
193 showed no significant difference in age, gender and smoking status (Table 3, Supplementary
194 Figure 8).

195 Urine cytology and UroVysion FISH were routine methods used in the detection of BCa (4-6).
196 To compare the performance among the utMeMA-based model, urine cytology and FISH, we
197 included 251 patients with BCa for further analysis. The landscape of clinical characteristics
198 and the diagnostic status of three methods was shown in Figure 4E. Surprisingly, utMeMA

199 detected 5 out of 6 patients (83.3%) with papillary urothelial neoplasm of low malignant
200 potential (PUNLMP), but none of these patients were detected by the other two methods (Figure
201 4F). Furthermore, in patients with low grade tumors, the sensitivity of utMeMA was four-fold
202 higher compared with cytology (69.2% vs 16.0%) and three-fold higher compared with FISH
203 (69.2% vs 22.2%). Remarkably, utMeMA achieved a great improvement in sensitivity over
204 cytology and FISH in Ta (79.2% vs. 32.7%, 36.2%) and T1 (93.7% vs. 62.3%, 72.4%) stage
205 patients (Figure 4G). In addition, the sensitivity of this model was also superior to cytology and
206 FISH in high grade, MIBC and total patients, respectively (Figure 4, F-G). In the hardest-to-
207 detect low grade and Ta patients, the sensitivity of utMeMA was five-fold higher compared
208 with cytology (64.5% vs. 11.8%) and four-fold higher compared with FISH (64.5% vs. 15.8%).
209 The great advantage of utMeMA was also seen in other patients with early-stage tumors and
210 single/multiple tumors (Figure 4, H-I). Although the specificity of cytology and FISH were
211 higher than utMeMA, the difference was not statistically significant (Figure 4J). There were
212 also no obvious differences among the four types of non-cancer diseases (Figure 4K). Similar
213 results were also found in multicenter validation cohort (Supplementary Figure 9). Collectively,
214 utMeMA exhibited significantly improved sensitivity compared with urine cytology and FISH,
215 particularly in low-grade and early-stage tumor patients.

216

217 **Application of utMeMA to detect minimal tumor in bladder cancer.**

218 We then evaluated the performance of utMeMA in the size of tumor. The UD-score and
219 sensitivity were markedly increased in bigger tumors ($\geq 3\text{cm}$), but were similar in tumors that
220 were small and middle-sized (Figure 5, A-B). After dividing cases with small tumors into two
221 groups, the UD-score and sensitivity of small single tumors were lower than multiple tumors,
222 which was consistent with tumor burden (Figure 5, C-D). The utMeMA achieved a great
223 improvement in sensitivity over cytology and FISH in the above conditions, especially in small
224 single tumors (81.0% vs. 14.8%, 37.9%) (Figure 5B and D). The potential utility of this
225 approach is highlighted by a case that was detected by utMeMA, but missed by cytology, FISH,
226 MR imaging and ordinary cystoscopy. The lesion was very flat and small, and not markedly
227 abnormal in white light, but was later diagnosed as low grade and Ta tumor by fluorescence
228 cystoscopy-guided TURBT (Figure 5E). Furthermore, a similar situation was observed in three

229 other cases and the smallest tumor detected by utMeMA was 4 mm in diameter. These data
230 strongly demonstrated the advantage of utMeMA in the detection of minimally-sized tumors.
231

232 **Application of utMeMA to detect residual tumor and monitor recurrence in bladder
233 cancer.**

234 Re-TURBT is recommended for patients with high grade and T1 tumors, but currently, we lack
235 effective methods to estimate if the patient actually has residual tumors (4, 5). In our modeling
236 and validation cohorts, 47 patients received Re-TURBT and the samples were collected before
237 the surgery, where 15 patients had residual tumor, but 32 patients did not. Interestingly, the UD-
238 score was significantly increased in patients with residual tumor than those without (Figure 6A).
239 Importantly, utMeMA correctly diagnosed 14 out of 15 (93.3%) patients with residual tumor,
240 but cytology and FISH only diagnosed 3 out of 11 (27.3%) and 9 out of 14 (64.3%) of these
241 patients, respectively (Figure 6, B-C). The specificity of utMeMA was 87.5%, which was
242 similar with cytology and FISH (Figure 6C). These amazing findings suggested that utMeMA
243 could be used to detect residual tumors and serve as a predictor to select patient for Re-TURBT.
244 Given the high recurrent rate of NMIBC patients, it is important to develop a non-invasive and
245 sensitive method to monitor recurrence (4). We observed a high consistency of UD-score
246 between first morning urine and random urine, suggesting that random urine was also suitable
247 for the detection of BCa (Supplementary Figure S10A-B). Next, we enrolled an additional 81
248 patients undergoing surveillance from SYSMH and collected urine samples before undergoing
249 cystoscopy. Subsequently, 38 cases were found to have tumor recurrence and 43 cases did not.
250 Interestingly, the UD-score was markedly higher in patients with recurrence compared with
251 patients without recurrence, and was positively correlated with tumor burden (Figure 6D
252 Supplementary Figure S10C-F). Importantly, utMeMA accurately detected 34 out of 38 (89.5%)
253 patients with recurrence, but cytology and FISH only detected 11 out of 35 (31.4%) and 19 out
254 of 26 (52.8%) patients with recurrence, respectively (Figure 6, E-F). The specificity of utMeMA
255 was 81.4%, which had no statistically significant difference from cytology and FISH (Figure
256 6F). The follow-up of patients with positive utMeMA results but no evidence of recurrence is
257 ongoing and they will be re-evaluated in a future study. In the subgroup analysis, utMeMA
258 achieved a great improvement in sensitivity over cytology and FISH, especially in low grade

259 (75.0% vs. 12.5%, 25.0%), NMIBC (84.6% vs. 13.0%, 37.5%), small and single tumors (75.0%
260 vs. 0%, 33.3%, Figure 6, G-I, Supplementary Figure 10G). Taken together, utMeMA could
261 serve as a non-invasive and highly sensitive approach to monitor the recurrence of BCa.

262

263 **Discussion**

264 Here, we first discovered the BCa-specific methylation markers by combined analyses of
265 SYSMH, TCGA and GEO cohorts. Then, we trained and tested the diagnostic model in the
266 SYSMH cohort of 313 samples, and performed validation in a multicenter, prospective,
267 independent cohort of 175 samples. This diagnostic model of BCa included only two CpG
268 markers (cg21472506 and cg11437784), but exhibited an overall sensitivity of 90.0% and
269 specificity of 83.1%. The CpG site cg21472506 located on the 3'-untranslated region of OTX1,
270 was previously reported as a useful marker to detect BCa in urine (20, 21). However,
271 cg11437784 located in the intron of SOX1-OT, was first discovered as a tumor marker.
272 However, the biological function and methylated mechanism of OTX1 and SOX1-OT remain
273 largely unknown. A previous study used 4 methylation markers to identify bladder carcinoma
274 with a sensitivity of 82% and a specificity of 53% (14). Bladder EpiCheckTM used a panel of
275 15 methylation markers to monitor recurrence in patients with NMIBC undergoing surveillance,
276 and its overall sensitivity was 67% and specificity was 88% (22, 23). Our study showed that
277 the overall sensitivity of NMIBC was 85.5% in modeling and validation cohorts, and was 84.6%
278 in the additional surveillance cohort. Our test also showed a higher sensitivity compared with
279 EpiCheckTM in the monitoring of recurrence of low grade (75% vs 40%) and high grade (93%
280 vs 89%) tumors (22, 23). Recent studies found that somatic mutation or combined DNA
281 mutation and methylation were also promising markers to detect BCa (20, 21, 24). On the basis
282 of this two-marker test, it is worth exploring whether the performance could be improved by
283 adding the detection of additional DNA mutations in the future.

284 The common methods to detect DNA methylation are methylation-specific PCR (MS-PCR) and
285 genome bisulfite sequencing (14, 21, 24). MS-PCR is easy-to-use and cheap, but it fails to
286 provide high-resolution and specific detection of single CpG sites, when multiple CpG sites are
287 involved. The genome bisulfite sequencing enables high-throughput detection of large-scale
288 methylation markers, but it is expensive and time consuming, which limits its clinical

289 application. To address these, we developed urine tumor DNA Methylation MassARRAY
290 (utMeMA). Our method allows high-resolution and high-throughput quantification of multiple
291 CpG sites, even from samples with a low methylation frequency. Due to the superior sensitivity
292 of Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-
293 TOF-MS), the methylation level of a single CpG site can be determined by single nucleotide
294 amplification of CpG site of interest without any normalization. The enhanced technical
295 advantages therefore effectively improved assay detection sensitivity and the scale of samples
296 being processed. This approach could analyze 300 samples at a time and provide clinical reports
297 in 1 to 2 days. Thus, utMeMA is a fast, cost-effective, high-resolution and high-throughput
298 method to detect BCa in the clinical setting.

299 The early-stage, minimal, residual and recurrent tumors of BCa were very difficult to diagnose,
300 which was usually missed by urine cytology and FISH (4, 5). However, this method achieved
301 a great improvement in sensitivity over cytology and FISH, serving as a promising solution in
302 these conditions. Importantly, the UD-score positively correlated with the grade, stage, size,
303 and the presence of residual and recurrent tumors of BCa. These results make this method
304 attractive for use in clinical decision making across a variety of patients and situations, and
305 could in turn reduce the current burden of repeated cystoscopy and blind Re-TURBT.

306 However, there are some limitations that need to be emphasized. First, the samples analyzed in
307 Re-TURBT and surveillance cohort were small, so the data needs to be validated in a larger
308 multicenter prospective study. Second, the performance of utMeMA in the monitoring of
309 recurrence was a cross-sectional analysis and the long-term follow-up data is currently
310 unavailable. Thus, we were unable to correlate false-positives with later recurrence.

311 In conclusion, we have developed a novel utMeMA, two-marker-based test for the fast and non-
312 invasive detection of bladder cancer. Our approach achieved a great improvement in sensitivity
313 over urine cytology and FISH, especially in the detection of early-stage, minimal, residual and
314 recurrent tumors. Therefore, it is adopted in the optional clinical detection of BCa by more than
315 10 hospitals in China. A large-scale, multicenter and prospective clinical trial (NCT04314245)
316 is ongoing to validate its clinical applicability in China.

317

318 **Materials and methods**

319 **Study design and participants**

320 In discovery stage, we identified the BCa-specific methylation markers by combined analyses
321 of Sun Yat-sen University (SYSMH), TCGA and GEO cohorts (19, 25). There were 32 paired
322 bladder cancer and normal adjacent tissue, and 18 matched urine samples from patients who
323 underwent surgery at SYSMH between June 2016 and May 2017. The human methylation 450
324 K array data and clinical characteristics of 412 bladder cancer tissue and 21 matched normal
325 tissue samples were obtained from TCGA. The methylation profiles of 656 blood leukocyte
326 samples of healthy control individuals were obtained from a dataset (GSE40279).

327 In the retrospective, single center cohort (Modeling cohort), we enrolled 142 patients with
328 urothelial carcinoma of the bladder (UCB), 12 healthy participants and 159 non-cancer controls
329 from SYSMH between June 2017 and May 2019. In the multicenter, prospective, blinded cohort
330 (Validation cohort), we enrolled 109 patients with UCB and 66 non-cancer controls from 5
331 hospitals in China, between August 2019 and December 2019. The multicenter Validation
332 cohort was collected from the SYSMH (n=70), Zhujiang Hospital (n=23) and Nanfang Hospital
333 (n=22), Southern Medical University in Guangzhou, Tongji Hospital of Huazhong University
334 of Science and Technology in Wuhan (n=39), and the Affiliated Hospital/Clinical Medical
335 College of Chengdu University in Chengdu (n=21), China. Urine samples were collected from
336 each hospital with written informed consent obtained from all patients. The non-cancer controls
337 were diagnosed with benign urological diseases including benign bladder lesions (BBL),
338 urolithiasis, benign prostatic hypertrophy (BPH) and other benign diseases of the urinary
339 system.

340 In surveillance cohort, we enrolled 38 tumor recurrent patients and 43 no recurrent patients
341 from SYSMH. The samples with pathological diagnoses were reviewed by 2 independent
342 pathologists. Flow of participants enrollment of these three cohorts are summarized in
343 Supplementary Figure 11 to S13. The demographics and clinical characteristics of the
344 participants are summarized in tables 2 and S1 to S3, respectively.

345

346 **Sample Processing**

347 Genomic DNA extraction from freshly frozen normal or cancer tissue was performed with
348 DNeasy Blood & Tissue Kit (Qiagen, Germany, Cat# 69506) according to the manufacturer's

349 recommendations. Roughly 0.5 mg of tissue was used to obtain 5 μ g of genomic DNA on
350 average, which was stored at -80°C.

351 Voided urine (approximately 50~100 mL) was collected prior to surgery or cystoscopy, and
352 immediately processed within an hour. The urine samples were centrifuged at 3,000 g for 10
353 min. The cell pellets were washed with 10 mL of PBS twice and spun down for 10 min at 3,000
354 g. Then, cells were re-suspended in 1 mL of PBS and transferred to an Eppendorf vial and
355 centrifuged for another 5 min. The washed cell pellets were stored at -80°C. The DNA from
356 urine cell pellet were isolated using the Quick-DNA Urine Kit (Zymo Research, United States,
357 Cat# D3061) according the manufacturer's instructions. 95% of the urine samples yielded more
358 than 100 ng of DNA, which was required amount to perform all assays.

359

360 **AnchorIRIS™ targeted methylation sequencing**

361 To discover differential methylation profiling of BCa, a targeted methylation sequencing of
362 100,000 CpG site was performed by using the AnchorIRIS™ technologies as previously
363 described (26). Detailed information was shown in Supplementary Methods. The raw sequence
364 data reported in this study have been deposited in the Genome Sequence Archive in BIG Data
365 Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, under GSA
366 accession numbers CRA002787, which are publicly accessible at <http://bigd.big.ac.cn/gsa>.

367

368 **Methylation analysis by MALDI-TOF-MS**

369 Instead of using the typical EpiTYPER DNA methylation analysis technology which was
370 limited to detect only one genomic region with a relatively large target fragment, we have
371 adopted the SNP genotyping MassARRAY system to detect the methylation of multiple CpG
372 sites from different genomic regions. By applying the bisulfite-converted target sequences on
373 the Assay Design Suite software (Agena Bioscience), the amplification and extension primers
374 for simultaneous multi-target methylation detections were designed and experimentally verified.
375 100 ng of genomic DNA from each sample were treated with sodium bisulfite with the EZ DNA
376 Methylation-Lightning Kits (Zymo Research, United States, Cat# D5030). A subsequent
377 quantitative analysis of DNA methylation of selected methylation markers was carried out by
378 the Agena MassARRAY platform with the iPLEX Pro reagent kit (Agena Bioscience, United

379 States, Cat# 10217) according to the manufacturer's instructions. All specific primers used in
380 the utMeMA assay are listed in Supplementary Table S4. See Supplementary Methods for
381 further details.

382

383 **Identification of methylation markers discriminating between bladder cancer and normal
384 tissue.**

385 To identify putative markers, we first compared the methylation data derived from BCa tissue
386 and normal urothelium from the SYSMH cohort and TCGA cohort, including 11 and 21 paired
387 BCa and NAT samples. Then, we compared the methylation data derived from 412 BCa tissue
388 samples from TCGA and 656 healthy blood from a previous study (19). Group-wise (cancer vs
389 normal) moderated *t*-test was used for the initial screening of markers from the above data.
390 Furthermore, we applied additional filters to increase the stringency of the screening to reduce
391 potential false positives, including group-wise SE < 0.1, mean β -value difference > 0.2, FDR <
392 0.01 (450K data) or < 0.05 (targeted methylation sequencing data), mean beta-value in normal
393 or WBC < 0.17, mean beta-value in cancer > 0.3.

394

395 **Construction and validation of urine diagnostic model to detect bladder cancer**

396 In the modeling cohort, 313 cases were randomly subdivided into training (222 cases) and test
397 (91 cases) sets, respectively, and samples were stratified against age, gender, smoking status
398 and pathological classes. The train and test sets were used for model building and the selection
399 of CpG markers, and the 175 cases in the validation set was for independent testing of the
400 selected model. We used LASSO to build the model and select the best markers simultaneously
401 by “shrinking” some coefficients to zero, which was equivalent to removing these markers from
402 the model. The hyper-parameter lambda in LASSO, which controlled the level of regularization,
403 was selected from out-of-fold performance on 50 repetitions of 5-fold cross-validation analysis
404 of the training data, and the metric for model selection was based on AUC scores in the cross-
405 validation phase, and the final model built from the whole train dataset was used for testing and
406 validation. The performance of the model was evaluated by AUC. UD-score is calculated based
407 on the LASSO model as determined in the training data set, and the formula for UD-score is
408 logistic (-0.926 + 3.002 \times OTX1 + 2.635 \times SOX1-OT), and the coefficients and intercept and

409 their statistical significance are listed in Table 1. The cutoff value (0.3564) on UD-score was
410 determined by the method of Youden's index on the model ROC, which maximize the sum of
411 sensitivities and specificities.

412

413 **Statistical analysis**

414 LASSO was fitted to build the UD-score, and the ROC curve was adopted to assess the
415 performance of the UD-score-based model. The beta-value and UD-score distribution between
416 clinical categories were presented as boxplots with median and the interquartile range marks.
417 Differences between two groups were analyzed with the unpaired/paired Student's *t*-test (two-
418 tailed tests), and one-way ANOVA followed by Dunnett's multiple comparisons tests when
419 more than two groups were compared. The sensitivity, specificity, accuracy, positive predictive
420 value (PPV), and negative predictive value (NPV) of utMeMA, cytology and FISH in detecting
421 BCa were obtained by comparison to pathology and presented as univariate values in bar graph.
422 The positive and negative of utMeMA were determined by the cutoff value (0.3564), while
423 positive and negative of cytology and FISH were determined by the clinical report. Pearson's
424 χ^2 test was used to analyze the clinical variables on sensitivity and specificity. Spearman's
425 correlation analysis was performed to determine the correlation between two variables. All
426 hypothesis testing was two-sided with a P value < 0.05 considered to be statistically significant.
427 All statistical analyses and data visualizations were carried out in R (3.6.0) with R packages
428 and Prism 8 (GraphPad Software).

429

430 **Study approval**

431 This study was conducted in compliance with the principles of the 1975 Declaration of Helsinki
432 and was approved by the Ethics Committees of the Sun Yat-sen Memorial Hospital, Sun Yat-
433 sen University. Written informed consent was obtained from all patients or their legal
434 representatives prior to their participation in the study.

435

436 **Author Contributions**

437 T.X. Lin, J. Huang, J.-B. Fan, X. Chen conceived, designed, and directed the study. W.M. Ruan,
438 Z.Y. Jiang, J.X. Chen, Z.W. Chen developed the methodology. X. Chen, J.T. Zhang, M. Huang,

439 C.J. Wang, S.G. Wang, Z. Liu, C.X. Liu, W.L, Tan, J. Yang, X.Y. Zhang, R.H. Xie, Q.H. Zhou
440 acquire the data. X. Chen, H. Wang, Z.Y. Jiang perform the analysis and interpretation of data.
441 W.M. Ruan, J.X. Chen, Z.W. Chen, X. Li, D.L. Irwin, P. Xu, L. Chen, S.Z. Xu provided
442 technical or material support. X. Chen, T.X. Lin, J. Huang, J.-B. Fan wrote and critically
443 reviewed the manuscript. All authors read and approved the final manuscript. The order of the
444 co-first authors was assigned based on the relative contributions of these individuals.

445

446 **Acknowledgements**

447 We are grateful to the patients and families involved in this study, and to Cellular & Molecular
448 Diagnostics Center of SYSMH for preserving data of urine cytology and FISH for this study.
449 This study was supported by the National Key Research and Development Program of China
450 (Grant No. 2018YFA0902803, 2017YFC1309002), the National Natural Science Foundation
451 of China (Grant No. 81825016, 81961128027, 81702523, 81772719, 81772728), The Key
452 Areas Research and Development Program of Guangdong (Grant No. 2018B010109006),
453 Science and Technology Program of Guangzhou (Grant No. 201804010041), Guangdong Basic
454 and Applied Basic Research Foundation (Grant No. 2020A1515010888), Science and
455 Technology Planning Project of Guangdong Province, China(Grant NO.2017B020226005),
456 Guangdong Special Support Program (2017TX04R246), Project Supported by Guangdong
457 Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (for
458 Tianxin Lin), Scheme of Guangzhou for Leading Team in Innovation (No.201909010010),
459 Scheme of Guangzhou Economic and Technological Development District for Leading Talents
460 in Innovation and Entrepreneurship (No. 2017-L152), Scheme of Guangzhou for Leading
461 Talents in Innovation and Entrepreneurship (No.2016007).

462

463 **References**

- 464 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, and Jemal A. Global cancer statistics
465 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185
466 countries. *CA: a cancer journal for clinicians.* 2018;68(6):394-424.
- 467 2. Cumberbatch MGK, Jubber I, Black PC, Esperto F, Figueroa JD, Kamat AM, et al.
468 Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk
469 Factors in 2018. *European urology.* 2018;74(6):784-95.
- 470 3. Leal J, Luengo-Fernandez R, Sullivan R, and Witjes JA. Economic Burden of Bladder Cancer

471 Across the European Union. *European urology*. 2016;69(3):438-47.

472 4. Babjuk M, Burger M, Compérat EM, Gontero P, Mostafid AH, Palou J, et al. European
473 Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and
474 Carcinoma In Situ) - 2019 Update. *European urology*. 2019;76(5):639-57.

475 5. Dimashkieh H, Wolff DJ, Smith TM, Houser PM, Nietert PJ, and Yang J. Evaluation of
476 urovysion and cytology for bladder cancer detection: a study of 1835 paired urine samples
477 with clinical and histologic correlation. *Cancer cytopathology*. 2013;121(10):591-7.

478 6. Lin T, Liu Z, Liu L, Yang L, Han P, Zhang P, et al. Prospective evaluation of fluorescence in
479 situ hybridization for diagnosing urothelial carcinoma. *Oncology letters*. 2017;13(5):3928-
480 34.

481 7. Esteller M. Epigenetics in cancer. *The New England journal of medicine*.
482 2008;358(11):1148-59.

483 8. Baylin SB, and Jones PA. Epigenetic Determinants of Cancer. *Cold Spring Harbor
484 perspectives in biology*. 2016;8(9).

485 9. Chen X, Xie R, Gu P, Huang M, Han J, Dong W, et al. Long Noncoding RNA LBCS Inhibits
486 Self-Renewal and Chemoresistance of Bladder Cancer Stem Cells through Epigenetic
487 Silencing of SOX2. *Clinical cancer research : an official journal of the American Association
488 for Cancer Research*. 2019;25(4):1389-403.

489 10. Yim JH, Choi AH, Li AX, Qin H, Chang S, Tong ST, et al. Identification of Tissue-Specific
490 DNA Methylation Signatures for Thyroid Nodule Diagnostics. *Clinical cancer research : an
491 official journal of the American Association for Cancer Research*. 2019;25(2):544-51.

492 11. Lee DD, Leão R, Komosa M, Gallo M, Zhang CH, Lipman T, et al. DNA hypermethylation
493 within TERT promoter upregulates TERT expression in cancer. *The Journal of clinical
494 investigation*. 2019;129(1):223-9.

495 12. Downs BM, Mercado-Rodriguez C, Cimino-Mathews A, Chen C, Yuan JP, Van Den Berg
496 E, et al. DNA Methylation Markers for Breast Cancer Detection in the Developing World.
497 *Clinical cancer research : an official journal of the American Association for Cancer
498 Research*. 2019;25(21):6357-67.

499 13. Wang C, Liu Q, Huang M, Zhou Q, Zhang X, Zhang J, et al. Loss of GATA6 expression
500 promotes lymphatic metastasis in bladder cancer. *FASEB journal : official publication of
501 the Federation of American Societies for Experimental Biology*. 2020;34(4):5754-66.

502 14. Guo RQ, Xiong GY, Yang KW, Zhang L, He SM, Gong YQ, et al. Detection of urothelial
503 carcinoma, upper tract urothelial carcinoma, bladder carcinoma, and urothelial carcinoma
504 with gross hematuria using selected urine-DNA methylation biomarkers: A prospective,
505 single-center study. *Urologic oncology*. 2018;36(7):342.e15-.e23.

506 15. Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL, et al. Comprehensive
507 genome methylation analysis in bladder cancer: identification and validation of novel
508 methylated genes and application of these as urinary tumor markers. *Clinical cancer
509 research : an official journal of the American Association for Cancer Research*.
510 2011;17(17):5582-92.

511 16. Renard I, Joniau S, van Cleynenbreugel B, Collette C, Naôm   C, Vlassenbroeck I, et al.
512 Identification and validation of the methylated TWIST1 and NID2 genes through real-time
513 methylation-specific polymerase chain reaction assays for the noninvasive detection of
514 primary bladder cancer in urine samples. *European urology*. 2010;58(1):96-104.

515 17. Witjes JA, Morote J, Cornel EB, Gakis G, van Valenberg FJP, Lozano F, et al. Performance
516 of the Bladder EpiCheck™ Methylation Test for Patients Under Surveillance for Non-
517 muscle-invasive Bladder Cancer: Results of a Multicenter, Prospective, Blinded Clinical
518 Trial. *European urology oncology*. 2018;1(4):307-13.

519 18. van der Heijden AG, Mengual L, Ingelmo-Torres M, Lozano JJ, van Rijt-van de Westerlo
520 CCM, Baixauli M, et al. Urine cell-based DNA methylation classifier for monitoring bladder
521 cancer. *Clinical epigenetics*. 2018;10:71.

522 19. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide
523 methylation profiles reveal quantitative views of human aging rates. *Molecular cell*.
524 2013;49(2):359-67.

525 20. Beukers W, van der Keur KA, Kandimalla R, Vergouwe Y, Steyerberg EW, Boormans JL, et
526 al. FGFR3, TERT and OTX1 as a Urinary Biomarker Combination for Surveillance of Patients
527 with Bladder Cancer in a Large Prospective Multicenter Study. *The Journal of urology*.
528 2017;197(6):1410-8.

529 21. van Kessel KE, Beukers W, Lurkin I, Ziel-van der Made A, van der Keur KA, Boormans JL,
530 et al. Validation of a DNA Methylation-Mutation Urine Assay to Select Patients with
531 Hematuria for Cystoscopy. *The Journal of urology*. 2017;197(3 Pt 1):590-5.

532 22. D'Andrea D, Soria F, Zehetmayer S, Gust KM, Korn S, Witjes JA, et al. Diagnostic accuracy,
533 clinical utility and influence on decision-making of a methylation urine biomarker test in
534 the surveillance of non-muscle-invasive bladder cancer. *BJU international*.
535 2019;123(6):959-67.

536 23. Trenti E, Pycha S, Mian C, Schwienbacher C, Hanspeter E, Kafka M, et al. Comparison of 2
537 new real-time polymerase chain reaction-based urinary markers in the follow-up of
538 patients with non-muscle-invasive bladder cancer. *Cancer cytopathology*. 2020.

539 24. Xu Z, Ge G, Guan B, Lei Z, Hao X, Zhou Y, et al. Noninvasive Detection and Localization of
540 Genitourinary Cancers Using Urinary Sediment DNA Methylomes and Copy Number
541 Profiles. *European urology*. 2020;77(2):288-90.

542 25. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al.
543 Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. *Cell*.
544 2017;171(3):540-56.e25.

545 26. Liang W, Zhao Y, Huang W, Gao Y, Xu W, Tao J, et al. Non-invasive diagnosis of early-
546 stage lung cancer using high-throughput targeted DNA methylation sequencing of
547 circulating tumor DNA (ctDNA). *Theranostics*. 2019;9(7):2056-70.

548

549

Table 1. Characteristics of the two methylation markers and their coefficients in BCa diagnosis.

Target ID	Ref Gene	Coefficients	SE	Z value	P value
Intersect		-0.926	0.0230	-40.2873	0
cg21472506	OTX1	3.002	0.1362	22.0469	1.02E-107
cg11437784	SOX1-OT	2.635	0.0778	33.876	1.53E-251

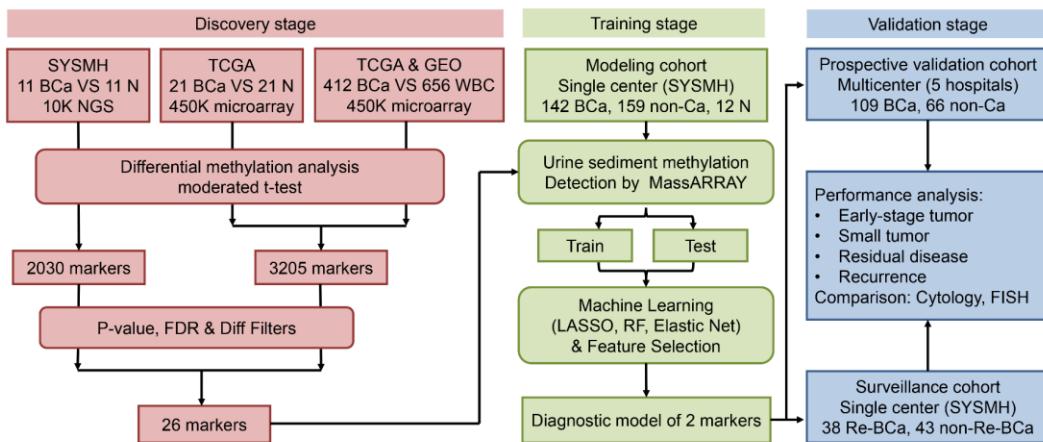
550 SE: standard errors of coefficients; z value: Wald z-statistic value.

551

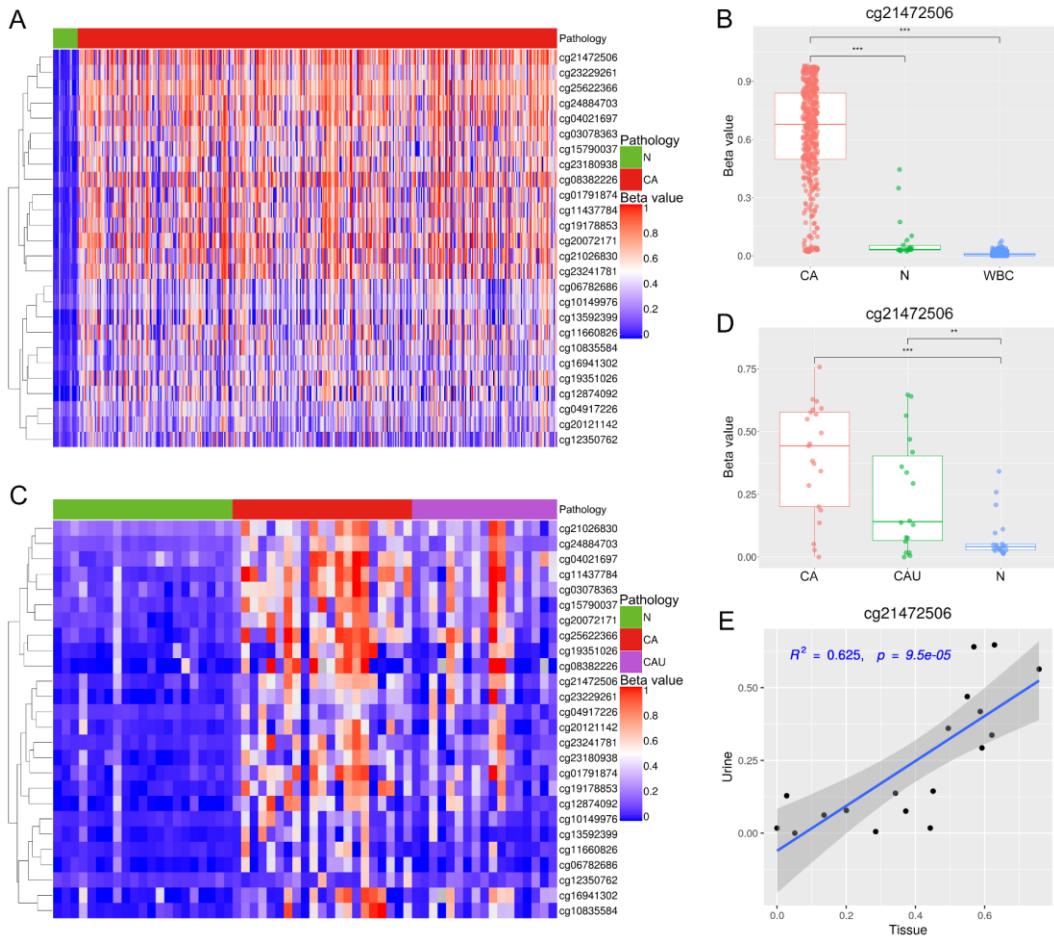
Table 2. Clinical summary of modeling cohort and validation cohort

	Modeling cohort Single center (SYSMH)			Validation cohort Multicenter (5 hospitals)	
	BCa	Non_BCa	Normal	BCa	Non_BCa
Parameter	n=142	n=159	n=12	n=109	n=66
Gender					
Female	26(18.3%)	56(35.2%)	3(25.0%)	18(16.5%)	18(27.3%)
Male	116(81.7%)	103(64.8%)	9(75.0%)	91(83.5%)	48(72.7%)
Age (years)					
<60	43(30.3%)	88(55.3%)	9(75.0%)	29(26.6%)	43(65.2%)
≥60	99(69.7%)	71(44.7%)	3(25.0%)	80(73.4%)	23(34.8%)
Tumor Stage					
Ta	35(24.6%)			42(38.5%)	
T1	57(40.2%)			22(20.2%)	
T2	27(19.0%)			16(14.7%)	
T3	17(12.0%)			26(23.9%)	
T4	5(3.5%)			2(1.8%)	
CIS alone	1(0.7%)			1(0.9%)	
Any CIS	14(9.8%)			10(9.2%)	
Histologic grade					
PUNLMP*	0(0%)			6(5.5%)	
Low grade	15(10.6%)			24(22.0%)	
High grade	127(89.4%)			79(72.5%)	
Number of tumors					
Single tumor	66(46.5%)			78(71.6%)	
Multiple tumors	76(53.5%)			31(28.4%)	
Size of tumor					
≤1.5cm	33(23.2%)			32(29.3%)	
1.5-3cm	45(31.7%)			27(24.8%)	
≥3cm	64(45.1%)			50(45.9%)	
Smoking					
Yes	37(26.1%)	39(24.5%)	0(0%)	34(31.2%)	8(12.1%)
No	105(73.9%)	119(74.9%)	12(100%)	57(52.3%)	38(57.6%)
NA	0(0%)	1(0.6%)	0(0%)	18(16.5%)	20(30.3%)
Urine Fish					
Positive	83(58.4%)	6(3.8%)	0(0%)	53(48.6%)	1(1.5%)
Negative	23(16.2%)	28(17.6%)	0(0%)	39(35.8%)	23(34.8%)
NA	36(25.4%)	125(78.6%)	12(100%)	17(15.6%)	42(63.7%)
Urine cytology					
Positive	64(45.1%)	1(0.6%)	0(0%)	38(34.9%)	2(3.0%)
Negative	22(15.5%)	21(13.2%)	0(0%)	52(47.7%)	21(31.8%)
NA	56(39.4%)	137(86.2%)	12(100%)	19(17.4%)	43(65.2%)

Number of cases is shown for categorical variables with percentage in parentheses. CIS, carcinoma in situ. *PUNLMP, papillary urothelial neoplasm of low malignant potential. NA = Not Available.


556 **Table 3.**The sensitivity and specificity of utMeMA by different clinical characteristics.

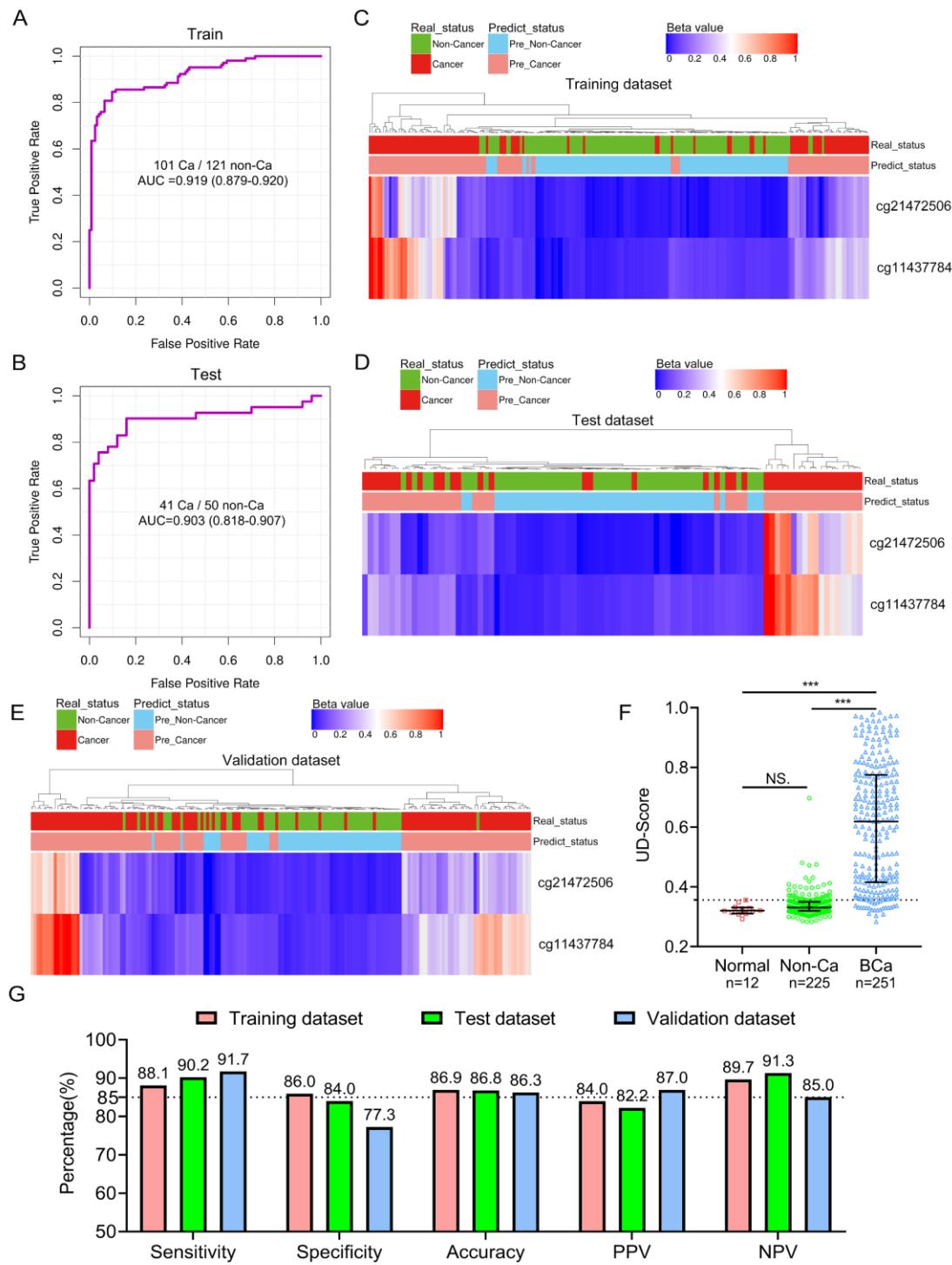
Clinical Characters	utMeMA Positive	Bladder Cancer	Sensitivity (95%CI)	utMeMA Negative	Non-Cancer Disease	Specificity (95%CI)
Overall	226	251	90.0% (88.4%-91.6%)	197	237	83.1% (81.6%-84.6%)
Age						
<60	60	72	83.3% (79.8%-86.8%)	119	140	85.0% (82.6%-87.4%)
≥60	166	179	92.7% (91.5%-93.9%)	78	97	80.4% (77.1%-83.7%)
Gender						
Male	186	207	89.9% (88.6%-91.2%)	137	160	85.6% (83.9%-87.3%)
Female	40	44	90.9% (88.7%-93.1%)	60	77	77.9% (76.3%-79.5%)
Grade						
PUNLMP	5	6	83.3% (76.8%-89.8%)	0	0	NA
LG	27	39	69.2% (65.5%-72.9%)	0	0	NA
HG	194	206	94.2% (93.2%-95.2%)	0	0	NA
Stage						
NMIBC	136	159	85.5% (84.0%-87.0%)	0	0	NA
MIBC	90	92	97.8% (97.4%-98.2%)	0	0	NA
Smoking history						
Never smoked	141	162	87.0% (86.1%-87.9%)	129	157	82.2% (80.5%-83.9%)
Smoker	67	71	94.4% (93.1%-95.7%)	39	47	83.0% (80.1%-85.9%)


557

558

559 **Figure legends**

561 **Figure 1. Workflow indicating study design.** SYSMH, Sun Yat-sen Memorial Hospital;
 562 TCGA, the Cancer Genome Atlas; BCa, bladder cancer; FDR, false discovery rate; LASSO,
 563 the least absolute shrinkage and selection operator; RF, random forest.
 564



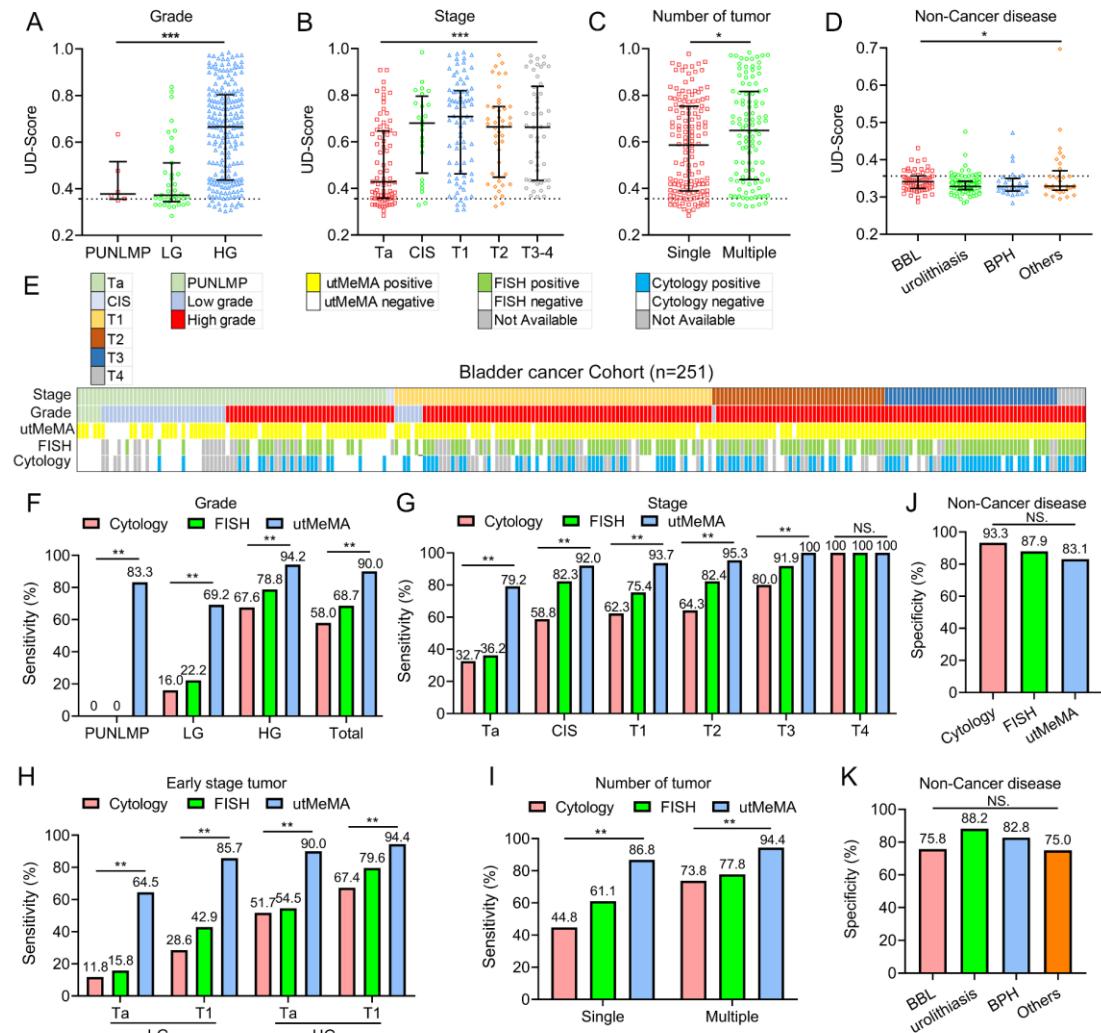
565

566 **Figure 2. Discovery of DNA methylation markers to distinguish bladder cancer and**
 567 **normal tissue.**

568 (A) Unsupervised hierarchical clustering of 26 methylation markers differentially methylated
 569 between normal adjacent tissue (NAT, n=21) and BCa tumor tissue (n=412) in the TCGA cohort.
 570 (B) Boxplot presenting the beta value distribution of cg21472056 among BCa tumor tissue (412
 571 samples), NAT (n=21) and normal blood WBC cell (n=656). Beta-value of 0 represents no
 572 methylation, whereas 1 represents full methylation. The data were presented as median with
 573 the interquartile range. Statistical significance was assessed using 1-way ANOVA followed by
 574 Dunnett's tests. (C) Unsupervised hierarchical clustering of 26 methylation markers
 575 differentially methylated among NAT (n=21), BCa tumor tissue (n=21) and matched urine
 576 (n=18) in the SYSMH cohort. The unavailable value is shown in gray. (D) Boxplot presenting
 577 the beta value distribution of cg21472056 among BCa tumor tissue (n=21), matched urine
 578 (n=18) and NAT (n=21) which was detected by TOF-MS. The data were presented as median
 579 with the interquartile range. Statistical significance was assessed using 1-way ANOVA followed

580 by Dunnett's tests. (E) The spearman correlation analysis of cg21472056 methylation level
581 between the tumor tissue and matched urine in 18 patients. NAT, normal adjacent tissue.
582 Pearson's χ^2 test was used to analyze statistical significance. **P < 0.01 and ***P < 0.001.
583

584

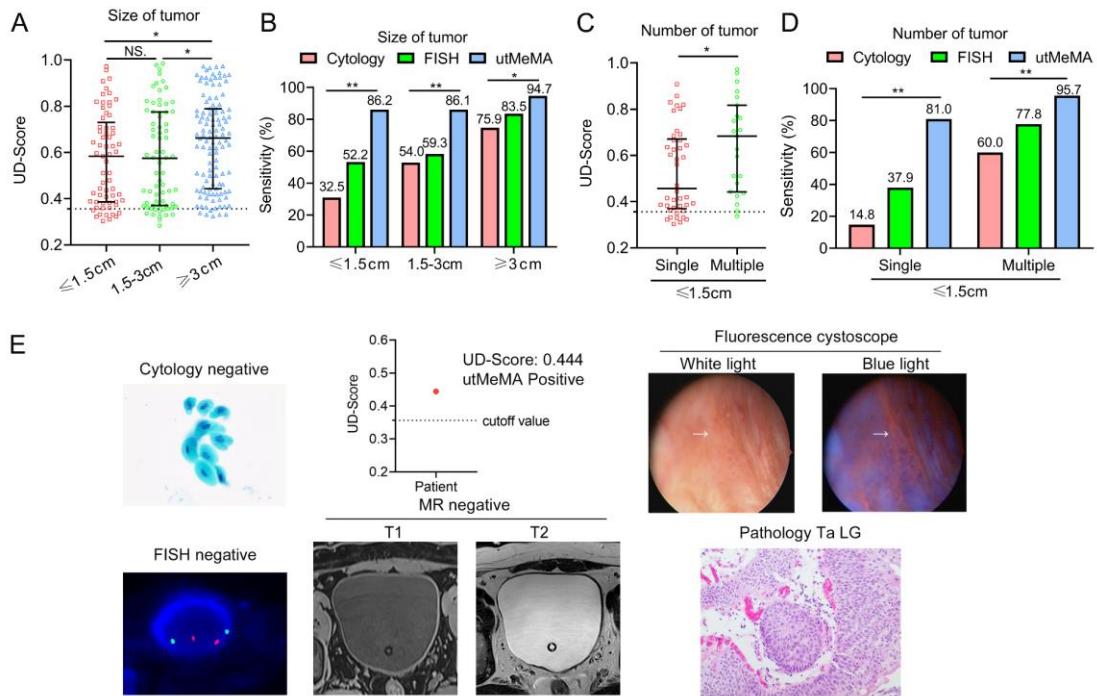

585 **Figure 3. Construction and validation of urine diagnostic model to detect bladder cancer**

586 **in three cohorts by using 2 markers.**

587 **(A-B)** ROC curves and the associated AUCs of the diagnostic prediction model using urine
 588 DNA methylation analysis in the training (A) and testing (B) cohorts. **(C-E)** Unsupervised
 589 hierarchical clustering of two methylation markers which were differentially methylated
 590 between the DNA of bladder cancer and non-cancer subjects in the training (C, n=222), testing

591 (D, n=91) and independent prospective validation (E, n=175) cohorts. Each row represents an
592 individual patient, and each column is a CpG marker. The real disease status and prediction
593 status by model were shown ahead. (F) The urine diagnostic score (UD-Score) of normal
594 participants (n=12), non-cancer (n=225) and bladder cancer (n=251) patients were shown. The
595 dotted line showed the cutoff value (0.3564) to distinguish bladder cancer from non-cancer
596 cases. The data were presented as median with the interquartile range. Statistical significance
597 was assessed using 1-way ANOVA followed by Dunnett's tests. (G) The sensitivity, specificity,
598 accuracy, positive predictive value (PPV) and negative predictive value (NPV) of this model in
599 the training, testing and validation cohorts were determined by the cutoff value. ROC,
600 Receiver operating characteristic; AUC, area under the curve. ***P < 0.001 and NS represents
601 no significance.

602

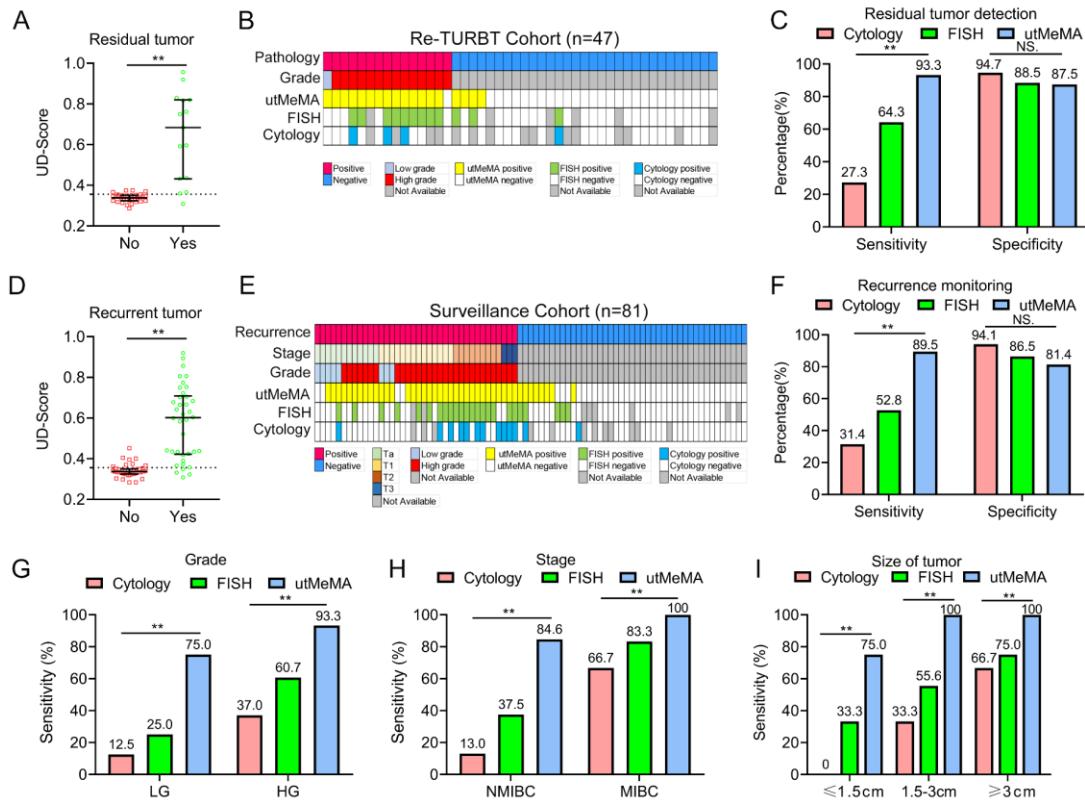

603

604 **Figure 4. The significantly improved sensitivity of utMeMA in the diagnosis of bladder**
 605 **cancer in comparison with urine cytology and FISH**

606 (A-C) The UD-Score of BCa patients in different grade (A), stage (B) and number (C) of tumors
 607 (n=251). CIS means all the cases which includes CIS (n=24). (D) The UD-Score of patients in
 608 four types of non-cancer diseases of the urinary system, including benign bladder lesions (BBL),
 609 urolithiasis, benign prostatic hypertrophy (BPH) and other benign diseases (n=237). The data
 610 were presented as median with the interquartile range. Statistical significance was assessed
 611 using 1-way ANOVA followed by Dunnett's tests (A, B, D) and unpaired t test (two-tailed, C).
 612 (E) Distribution of predicted diagnostic status using utMeMA across patients with bladder
 613 cancer (n=251) with associated tumor stage, grade, cytology and FISH results. CIS means the
 614 cases which is CIS alone (n=2). (F-I) The sensitivity of utMeMA in BCa patients with indicated
 615 grade (F), stage (G), early-stage (H) and number (I) of tumor, in comparison with urine cytology

616 and FISH. CIS means all the cases which includes CIS (n=24). (J) The specificity of utMeMA
617 in patients with non-cancer diseases in comparison with urine cytology and FISH. (K) The
618 specificity of utMeMA in patients with four types of non-cancer diseases. Statistical
619 significance was assessed by χ^2 test (G-L). *P < 0.05, ** P < 0.01 and NS represents No
620 significance.

621



622

623 **Figure 5. Application of utMeMA to detect minimal tumor of bladder cancer.**

624 **(A-B)** The UD-Score and sensitivity of utMeMA in BCa patients with different tumor sizes, in
625 comparison with urine cytology and FISH. Statistical significance was assessed using 1-way
626 ANOVA followed by Dunnett's tests (A) and χ^2 test (B). **(C-D)** The UD-Score and sensitivity
627 of utMeMA in BCa patients with single or multiple small tumors, in comparison with urine
628 cytology and FISH. Statistical significance was assessed using unpaired t test (two-tailed, C)
629 and χ^2 test (D). The data were presented as median with the interquartile range (A and C). **(E)**
630 Example of a patient with minimal tumor detected by utMeMA, but missed by cytology, FISH,
631 MR imaging and ordinary cystoscopy, who was later diagnosed by fluorescence cystoscopy.
632 The pathology of the tumor was Ta and low grade. * $P < 0.05$, ** $P < 0.01$ and NS represents No
633 significance.

634

635

636 **Figure 6. Application of utMeMA to detect residual tumor, and monitor the recurrence of**
 637 **bladder cancer.**

638 (A) The distribution of UD-Score in BCa patients with or without residual tumors (n=47).
 639 Statistical significance was assessed using unpaired t test (two-tailed). The data were presented
 640 as median with the interquartile range. (B) The landscape of pathological characters and
 641 detection results in re-TURBT cohort, including 15 cases with residual tumor and 32 cases
 642 without tumor. (C) The sensitivity and specificity of utMeMA in the detection of residual tumor,
 643 in comparison with urine cytology and FISH (n=47). (D) The distribution of UD-Score in BCa
 644 patients with or without recurrent tumor. The data were presented as median with the
 645 interquartile range. Statistical significance was assessed using unpaired t test (two-tailed). (E)
 646 The landscape of pathological characteristics and detection results in surveillance cohort,
 647 including 38 cases with tumor recurrence and 43 cases without recurrence (n=81). (F) The
 648 sensitivity and specificity of utMeMA in detection of recurrent tumor, in comparison with urine
 649 cytology and FISH (n=81). (G-I) The sensitivity of utMeMA in patients with recurrent BCa
 650 with indicated grade (G), stage (H), and size (I) of tumor, in comparison with urine cytology
 651 and FISH (n=38). Statistical significance was assessed using χ^2 test (C, F, G-I). *P < 0.05, **P

652 < 0.01 and NS represents No significance.