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Supplemental Figure 1. Phenotype characterization of paired NFs and CAFs from NSCLC 

patients. (a) Cell morphology of the fibroblasts (NF, CAF) (200x). (b, c) Colony formation assay. 

100 cells were seeded in the 35mm dishes and colonies were fixed with methanol and stained with 

0.05% crystal violent on Day14. Before staining colonies were shown under the microscope 

(right). (d, e, f) Lung cancer cells were treated with conditioned medium (CM) from paired 

NF/CAF for 4 days, and then processed to conduct invasion (d), migration (e) and sphere forming 

assays (f). Numbers of cells migrated and invaded through the membrane were counted 

respectively. CM of NF/CAF from individual NSCLC patients was shown on the left and the 

average value was shown on the right panel (d, e). The number of spheres was counted 

coordinately (f). Data represent mean ± SD from three replicate experiments.  
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Supplemental Figure 2.  No indication of cancer cell contamination in the primary cultured 

CAF cell lines. (a) Flow cytometry staining of CD90 and FAP (CAF markers), and EPCAM 

(epithelial marker) for the lung CAF cell lines and A549 (an epithelial lung cancer cell line). (b) 
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Immunofluorescence staining of CD90 (Green) for CAF and BEAS2B (a normal epithelial cell 

line). (c) Soft-agar assay on the NF and CAF cell lines and A549 to characterize tumorigenic 

feature. (d) TruSight® Tumor 15 (TST15) targeted NGS to detect EGFR mutation in the DNA 

samples from a NSCLC patient with EGFR L858R mutation. 
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Supplemental Figure 3. Validation of differentially expressed genes between NF and CAF 

samples from NSCLC patients using real-time qPCR. (a, b) RNA samples of primary cultured 

NF and CAF pairs were reverse transcribed to cDNA by iScript RT transferase. mRNA levels of 

selected CAF up- (a) and down (b)-regulated genes were measured in paired NF/CAF samples. 

Actin was used as the internal control. Data represent mean ± SD from three replicate experiments.  
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Supplemental Figure 4. The global methylation pattern in paired NF and CAF samples from 

26 NSCLC patients. (a) The density estimation of the DNA methylation level in the beta-values 

of 26 NSCLC patients individually. Red: CAF. Blue: NF. (b) The number of hyper- and hypo-

methylated DM CpGs in CAF was analyzed based on the changes in beta-values. 
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Supplemental Figure 5. Scatter plots of DNA methylation versus gene expression in NF/CAF 

pairs for 54 genes of MIND. Red: CAF. Blue: NF. 
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Supplemental Figure 6. Examination of MIND on the discrimination ability in an 

independent cohort. (a) MIND was applied in an independent cohort of NF/CAF samples from 

12 NSCLC patients (GSE68851). The distribution of MIND, ordered from the largest value to the 

smallest, showed a clear classification between CAFs (Red) and NFs (Blue). (Sample 18_CAF 

lacked methylation value of cg21116457 in gene SLC14A1). (b) ROC curve showed the 

performance of MIND in NF/CAF classification with AUC of 0.83 (95% CI = 0.66-1.0), sensitivity 

of 73% and specificity of 92% (Youden’s Index) in the GSE68851 dataset. 
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Supplemental Figure 7. Performance of MIND-GE. (a) Scatter plot of the first and second PCs 

showing gene expression profiles of 52 NF/CAF samples on the 54 genes. CAFs are shown in red 

and NFs in blue. Triangles indicate samples from patients with relapse while those with no relapse 

shown in circles. The gene expression signature (MIND-GE) was constructed as the weighted sum 

of the standardized expression weighted by the loadings of PC1. The distribution of MIND-GE, 

ordered from the largest value to the smallest, showed a clear partition between CAFs (Red) and 

NFs (Blue). ROC curve was shown with AUC 0.83 (95% CI = 0.70-0.95), sensitivity 84% and 
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specificity 80% (Youden’s Index). (b) MIND-GE was validated in an independent cohort of 

NF/CAF samples from 15 NSCLC patients (GSE22874). ROC curve was plotted with AUC of 

0.93 (95% CI = 0.84-1.00), sensitivity of 80% and specificity of 93% (Youden’s Index). 
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Supplemental Figure 8. Impact of the malignancy level of tumor microenvironment, as 

indexed by MIND, on cancer cell viability and invasion. Conditioned medium from the CAFs 

with high (MINDhigh, n = 5) or low (MINDlow, n = 4) score of MIND were applied to the cancer 

cell lines A549 and CL1-0. (a) MTT assay for cell viability was performed at 24, 48 and 72 hours. 

(b) Cell invasion assay was performed at 18h. Data represent mean ± SD. Mann-Whitney U test 

was used for significance. *P < 0.05.  
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Supplemental Figure 9. Prognostic value of MIND-GE. (a) Kaplan-Meier analysis for relapse-

free survival (RFS) prediction by MIND-GE in the CAF samples from our discovery cohort. 

Patients were stratified into the high and low groups using the median cutoff (P = 0.041, Log rank 

test). (b) Applying MIND-GE to the gene expression profiling of tumor samples from TCGA 

LUAD dataset. Patients were stratified into the high and low groups using the median cutoff (OS, 

P = 0.069).  
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Supplemental Figure 10. The PPI analysis of the 54 genes constituent of MIND (STRING 
v11.0).  
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Supplemental Table 1. Clinical characteristics of NSCLC patients whose NF/CAF were 
primary cultured for genome-wide profiling 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Age Gender Histology Stage Smoking Recurrence Age Gender Histology Stage Smoking Recurrence

48 M Squamous cell carcinoma IIB Y Y 83 M Squamous cell carcinoma IIIB Y Y

86 F Adenocarcinoma IB N Y 75 M Squamous cell carcinoma IIB Y N

72 M Adenocarcinoma IIA N Y 69 M Squamous cell carcinoma IIA Y Y

68 M Pleomorphic carcinoma IIB Y Y 47 M Squamous cell carcinoma IIIA Y Y

59 M Adenocarcinoma IIA N N 70 M Adenocarcinoma IB N N

77 F Adenocarcinoma IIIA N Y 64 F Adenocarcinoma IIA N Y

71 F Metastatic lung cancer NA N N 68 M Adenocarcinoma IB Y N

54 M Adenocarcinoma IB N N 64 F Adenocarcinoma IA N N

57 F Adenocarcinoma IA N N 66 F Adenocarcinoma IB N N

85 M Adenocarcinoma IA Y Y 61 F Adenocarcinoma IV N N
58 F Lymphoepithelioma-like 

carcinoma
IIIA N N 67 M Adenocarcinoma IIIA Y N

76 M Squamous cell carcinoma IB Y N 59 F Mucinous adenocarcinoma IIA N N

76 M Mucinous adenocarcinoma IIIA Y N 81 F Adenocarcinoma IA N N

65 M Adenocarcinoma IB N N 60 F Adenocarcinoma IIIA N Y

77 F Adenosquamous IIIA N Y
76 F Squamous cell carcinoma IIIA NA N

54 M Adenocarcinoma IV Y Y
81 F Adenocarcinoma IB N Y
76 F Adenocarcinoma IIA N Y
44 F Adenosquamous IIB N Y

*63 M Adenocarcinoma IIB Y N
67 M Adenocarcinoma IIIA Y N
59 F Adenocarcinoma IB N N
61 F Adenocarcinoma IIIA N Y
61 F Adenocarcinoma IIIA N N

64 F Adenocarcinoma IA N N
* RNA not pass the QC Affymetrix HU133 PLUS2.0

Discovery cohort (n=26) Validation cohort (n=14)
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Supplemental Table 2. Summary of biological mechanisms of 54 genes incorporated in 
MIND on tumor progression and their potential correlation with smoking. 

Probeset GeneSym Reported CTD# Biological Mechanisms Refs 

cg22110896 TBX4 Ref1 Ref2  
P 

Tumor suppressor and epigenetic regulator in lung 
carcinogenesis; Super-enhancer-driving transcriptional 
factor in lung fibroblast; Putative candidates for 
epigenetic therapy in LUAD. 

3-5 

cg08594681 CLU Ref1 S, B, P 
Tumor suppressor in lung cancer and response to chemo- 
and radiotherapy; Regulation for cell cycle, DNA repair 
and immune response. 

6-9 

cg26179069 COL14A1 Ref1 Ref2 S, B, P 
Fibril-associated collagens involved in the regulation of 
fibrillogenesis; DNA methylation marker in cancers (e.g., 
sarcoma). 

10-12 

cg19534149 NOVA1 Ref1 Ref2 B, P 

Neuro-oncological ventral antigen 1; RNA binding 
protein; RNA splicing regulation (e.g., hTERT); Oncogene 
or tumor suppressor (cancer type-dependent); DNA 
methylation-driven. 

13-16 

cg26874542 FGF18  B 
Involved in cell growth, migration, and epithelial-
mesenchymal transition (EMT) via ERK, p38 and MMP26 
/Akt/GSK3β/b-catenin.  

17-21 

cg21929472 SCARA3  S, B, P 

Tumor suppressor gene; Cell apoptosis regulation via 
CPSF3, XIAP-caspases; Tumor growth and metastasis 
suppression; Scavenging receptor recognizing and 
contributing to oxidative stress, immune and cell death. 

22-24 

cg12547531 AQP1 Ref2 S, B, P 
Down-regulated in colorectal carcinoma (CRC) via 
promoter hypermethylation; Tumor suppressor; Cell 
proliferation, migration, and senescence regulation. 

25-27 

cg00979704 TNXB  B, P 
Involved in epithelial-mesenchymal transition (EMT) via 
PI3K/Akt pathway; Tumor suppressor; Down-regulated 
during tumor progression. 

28,29 

cg00730441 TBX2 Ref2  
B 

Downregulated and hypermethylated in lung CAFs; Acted 
in trans by promoting canonical Wnt (WNT3A); Tumor 
suppressor; Super-enhancer-driving transcriptional 
factor in lung fibroblast.  

30-34 

cg01957732 EYA4 Ref2 S, B, P 
Tumor suppressor; hypermethylated and under-
expressed in multiple independent lung tumor; Tumor 
metastasis inhibition via suppression of NF-kB. 

35-39 

cg15799109 SMAD3  
S, N, B, 

P 

Promoter hypermethylation and silencing, associated 
with hyperresponsiveness to TGF-β1 in lung CAFs; Tumor 
suppressor; suppression of NK cell-mediated immune 
surveillance via Smad3-E4BP4 axis. 

2,40-42 

cg07760722 NR3C2  N, B, P The mineralocorticoid receptor and tumor suppressor. 43-45 

cg09583036 RAB38  S, B, P 
A member of the Ras small G protein family regulating 
intracellular vesicular trafficking; Alveolar type II 
epithelial cells development. 

46-48 

cg19092167 MASP1  B, P 
A component of the lectin pathway of complement 
activation and the central enzyme in the 
innate immune system. 

49-51 

cg18010752 WNT5A   
S, B, P 

Tumor suppressor; b-catenin activation by FZD4; the 
canonical Wnt pathway inhibition via promoting b-

52-56 
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catenin degradation by ROR2; A cigarette smoke-
responded gene. 

cg14124415 ADAMTS1  S, B, P 

A dis-integrin and metalloproteinase with 
thrombospondin motif protein family; Tumor suppressor 
and antiangiogenic factor; Immune cell repertoire and 
inflammatory response regulation. 

57-61 

cg01766743 SOX5  S, B, P 
Tumor growth, invasion and metastasis regulation; YAP1 
interaction; EMT regulation and response to TGF-b via 
Twist1. 

62-65 

cg26262197 CADM1   
S, B, P 

Twist1-regulated tumor suppressor; Hippo pathway 
LATS2 interaction; YAP1 regulation; Tumor progression 
inhibition via c-Src, PI3K/Akt/mTOR pathway, and STAT.  

66-69 

cg00551679 FOXF1  S, B, P 
Endothelial barrier enhancement through S1P/S1PR1 
signaling; Lung regeneration stimulation and tumor 
growth inhibition. 

70-73 

cg25557280 MET  B, P 

Tumor growth and senescence promotion in the 
tumorous microenvironment; TGF-β negative regulation 
of CXCL1 in CAFs through Smad2/3 binding to the 
promoter, and suppression of HGF/c-Met autocrine 
signaling 

74-77 

cg21621104 LRIG1  S, B, P 
Tumor suppressor; A feedback negative regulator of 
receptor tyrosine kinases; Oncogenic signaling restriction 
from AR, Myc, ERBB oncogenic drivers. 

78-80 

cg00219210 ARHGAP44  B 

GAP activity; Catalyzes Rac-GTP hydrolysis; Reduction of 
actin polymerization required for filopodia formation; A 
new target of mutant p53, which suppresses ARHGAP44 
transcription. 

81,82 

cg17395738 TENM4  S, B, P 
Involved in neuron development; Connection of 
H3K27me3 epigenetic markers for cancer prognosis. 

83,84 

cg07778290 CD9  
S, N, B, 

P 

Suppression of cancer cell motility and metastasis 
depending on cancer types; Adhesion, infection, and 
inflammatory regulation. 

85-88 

cg18778196 SMAD6  P 

A mediator of TGF-b and BMP anti-inflammatory activity; 
Suppression of IL1R-TLR signaling through inhibition of 
NF-kB activation; Support of lung cancer cell growth and 
survival. 

89-92 

cg20967819 GALNT18  B 
Response to mucin-type-Golgi stress; Catalyzes the initial 
reaction in O-linked oligosaccharide biosynthesis. 

93,94 

cg09811183 TSPAN2  B, P 
Mutant P53-related; Cell motility and invasiveness 
enhancement via assisting CD44; An important paralog of 
CD9.   

95,96 

cg21116457 SLC14A1  B 
Transmembrane urea transport facilitation; Tumor 
suppressor. 

97,98 

cg00560724 GCNT2  
S, N, B, 

P 

A I-branching N-acetylglucosaminyltransferase 
converting linear i-antigen to I-branching glycan; 
Negative regulation of tumor growth and survival. 

99,100 

cg14380519 PRUNE2  S, B, P 
Tumor suppressor in prostate cancer; Cell apoptosis 
regulation. 

101,102 

cg21557473 AUTS2  S, B, P 
Correlation with TGF-b, Hedgehog and Wnt signaling 
pathway. 

103,104 
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cg00308159 MN1  B, P 
Oncogene or tumor suppressor (cancer type-dependent); 
Regulation of the Tbx22 function on mammalian palate 
development. 

105-107 

cg00283524 KIAA1644  B A Shisa-like protein. 108 

cg05865493 HDAC9  B 
Tumor progression and immune response regulation 
(cancer type-dependent). 

109,110 

cg05185926 ARHGAP26 Ref2 S, B, P 
A CAF marker; Connection to the Rho kinase signaling 
pathway. 

111 

cg24332570 ANK3  
S, N, B, 

P 
Connection with Wnt and b-catenin signaling; Regulation 
of lung cancer and smoking-related. 

112-114 

cg08670693 APBB2 Ref2 S, B, P 
Amyloid-beta A4 precursor protein-binding family B; Cell 
cycle regulation. 

115,116 

cg21604970 ST6GALNAC5 Ref2 S, B, P 
EMT regulation via Met autocrine; Brain metastasis 
mediation. 

117,118 

cg21211213 EBF1  S, B, P 
Modulation of TERT expression and PNO1/P53 pathway 
in cancer; Smoking status-associated. 

119-121 

cg11857452 HIVEP3  S, B, P 
ERK/Wnt signaling regulation in osteoblasts and BMP-
Runx2/VEGF; Pro-inflammatory regulator via binding to 
NF-kB. 

122-124 

cg11658060 NUAK1  S, B, P 

AMPK-related kinase, involved in cell polarity, cell 
proliferation, cell adhesion, senescence, and tumor 
progression; Response to DNA damage-response and 
repair via interacting with TGF-b, SMAD3, P53, CDKN1A. 

125-129 

cg25602242 SLC2A5   
B 

A fructose transporter; Enhancement of cell proliferation, 
migration, invasion, and tumorigenesis via enhancing 
fructose utilization, stimulating fatty acid synthesis and 
AMPK/mTORC1 signaling; Adjacent lung adenocarcinoma 
cytoplasmic pro-B cell development. 

130-132 

cg25311162 TENM3 Ref2  
B 

Regulation of neuronal development and fibroblasts-like 
cell differentiation; A tumor marker with epigenetic 
regulation; Correlation with Wnt signaling 

133-136 

cg18015301 AMPH  B 
UP-regulated in cancer; Tumor suppressor in breast and 
lung cancer via inhibiting PI3K/AKT and Ras-Raf-MEK-ERK 
signal pathways. 

137-139 

cg24838136 SLC12A8  
 

B 

A nicotinamide mononucleotide transporter; Tumor 
growth and metastasis promotion in colorectal, ovarian 
carcinoma, and bladder cancer via EMT regulation. 

140,141 

cg03466986 FBLN2   
S, B, P 

An extracellular matrix glycoprotein on tissue 
development/remodeling; Epithelial basement 
membrane stability; Correlation with TGF-b signaling; A 
driver of malignant progression in lung adenocarcinoma. 

142-144 

cg21158795 PDPN  
 

B, P 

A CAF malignant marker, promoting tumor growth and 
metastasis; A new inhibitory molecule on T cells; 
Enrichment in CD204 M2 mj (TAM) and negative 
regulation of CD4+ effector T cells; Regulation of tumor 
metastasis via TGF-b/STATs, Wnt/b-catenin, and ROCK-
LIMK-Cofilin signaling. 

145-156 

cg08646805 SUGCT  B 
A mitochondrial enzyme synthesizing glutaryl-CoA from 
glutarate in tryptophan and lysine catabolism. 

157 

cg17405646 TENM2  B, P Synapse formation in neuron development. 136,158,
159 
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cg11303839 CCL26  S, B, P 
Ligand of CCR3, promoting tumor growth, 
invasion/migration, angiogenesis; Regulation of TAM and 
eosinophil recruitment.  

160-163 

cg23721083 ITGA11  B, P 
Regulator of tumor niche cytokines (IGF-II, PDGF), 
promoting tumor progression; TGF-b and FGF2-
regulated. 

164-169 

cg23963071 SERPINB9  
 

S, B, P 

Regulator of tumor immune escape, blockade of the 
granzyme B/perforin pathway; Promotion of the 
resistance to T cell-mediated killing during immune-
checkpoint blockade therapy. 

170-174 

cg07700393 ADAMTS12  B, P 
Tumor growth promotion via enhancing the 
transcriptional activity of β-catenin in the Wnt/β-catenin 
signaling.  

175 

cg00471190 IL32   
B, P 

A proinflammatory cytokine (cancer type-dependent), 
promoting tumor growth, invasion and metastasis 
(integrin β3/p38 MAPK, NF-κB-
cytokines/metalloproteinase, and immunosuppressive 
effects); Tumor cell apoptosis induction; Enhancement of 
NK and cytotoxic T cell sensitivity; Smoking and COPD-
related gene. 

176-180 

 

#CTD: The Comparative Toxicogenomics Database https://ctdbase.org 181updated Dec. 12, 2020.  
S: Tobacco Smoke Pollution-; N: nicotine-; B: Benzo(a)pyrene, B[a]P-; P: PMs-related genes 
References in the supplemental materials.  
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Supplemental Table 3. The comparison of MIND with other CAF-associated signatures.  
 †Validation cohort (CAF, RFS) 
 Univariate Cox model 

Signature n HR 95% CI P 
MIND 14 16.15 1.8-2127.9 0.009* 

Vizoso 2015-M 14 0.32 0.03-1.71 0.188 
MIND-GE Not applicable 

Navab 2011-GE Not applicable 
Sandoval 2013-T 14 0.51 0-4.5 0.613 

 GSE39279 (Tumor, RFS) 
 Univariate Cox model 

Signature n HR 95% CI P 
MIND 190 1.83 1.22-2.75 0.004* 

Vizoso 2015-M 198 1.16 0.78-1.74 0.457 
MIND-GE Not applicable 

Navab 2011-GE Not applicable 
Sandoval 2013-T 197 2.59 1.58-4.23 0* 

 TCGA LUAD (Tumor, OS) 
 Univariate Cox model 

Signature n HR 95% CI P 
MIND 440 1.46 1.07-2.01 0.018* 

Vizoso 2015-M 447 1.01 0.74-1.38 0.94 
MIND-GE 504 1.31 0.98-1.76 0.07 

Navab 2011-GE 504 1.46 1.09-1.97 0.012* 
Sandoval 2013-T 445 1.43 0.84-2.44 0.188 
Abbreviations: RFS, relapse free survival; OS, overall survival; n, number of patients with both the 
signature and the survival data. HR, hazard ratio; CI, confidence interval. Not applicable: the signatures are 
not applicable on these datasets due to the lack of gene expression data. † Firth’s Penalized likelihood 
method was used for this small dataset. *P < 0.05. 
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Supplementary Methods 

Gene Expression Data Analysis 

We performed Affymetrix Human U133 Plus2.0 array for gene expression profiling on 25 

pairs of cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) with adequate 

RNA quality (one sample not passing the QC was excluded) from non-small cell lung 

cancer (NSCLC) patients in our discovery cohort (N=26). This platform contains 54,675 

probes covering 21,649 genes. RMA normalization was performed using the package affy1 

in R. Probes on the sex chromosomes and probes with chromosome or gene symbol 

annotated as “-” were removed after normalization, leaving 41,158 probes. 

Differential Expression Analysis 

To identify genes exhibiting differential expression (DE) between CAFs and NFs, we 

performed Significance Analysis in Microarray (SAM) analysis on the 25 NF/CAF pairs 

using the package samr2 in R. A total of 614 DE probes were obtained (mean fold change 

> 1.5 and Q < 0.1), where 242 were up-regulated (189 genes), and 372 were down-regulated 

in CAFs (272 genes). 

Pathway Enrichment Analysis 

Significant KEGG3 pathways for the DE genes were determined by the functional 

annotation tool of DAVID Bioinformatics Resource 6.8.4 Seven KEGG pathways were 

identified at the false discovery level of 10%, including ECM-receptor interaction, PI3K-

Akt signaling pathway, focal adhesion, TGF-b signaling pathway, pathways in cancer, 

hematopoietic cell lineage and cell cycle. Gene Set Enrichment Analysis (GSEA)5 was also 

performed to identify KEGG pathways exhibiting significant differences in the global 
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expression profile between CAFs and NFs. One pathway, ECM-receptor interaction, was 

identified (Q < 0.1). 

DNA Methylation Data Analysis 

We used Illumina Infinium Methylation 450K array for DNA methylation profiling on the 

26 NF/CAF pairs. This platform contains 485,460 CpG sites. Background correction and 

normalization were performed using the package methylumi6 in R. After data 

preprocessing, sites on the sex chromosomes and sites with missing values in any sample 

were removed (472,676 sites remained). 

Differential Methylation Analysis 

To identify CpG sites exhibiting differential methylation (DM) between CAFs and NFs, 

we performed Wilcoxon signed-rank test on the 26 NF/CAF pairs. Benjamini-Hochberg 

method was used to control the false discovery rate. A total of 14,781 DM CpG sites were 

obtained (mean beta-value difference > 0.1 and Q < 0.1), where 5,951 (40%) were 

hypermethylated and 8,830 (60%) hypomethylated in CAF (Supplemental Figure 4b). 

Correlation of clinical variables with CAF/NF Methylation Differences  

We explored the heterogeneity of methylation differences for patients with varied clinical 

backgrounds. Each categorial clinical variable was coded as a binary variable; smoking: 

ever versus never, stage: early (I and II) versus late (III and IV), histology: 

adenocarcinomas versus non-adenocarcinomas. The delta beta-values (Db) of the 14,781 

DM CpG sites between patients grouped by each categorial clinical variable were 

compared by Welch’s t-test. For the continuous clinical variable: age, Pearson’s correlation 

coefficient was used. When controlling the false discovery rate at the level of 0.1 level, we 

obtained 3,707 (25%) smoking-associated DM CpG sites with greater differences in the 
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ever-smoker group than the never-smoker group. There was no other significant 

association found in the other clinical variables. 

Cis-Correlation between Differentially Methylated CpG Sites and their Target Genes  

Among the 18,837 genes with probes in both arrays, 419 were DE genes, whereas 220 

(53%) had at least one DM CpG site. In contrast, among the 18,418 non-DE genes, only 

3,999 (22%) genes had at least one DM CpG site. This significant enrichment (OR = 3.99, 

P < 0.001, Fisher exact test) suggests that the methylation changes significantly contributed 

to the differential expression of the target genes. 

To identify the DM CpG sites that had cis-correlation with their target genes, we 

matched the 614 DE probes obtained earlier with 14,781 DM sites by gene symbol, leading 

to a total of 1,193 DM-DE pairs. For each DM-DE pair, Spearman’s Rho was used to 

evaluate the cis-correlation between the methylation changes and the expression fold 

changes (FC). We identified 486 DM-DE pairs exhibiting significant correlations (Q < 

0.1), and 482 of them had signs consistent with the ratios of the mean log2FC to the mean 

Db. 

Overall, 340 (71%) negatively correlated pairs were found among the 482 cis-

correlated DM-DE pairs. Based on the location of the CpG sites to their target genes, DM-

DE pairs can be assigned into three groups: promoter, within 1,500 bps to the transcription 

starting site (TSS); body, from the TSS to the end of the transcript; or multiple, in the 

promoter and body for different transcripts. Among the 57 pairs assigned to the promoter, 

24 pairs (42%) were hypermethylated and down-regulated in CAFs while 23 pairs (40%) 

were hypomethylated and up-regulated. On the other hand, among the 395 pairs assigned 

to the body, 77 pairs (19%) were hypermethylated and down-regulated in CAFs while 187 
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(47%) were hypomethylated and up-regulated. And the rest 30 pairs are assigned to the 

“multiple” group.  (Supplementary Methods Figure 1).  

Candidate CpG Sites Selection  

After intersecting the 3,707 smoking-associated DM CpG sites with the CpGs in the 482 

cis-correlated DM-DE pairs, 93 CpG sites were obtained. To further select a smaller 

number of high-quality methylation probes, we imposed the following filtering steps. First,  

10 CpG sites that have SNPs in the nearby region were excluded. Second, to be parsimony, 

for the remaining 83 CpG sites located in the 54 genes, we only kept the CpG sites with 

the largest beta-value difference between CAFs and NFs for each gene. The list of 54 

selected CpG sites is given in Supplementary Data 5. 

Derivation of the Methylation Index for NF/CAF Discrimination 

Principal component (PC) analysis was conducted on the methylation profile of the 54 

selected CpG sites. The first PC explained 67.0% total variance, and the second PC 

explained 7.5% total variance. A methylation index for NF/CAF discrimination (MIND) 

was defined as the weighted sum of the centered beta-values by the loadings of the first 

principal component. 

The receiver operating characteristic (ROC) curve was used to illustrate the 

discrimination ability of MIND. The area under the ROC curve of our discovery cohort 

was 0.88 (95% CI: 0.80-0.97). Based on Youden’s index, the optimal cutoff -0.59 had 88% 

sensitivity and 77% specificity. As a comparison, we studied the discrimination ability of 

12 known CAF markers, including ten positive and two negative markers, in gene 

expression. There was no single known marker with discriminant ability as good as MIND 

(Supplementary Methods Figure 2). We noticed the sign inconsistent issue for some known 
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markers with our data. Five positive markers TNC, PDFGRA, CSPG4, DES, and VIM had 

lower expression in CAFs than NFs. We performed the linear discriminant analysis on the 

seven sign consistent markers. The area under the ROC curve of the best linear discriminant 

direction was 0.75 (95% CI: 0.60-0.89). The discrimination ability of MIND was 

significantly better (P = 0.018 DeLong’s test). If we ignore the sign inconsistent issue and 

use the best linear discriminant direction of all 12 known CAF markers, the area under the 

ROC curve will be 0.89 (95% CI: 0.80-0.98), and the optimal cutoff has 88% sensitivity 

and 76% specificity. MIND showed the same discrimination ability to the best that the 12 

known CAF markers can get. 

 We also examined the discrimination ability of MIND on an independent cohort 

consisting of 12 NF/CAF pairs from NSCLC patients (GSE68851).7 The area under the 

ROC curve was 0.83 (95% CI: 0.66-1), and the optimal cutoff had 73% sensitivity and 92% 

specificity (Supplemental Figure 6). 

The Prognostic Ability of MIND in CAFs 

To examine the prognostics ability of the MIND index, we compared the relapse-free 

survival (RFS) curves of the two patient groups split by MIND using the log-rank test (P 

= 0.013, Figure 5a). In our discovery cohort, the cutoff was selected as the value separating 

CAFs from NFs by controlling the probability of misclassifying NFs at no more than 5% 

while maximizing the probability of correct classification of CAFs. This selecting 

procedure is objective and without using the survival data. Multivariate Cox regression 

with backward selection confirmed the significance of MIND adjusted by stage, age, 

gender and smoking (HR = 9.29, 95% CI: 1.14-75.44, P = 0.037; Table 1). 
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We also examined the prognostic power of MIND in an independent validation 

cohort consisting of 14 NSCLC patients. DNA methylation profiling of their CAF and NF 

samples was performed using Illumina Infinium Methylation 450K array. The same set of 

CpG sites and the weights derived from our discovery cohort were used when computing 

MIND. The median value of MIND was used to split patients into two groups. The results 

from the log-rank test (P = 0.007, Figure 5b) and the multivariate Cox regression with 

backward selection remain significant (HR = 29.17; 95% CI = 2.19-6520.53; P = 0.006). 

Specifically, among the 14 patients, none of the patients in the MIND-low group had RFS 

events. The package coxphf in R was used to fit the Cox regression with Firth’s Penalized 

likelihood8. 

The Prognostic Ability of MIND in Tumor Samples 

Although MIND was derived from the primary cultured CAFs/NFs, and although the 

signals from CAFs could be profiled together with the bulk of tumor tissues, we still 

explored the clinical value of MIND as a prognosis signature in two independent cohorts 

GSE39279 (444 NSCLCs)9 and The Cancer Genome Atlas (TCGA)10 lung 

adenocarcinomas (456 LUADs) that have tumor DNA methylation profiles. DNA 

methylation data and curated clinical data11 were downloaded from Gene Expression 

Omnibus (GEO) and TCGA GDC data portal (https://gdc.cancer.gov/about-

data/publications/pancanatlas).  

            For the GSE39279 cohort, after removing 13 patients with missing beta values of 

the 54 CpGs, the MIND scores of the remaining 431 patients were computed, using the 

weights already determined at the discovery stage earlier. Before looking at the survival 

data, patients were split evenly into two groups using the median cutoff (215 MIND-high 
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and 216 MIND-low). After that, we examined the patient survival data. There were 241 

patients missing survival data, 126 from the MIND-high group and 115 from the MIND-

low group. The deviation from the expected number of 120.5 in each group was statistically 

insignificant (P = 0.2863, Fisher exact test), an indication of missing at random. For 

patients with missing survival data, we simply dropped them from further analysis. This 

resulted in the survival analysis by the log-rank test with uneven size for MIND-high and 

MIND-low groups (Figure 5c). For the TCGA LUAD cohort, among the 54 CpG sites, 9 

of them were unavailable in the methylation dataset. Thus, the available 45 CpG sites were 

used to compute the MIND scores for a total of 449 patients, using the weights already 

determined earlier at our discovery stage. Patients were split evenly into MIND-high and 

MIND-low groups, using the median cutoff. After removing patients with missing survival 

data, we performed the log-rank test on the remaining patients (223 MIND-high and 217 

MIND-low; Figure 5d). Patients with high MIND scores have shorter RFS in the 

GSE39279 cohort (P = 0.003, Figure 5c) and shorter OS in TCGA LUAD (P = 0.018, 

Figure 5d). As for another way of patient splitting, the patients with survival data were 

evenly divided into high and low MIND score groups (Supplementary Methods Figure 3). 

The log-rank test results exhibited significant.  

The Discrimination Ability and Prognostic Effect of the 54 Target Gene Expressions  

Principal component (PC) analysis was performed using the standardized gene expression 

of the 54 target genes. The first PC explained 48.4% total variance, and the second PC 

explained 9.7% total variance. An expression index (MIND-GE) was defined as the 

weighted sum of the standardized expression by the loadings of the first principal 

component. 
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The area under the ROC curve for MIND-GE was 0.83 (95% CI: 0.70-0.95; Supplemental 

Figure 7a), and the optimal cutoff had 84% sensitivity and 80% specificity. Its 

discrimination ability was slightly lower than MIND in our cohort. We also examined the 

discrimination ability of MIND-GE on an independent cohort consisting of 15 NF/CAF 

pairs from NSCLC patients (GSE22874). The area under the ROC curve was 0.93 (95% 

CI: 0.84-1), and the optimal cutoff had 80% sensitivity and 93% specificity (Supplemental 

Figure 7b). MIND-GE also showed significant performance on recurrence prediction in 

our discovery cohort using the median split (P = 0.041; Supplemental Figure 9a). Applying 

MIND-GE to the gene expression profiling data of the TCGA LUAD cohort found 

marginally significant in OS prediction (P = 0.069; Supplemental Figure 9b). This result 

showed that MIND outperformed MIND-GE in the prognostic assessment. 

Comparisons of Molecular Prognostic Signatures  

To demonstrate the prognostic ability of MIND compared to other prognostic signatures, 

we benchmarked against 5 molecular signatures, including 2 methylation-based CAF-

associated signatures (MIND and Vizoso 2015-M12), 2 expression-based CAF-associated 

signatures (MIND-GE and Navab 2011-GE13), and 1 methylation-based tumor-associated 

signature (Sandoval 2013-T14), on the three datasets described in the manuscript 

(Supplemental Table 3). 

MIND: A methylation-based CAF-associated signature derived from our discovery cohort, 

representing a linear combination of the centered beta value of 54 CpG sites. 

Vizoso 2015-M: Vizoso et al. identified that abnormal DNA methylation on the 

EDARADD promoter can be used as a prognostic biomarker. In this comparison, the 
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average of the centered beta value of the 3 DM CpG sites they identified was used as a 

signature. 

MIND-GE: An expression-based CAF-associated signature derived from our discovery 

cohort, representing a linear combination of the standardized gene expression of 54 genes. 

Navab 2011-GE: An expression-based CAF-associated signature, representing a linear 

combination of the standardized gene expression of 11 genes (13 probesets) derived by 

Navab et al. The weights from the original paper were applied directly.  

Sandoval 2013-T: A methylation-based tumor-associated signature derived by Sandoval 

et al. using the dataset from GSE39279. The signature is based on the number of 

hypermethylated events of the 5 genes they identified. In this comparison, patients with 

any of the 10 DM-CpGs hypermethylated (beta value > 0.4) in the 5 genes were assigned 

to the high-risk group, otherwise were assigned to the low-risk group. 

           The first four signatures were first dichotomized by the median value among all the 

patients with methylation/expression profiles. Prognostic ability of the dichotomized 

signatures was examined by univariate Cox proportional hazard regression. Notably, some 

signatures were slightly modified when applied to the TCGA LUAD cohort because some 

CpGs’ methylation values and some genes’ expression values are not available in their 

preprocessed dataset. MIND was defined as the linear combination of the centered beta 

value of the 45 available CpGs using the same weights as in the original version. MIND-

GE was defined as the linear combination of the standardized gene expression of the 48 

available genes using the same weights as in the original version. When computing 

Navab’s 11-gene signature which was defined at the probeset level, the summation of the 
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weights corresponding to the probesets were used for the linear combination of the 11 

genes.  

The result showed that MIND is the only significant signature in the validation 

dataset when applying the signatures on the CAF samples, indicating that MIND can better 

reflect the malignancy level of CAFs than the other molecular signatures. Moreover, when 

applying the signatures on the tumor samples, MIND remains significant in both tumor 

datasets GSE39279 and the TCGA. Sandoval 2013-T is the most significant signature in 

the tumor dataset GSE39279 since it was derived from this dataset using the survival data. 

However, it’s not significant in the TCGA dataset. On the other hand, Navab 2011-GE is 

significant in the TCGA dataset with the same hazard ratio as MIND. Together, the results 

illustrate the robust prognostic ability of MIND. 
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Supplementary Methods Figure 1. Negatively correlated DM-DE probes were 

enriched in the promoter regions. With regard to genomic location of CpG sites, 

significantly cis-correlated DM-DE pairs were plotted with the mean beta-value difference 

in DNA methylation versus mean log fold change in gene expression in the promoter region 

(left) and gene body (right), respectively. Grey zone reflected the selective threshold. In 

the promoter region, 47/57 (82.5%) were negatively correlated whereas 264/395 (66.8%) 

were in the body. 
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Supplementary Methods Figure 2. The discrimination ability of 12 known CAF 

markers in gene expression. 
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Supplementary Methods Figure 3. Significance of MIND for its prognostic power. 

Applying MIND to DNA methylation profiling of tumor samples from two independent 

cohorts with equal size groups. (a) 190 NCSLC Patients in GSE39279 with non-missing 

MIND score and survival data were stratified into the MINDhigh and MINDlow groups using 

the median cutoff (P = 0.024). (b) 440 patients in the TCGA LUAD cohort with non-

missing MIND score and survival data were stratified into the MINDhigh and MINDlow 

groups using the median cutoff (P = 0.023). RFS: relapse-free survival; OS: overall 

survival. 
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