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against aquaporin-4 (AQP4) expressed on astrocytes. Binding of AQP4-specific antibodies (NMO-IgG) triggers activation
of the complement cascade, which is responsible for astrocyte loss and secondary demyelination. Although the role for
the cytolytic complement proteins in astrocyte destruction in NMO is well established, little is known regarding the initial
phase of astrocyte injury. In this issue of the JCI, Chen and colleagues evaluated the precytolytic phase when NMO-IgG
binds astrocytes in vivo in the absence of exogenous complement. NMO-IgG alone caused astrocyte activation and
AQP4 loss. Surprisingly, microglia, CNS-resident innate immune cells that produce endogenous complement, were
required for clinical manifestations of disease, a finding that suggests microglia may serve as a therapeutic target in NMO.
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Complement mediates tissue 
destruction in NMO
Neuromyelitis optica (NMO) is a rare, 
disabling, sometimes fatal, central ner-
vous system (CNS) autoimmune disease 
that is characterized by severe attacks of 
visual loss and paralysis. NMO is caused 
by antibodies that target the water chan-
nel protein aquaporin-4 (AQP4) concen-
trated on astrocytic foot processes at the 
blood-brain barrier (1, 2). The AQP4- 
specific antibodies (NMO-IgG) are IgG1, 
a T cell–dependent antibody subclass, 
emphasizing cooperation between cellular 
and humoral arms of adaptive immunity 
in NMO pathogenesis (3). IgG1 is an anti-
body subclass that is capable of activating 

complement. It is generally accepted that 
the terminal cytolytic complement pro-
teins have a central role in CNS infiltration 
of neutrophils, macrophages, and eosin-
ophils, as well as astrocyte destruction 
and secondary demyelination in NMO (4, 
5). Thus, NMO is considered a comple-
ment-mediated astrocytopathy (5). How-
ever, the initial stage of astrocyte injury 
after binding of NMO-IgG to astrocytes is 
not well understood.

NMO-IgG–induced astrocytic C3 
production promotes microglial 
activation
In the current issue of the JCI, Chen and 
his colleagues examined the role of NMO-

IgG in the early stage of CNS tissue injury 
using a mouse model (6). When WT mice 
were subjected to continuous intrathe-
cal infusion of NMO-IgG, recipient mice 
developed progressive hind-limb paralysis 
that was partially reversible upon discon-
tinuation of NMO-IgG. Motor impairment 
was AQP4 specific, as it was not observed 
when WT mice were given control IgG or 
when AQP4-specific IgG was adminis-
tered to AQP4-deficient mice. As in NMO, 
administration of NMO-IgG to WT mice 
was associated with loss of AQP4 expres-
sion on astrocytes. However, astrocytes 
remained viable and there was no evi-
dence of terminal complement activation. 
Further, there was both prominent acti-
vation and proliferation of microglia. To 
investigate how microglia may participate 
in this disease process, microglia were 
selectively depleted transiently in vivo. In 
this model, administration of NMO-IgG 
caused astrocytic AQP4 loss independent-
ly of the presence or absence of microglia. 
NMO-IgG–induced paralysis did not cor-
respond to the time of maximal microg-
lial depletion. Rather, motor impairment 
in NMO-IgG–treated mice did not occur 
until microglia were replenished. Confocal 
imaging revealed an abundance of activat-
ed microglia with substantial spatial over-
lap with astrocytes, and 2-photon imaging 
demonstrated convergence of microglial 
processes toward astrocytes. Thus, the 
authors questioned whether microglia 
and astrocytes cooperate in NMO lesion 
development. In this regard, it is known 
that NMO-IgG can elicit significant pro-
duction of C3 by astrocytes (7) and in 
addition, microglia express C3a receptor 
(C3aR) (8). Thus, astrocytes may promote 
microglial activation via the C3 cleavage 
product, C3a. Indeed, NMO-IgG infusion 
was associated with marked upregula-
tion of C3 expression in astrocytes and 
C3aR on microglia (Figure 1A). Microglia- 
astrocyte spatial overlap and motor impair-
ment were not observed when NMO-IgG 
was administered to C3aR-deficient mice, 
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confirming that the C3-C3aR axis was nec-
essary for microglial activation, prolifera-
tion, and convergence toward astrocytes, 
as well as motor impairment.

C1q produced by activated 
microglia may promote 
neuronal dysfunction
The role of the classical complement path-
way in NMO pathogenesis is well estab-
lished (4, 5, 9). C1q, which is the first pro-
tein of the classical complement cascade, 
becomes engaged when AQP4-specific 
IgG is bound to AQP4 on astrocytes and 
leads to downstream activation of the ter-
minal membrane attack complex (MAC), 
astrocyte lysis, and tissue necrosis (Figure 
1B). Administration of C1q inhibitors in 
mouse models of NMO protected astro-
cytes, oligodendrocytes, and neurons from 
damage (10). The importance of the com-
plement pathway in NMO is underscored 
by the recent approval of the C5 inhibi-
tor, eculizumab (Soliris), in treatment of 
AQP4-seropositive NMO (11).

The work by Chen et al. highlights 2 fea-
tures of AQP4 antibody– and complement- 

Figure 1. Astrocytes cooperate with microg-
lia in complement-mediated CNS damage 
in NMO. (A) A model for astrocyte-microglia 
interaction in precytolytic tissue injury in NMO. 
(i) AQP4-specific IgG1 is produced in secondary 
lymphoid tissue outside the CNS. AQP4-specific 
antibodies bind to AQP4 on astrocytic endfoot 
processes, leading to AQP4 internalization, 
reduced cell surface AQP4 expression, and 
astrocytic activation. (ii) Activated astrocytes 
produce elevated C3 that is cleaved to C3a and 
C3b. (iii) Secreted C3a binds C3aR on resting 
microglia, promoting microglial activation, 
production of C1q, and convergence toward 
astrocytes. (iv) C1q promotes localized injury to 
neurons and oligodendrocytes. (B) Activation 
of the classical complement cascade leads 
to sustained CNS tissue damage in NMO. (i) 
C1q binds the framework constant (Fc) region 
of adjacent AQP4 antibodies bound to AQP4 
in close proximity, attracting C1r and C1s. (ii) 
This C1 complex activates C4 and C2 compo-
nents that lead to formation of C3 convertase, 
producing C3b, which together with C4b and C2b 
create the C5 convertase. Eculizumab (Soliris), 
a C5-convertase inhibitor, is approved for treat-
ment of NMO. (iii) C5b, one of the 2 C5 cleavage 
products, together with C6–C9 proteins form the 
membrane attack complex (MAC), which leads 
to astrocyte lysis and tissue necrosis. This figure 
was adapted with permission from Kenneth 
Probst (Xavier Studio).
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ment activation occurs in situ and is gen-
erally considered responsible for recruit-
ment of neutrophils and eosinophils, the 
2 leukocytes characteristically identified 
in NMO lesions (4). Microglia, which have 
been largely neglected in NMO, are also 
abundant. The report by Chen, et al. now 
draws attention to the potential coopera-
tion of astrocytes and microglia in NMO 
(6). Their new insights are relevant to 
AQP4-seropositive patients, who account 
for 75% of individuals with an NMO phe-
notype (19, 20). Whether microglia can 
serve as a new target in NMO, as suggest-
ed by the authors, is uncertain. Currently, 
targeting microglia has been challenging. 
Many microglial markers are not entirely 
selective and may be expressed to some 
extent by peripheral myeloid cells, e.g., 
macrophages and dendritic cells (21, 22). 
Identification of targetable microglia- 
specific gene products is actively being 
pursued, and may be relevant, not only to 
NMO, but other inflammatory and neu-
rodegenerative CNS diseases associated 
with microglial activation. Regardless, 
the observations made by Chen and col-
leagues (6) should encourage investiga-
tors to further study astrocyte-microglia 
crosstalk in CNS diseases and the role of 
microglia in NMO.
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Microglia may be a target for 
NMO therapy
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