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underlie inflammatory lung disease.

Vesicular trafficking

The endoplasmic reticulum and the Golgi
comprise the two main cellular organelles
involved in conventional vesicular traffick-
ing. Vesicular carriers mediate a continu-
ous flux of newly synthesized and secreted
proteins between these compartments (1).
However, it has recently been shown that
many proteins use unconventional routes,
including autophagy, cellular stress, mem-
brane hyperpermeabilization, and pore
formation to control protein trafficking (2).
Moreover, some proteins, such as the IL-1
superfamily of cytokines (e.g., IL-1p) may
use any of the above pathways, depending
upon the secretory stimuli (2).

Chronic inflammatory lung
disease

Allergic asthma is a chronic inflammatory
lung disease associated with the marked
secretion of a series of cytokines associ-
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Allergic asthma is a chronic inflammatory lung disease associated with
increased cytokine secretion. Aspects of airway inflammation are also
linked to a common genetic variant that corresponds to the small GTPase,
Rab27, a protein involved in vesicular trafficking in immune cells. However,
the mechanisms by which Rab27 contributes to airway inflammation and
cytokine release remain ambiguous. In this issue of the /CI, Okunishi et

al. explored the role that the Rab27 effector, exophilin-5, has in allergic
inflammation. Exophilin-5-deficient mice and asthma mouse models
revealed that exophilin-5 regulates IL-33 production and the Th2 response.
Notably, exophilin-5 deletion enhanced IL-33 release and pathogenic Th2
responsiveness through the mTOR pathway and altered intracellular IL-33
trafficking. This work provides insights into the molecular mechanisms that

ated with type 2 T cell responses (type 2
immunity) (3); among these cytokines,
recent attention has focused on IL-33, an
epithelial and endothelial cytokine that
potently activates inflammatory cells bear-
ing its receptor (designated ST2) including
mast cells, eosinophils, and T cells (4).
IL-33 is a unique cytokine in that it is an
alarmin, also known as a danger signal
molecule, stored in the nucleus, where it is
bound to histone proteins via its chromatin
binding domain. Although a direct nuclear
function for IL-33 has not yet been iden-
tified, its tight interaction with chromatin
regulates its activity and release (5). It is
appreciated that IL-33isreleased following
cellular injury (6, 7), but it remains unclear
whether IL-33 is actively secreted or uses
unconventional secretory pathways, such
as pore formation or autophagosomes. As
such, the secretory mechanisms of IL-33
release remain to be determined.
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A synaptotagmin-like protein
that regulates secretion

Rab27a is a ubiquitously expressed intra-
cellular protein that is one of 70 members
of the Rab family of proteins, which in
turn is a member of the Ras superfamily
of small G proteins. Rab proteins generally
possess GTPase activity and regulate many
steps involved in membrane trafficking,
including vesicle formation, vesicle move-
ment along actin and tubulin networks,
and membrane fusion. These processes
are particularly important for the traffick-
ing and recycling of cell surface proteins
from the Golgi to the plasma membrane.
Rab27a regulates important secretion-
machinery functions in mast cells and den-
dritic and epithelial cells (8), all of which
have essential roles in antigen-driven aller-
gic immune responses. The importance of
Rab27a in human disease is highlighted by
its recessive deficiency causing Griscelli
syndrome, an immunodeficiency syn-
drome associated with hemophagocytic
lymphohistiocytosis (9). There are at least
11 known Rab27a accessory proteins that
regulate its function. Among these pro-
teins is exophilin-5, a synaptotagmin-like
protein that has been reported to positively
regulate secretion (8, 10).

Exaggerated allergic
inflammation
In this issue of the JCI, Okunishi et al.
report that mice deficient in exophilin-5
showed exaggerated allergic inflamma-
tion mediated by enhanced IL-33 produc-
tion (11). Epithelial cells were responsible
for producing increased IL-33 levels and
triggering subsequent type 2 cytokine
responses via Th2 cells. Furthermore,
the researchers presented evidence that
the IL-33/Th2 mechanism depended on
mammalian target of rapamycin (mTOR),
a lysosome-associated serine/threonine
kinase that regulates protein synthesis,
autophagy, cellular trafficking, and protein
secretion (12).

Okunishi et al. reported that alveo-
lar epithelial cells expressed high levels
of exophilin-5 and that exophilin-5-defi-
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cient mice were more vulnerable to aller-
gen challenge with Alternaria alternata
(11). Indeed, A. alternata administration
enhanced IL-33 release in the absence of
exophilin-5, resulting in augmented air-
way inflammation. However, it remains
unclear whether exophilin-5 directly reg-
ulates IL-33 secretion via unconventional
pathways involving lysosomal trafficking,
or whether exophilin-5 deficiency makes
epithelial cells more susceptible to A. alter-
nata-induced cellular injury and thus able
to release more IL-33. It is likely that both
cellular trafficking and epithelial cell fra-
gility are involved. It is thus possible that in
exophilin-5-deficient mice, epithelial cells
with enhanced sensitivity to necrotic or
apoptotic cell death mediate IL-33 release.
Indeed, lysosomal trafficking is involved
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in programmed cell death, in which lyso-
somes digest engulfed apoptotic bodies
(13). Lysosomal enzymes can also directly
execute the apoptotic program upon their
release in the cytosol (14). On the other
hand, Okunishi et al. also report that exo-
philin-5-deficient cells produce higher
levels of reactive oxygen species (ROS)
(11), which may directly induce necrosis
or apoptosis (15), both of which associate
with IL-33 release. Importantly, exophi-
lin-5-induced ROS production may also
cause NLRP3 inflammasome activation
(16), as NLRP3-associated caspase-1 acti-
vation correlates with the degree of lyso-
somal damage and enzymatic activity (17,
18). It has been proposed that upon syn-
thesis, precursor IL-33 enters specialized
secretory lysosomes where NLRP3-asso-
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Figure 1. Model for exophilin-5 regulation of
cellular traffic and secretion mechanisms and
type 2 allergic immunity. Exophilin-5 has a
central regulatory role in controlling the cellular
traffic of vesicles, as well as impairing protein
transport and recycling and IL-33 production.
Exophilin-5 deficiency terminates vesicular
trafficking mechanisms and disrupts protein
recycling, autophagy, and secretion. Exophilin-5
deficiency also enhances mTOR/PIK3 signaling
and ROS production. These intrinsic processes
result in IL-33 accumulation and enhanced lung
epithelial cell fragility, respectively, followed by
IL-33 release from damaged cells. Enhanced ST2
expression in exophilin-5-deficient effector T
cells and eosinophils induces proatopic cytokine
release and immune cell cytotoxicity and
degranulation. Taken together, these processes
lead to exaggerated type 2 immunity.

ciated caspase-1 cleaves precursor IL-33 to
release the active cytokine into the inter-
stitial space (19). Thus, Okunishi et al. have
provided evidence for lysosomes having
a role in sensitizing cells to proapoptotic
or necrotic stimuli and the consequent
release of IL-33 (Figure 1 and ref. 11).

Interestingly, the mTOR activation
associated with exophilin-5 deficiency can
reduce overall protein degradation by the
ubiquitin proteasome pathway (20). It is
also notable that IL-33 is highly sensitive
to proteasomal degradation (21, 22). Thus,
inhibition of the proteasome pathway by
mTOR may result in IL-33 accumulation
and the subsequent release of high cyto-
kine levels following the A. alternata-
induced epithelial injury. Furthermore,
Okunishi and colleagues showed that exo-
philin-5 deficiency and mTOR pathway
amplification were associated with ST2
accumulation and enhanced proinflam-
matory cytokine production in Th2 cells
(11). Hence, it is possible that exophilin-5
deficiency reduces the recycling rate of
membrane ST2 and increases the accumu-
lation of IL-5 and IL-13 through mTOR-
and Rab27a-dependent mechanisms.

Conclusions

The IL-33/ST2 axis is now considered to
have a pivotal role in type 2 allergic inflam-
mation, but the mechanisms of IL-33
secretion have remained obscure. Taken
together, the results of Okunishi et al. pro-
vided insights into the functions of exophi-
lin-5 in immune secretory pathways, with a
focus on the IL-33/ST2 axis (11). Okunishi
et al. suggest that exophilin-5 orchestrates
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allergic inflammatory responses in which
its deficiency enhances IL-33 release and
boosts ST2-dependent IL-5 and IL-13 pro-
duction by Th2 cells via cellular traffick-
ing and secretory mechanisms (Figure 1
and ref. 11). These findings uncover early
secretes of the IL-33 secretory mecha-
nisms, bringing the lysosomal protein deg-
radation machinery and autophagy into
the center stage for the development of
type 2 allergic inflammation (Figure 1).
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