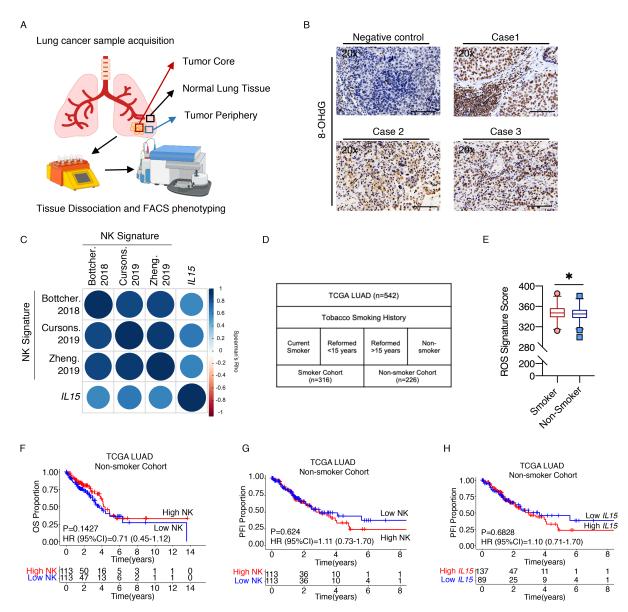

Supplementary Figure 1.

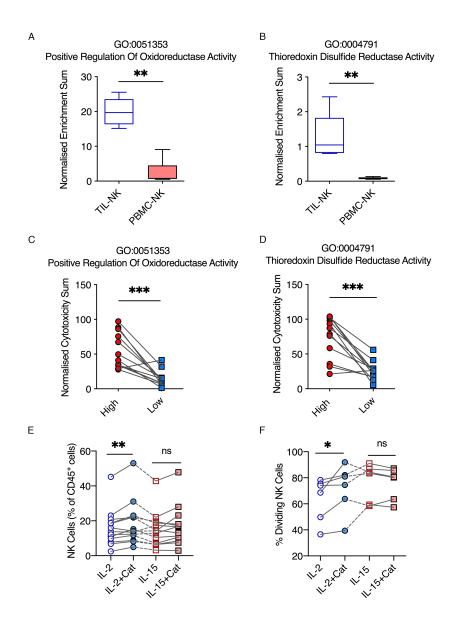
Supplementary Figure 1. IL-15 primed NK cells differentially expressed thioredoxin system to mount superior immune responses.

(A) Gene Enrichment Analysis using C5 GO set for biological processes with cut-off at nominal P-value < 0.01 and the maximum and minimum size for selection were 500 and 15 genes, respectively. X-axis represents the number of genes while the y-axis represents the top 10 GO gene sets based on enrichment sore. (B) GSEA analysis in oxidoreductase activity based on differential gene expression of IL-15 versus IL-2primed NK cells. (C-F) Relative mRNA expression of (C) *TXNIP* (n=8), (D) *TXNRD1* (n=5), (E) *TXN* (n=8) and (F) *TXN2* (n=6) based on qRT-PCR; data points are presented as mean ± SD; Mann-Whitney test was used to test for significance. **P<0.01, ***P<0.001 and ns for non-significant. (G-I) Percentage of NK cells expressing (G) IL-2R α (n=4), (H) IL-15R α (n=3), (I) IL-2R β (n=3) after primed with either IL-2 or IL-15, in the present or absence of H₂O₂ treatment, data points are connected for matching replicates; two-way ANOVA with Sidak's multiple comparisons were used to test for significance, **P<0.01, ***P<0.001, ***P<0.001 and ns for non-significant.


Supplementary Figure 2.

Supplementary Figure 2. Inhibition of thioredoxin-1 abrogates IL-15-mediated protection against oxidative stress.

(A) MFI of maleimide staining on cytokine-primed NK cells treated with PX-12 and 10µM H₂O₂ (n=6). (B) Percentage killing of K562 targets by cytokine-primed NK cells treated with PX-12 and H₂O₂, NK: K562 at the ratio of 5:1 (n=6). (A and B) RM two-way ANOVA with Sidak's multiple comparisons test was used to test for significance. (C) Diagram depicting tumor sphere model with CFSE-labelled NK cells to investigate NK cell infiltration. (D) MFI of CellROX staining comparing tumor-infiltrating and non-infiltrating NK cells outside and within tumor spheroids (n=6). Wilcoxon rank sum test was used to test for significance. (E) Representative FACS plot showing percentage of CD45-positive infiltrating NK cells over time with treatment of (F) N-ethylmaleimide (2.5mM) and (G) recombinant thioredoxin-1 (5mg/ml) (n=3). (A, B and D) Data points are connected for matching replicates. (F and G) Data are presented as mean±SD; two-way ANOVA was used to test for significance between treatment conditions. *P<0.05, **P<0.01, ****P<0.0001 and ns for non-significant.</p>


Supplementary Figure 3.

Supplementary Figure 3. Relationship between tobacco smoking, *IL15* gene expression and NK cell gene signature in NSCLC patients.

(A) Graphic description of lung cancer sample acquisition (n=28). (B) IHC staining of 8-OHdG in NSCLC tumor tissues from 3 patients. Negative control was done without primary antibody. Scale bar denotes 50µm. (C) Correlation matrix between 3 versions of NK cell signature and *IL15* gene expression in TCGA LUAD cohort. All correlation shown has a p value<0.0001. (D) Classification of TCGA-LUAD cohort based on smoking history. (E) ROS-related gene signature score comparing smoker (n=316) and non-smoker (n=226) cohort. Data are presented as Tukey boxplots; Mann Whitney test was used to test for significance. *P<0.05. (F) Overall survival of TCGA-LUAD cohort non-smoker group based on median of NK gene signature score. (G) Progression Free interval of TCGA-LUAD cohort non-smoker group based on median of NK gene signature score. (H) Progression Free interval of TCGA-LUAD cohort non-smoker group based on median of *IL15* gene expression. (F-H) Logrank test was used to test for significance in differences in survival distribution (n=226).

Supplementary Figure 4.

Supplementary Figure 4. Oxidoreductase activity is associated with NK cytotoxicity and recruitment of immune cells.

(A) Geometric mean of normalized enrichment score for GO:0051353 comparing tumor-infiltrating NK cells versus peripheral blood NK cells. (B) Geometric mean of normalized enrichment score for GO:0004791 comparing tumor-infiltrating NK cells versus peripheral blood NK cells. (A and B) Data was analyzed from pooled NSCLC tumors(n=7) and patients' peripheral blood(n=6), and presented as Tukey boxplots; Mann-Whitney test was used to test for significance. Geometric mean of normalized cytotoxicity score comparing NK cell populations defined by (C) GO:0051353 enrichment and (D) GO:0004791 enrichment. (C and D) Wilcoxon signed rank test was used to test for significance. (E) Percentage of NK cells in NSCLC TILs cultures primed with either IL-2 or IL-15 with catalase treatment. (F) Percentage of dividing NK cells in sarcoma TILs cultures primed with either IL-2 or IL-15 with catalase treatment. (E and F) RM two-way ANOVA with Sidak's test was used to test for significance. *P<0.05, **P<0.01 and ns for non-significant. All individual data points are connected for matching replicates.</p>

CASE	AGE	OENDER	SMOKING	TUMOR SIZE	PATHOLOGY	TNM	STAGE	TUMOR
NO.	(YEARS)	GENDER	HISTORY	(CM)	TYPE	CLASSIFICATION	(AJCC)	LOCATION
1*	56	F	Ν	5.0x5.0	LUAD	T2bN0M0	IB	LLL
2*	55	М	Ν	3.0x2.7	LUSC	T1cN0M0	IA3	RUL
3*	64	Μ	Ν	4.2x3.0	LUSC	T2bN1M0	IIB	LLL
4*	75	М	Ν	2.0x2.0	LUAD	T1bN0M0	IA2	LUL
5*	76	F	Ν	1.5x1.2	LUAD	T1bN0M0	IA2	LLL
6*	61	F	Ν	5.5x2.5	LUAD	T3N1M0	IIIA	RLL
7*	46	F	Ν	1.4x1.0	LUAD	T3N0M0	IIB	LLL
8*	63	М	Y	2.5x2.0	LUAD	T1cN0M0	IA3	RML
9*	71	Μ	Y	2.6x1.6	LUAD	T1cN0M0	IA3	RLL
10*	60	Μ	Y	1.2x1.1	LUAD	T1bN0M0	IA2	LUL
11*	67	Μ	Y	2.5x2.0	LUAD	T2sN1M0	IIB	RUL
12*	73	М	Y	1.0x0.7	LUAD	T1aN0M0	IA	RLL
13*	51	М	Y	2.0x2.0	LUSC	T1bN2M0	IIIA	RML
14*	67	F	Ν	1.2x0.6	LUAD	T1bN0M0	IA2	LLL
15*	65	Μ	Ν	2.5x1.5	LUAD	T1cN0M0	IA3	LUL
16*	70	F	Ν	2.8x2.0	LUAD	T1cN0M0	IA3	RLL
17*	56	Μ	Y	1.7x1.3	LUSC	T1bN2M0	IIIA	RML
18*	61	М	Υ	1.5x1.1	LUAD	T1aN0M0	IA2	RML
19*	71	Μ	Ν	4.0x3.0	LUSC	T2aN0M0	IB	RML
20*	55	М	Ν	2.5x1.0	LUAD	T1cN0M0	IA3	RUL
21*	44	Μ	Ν	2.5x0.7	LUAD	T1cN0M0	IA3	RLL
22*	52	F	Ν	2.0x1.2	LUAD	T1bN0M0	IA2	LUL
23*	59	Μ	Ν	1.1x1.0	LUAD	T1bN0M0	IA2	LUL
24	63	М	Y	1.5x1.0	LUSC	T1bN0M0	IA2	LUL
25	71	F	Ν	1.4x1.0	LUAD	T1bN0M0	IA2	RLL
26	55	F	Υ	2.2x1.0	LUAD	T1cN0M0	IA3	RML
27	66	Μ	Ν	3.0x3.0	LUSC	T1cN1M0	IIB	LLL
28	49	F	Ν	2.0x1.3	LUAD	T1bN0M0	IA2	LLL
29	55	Μ	Y	2.5x2.3	LUAD	T1cN0M0	IA3	RUL

Supplementary Table 1. Clinical characteristics of non-small lung cancer patient cohort

AJCC: American Joint Committee on Cancer: 8thedition. **LLL**: Left lower lobe. **LUL**: Left upper lobe. **RUL**: Right upper lobe. **RML**: Right middle lobe. **RLL**: Right lower lobe. * Cases were separated into Smoker and Non-smoker cohorts for CellROX staining, the rest were only used for TILs culture.

Case	Age	Gender	Tumor size (cm)	Туре	Site	Pothology typo	Necrosis	Mitotic rate	Grade	Grading
No.	(years)	Gender	Tullior Size (clii)	туре	She	Pathology type				system
1	81	М	6.5 x 5.3 x 3.0	Primary	Subcutaneous	Myxofibrosarcoma	<50%	>20 / 10 HPF	3	FNCLCC
2	86	Μ	5.0 x 3.2 x 2.5	Primary	Subcutaneous	Undifferentiated pleomorfic sarcoma (OPS), spindle cell	<50%	>20 / 10 HPF	3	FNCLCC
3	42	F	12.0 x 9.0 x 6.0	Recurrence	Subcutaneous	Malignant peripheral nerve sheet tumor (MPNST)	<50%	>20 / 10 HPF	n.a.	
4	76	М	6.0 x 6.0 x 5.0	Recurrence	Retroperitoneal	Inflammatory myofibroblastic tumor (IMT)	0%	<10 / 10 HPF	1	FNCLCC
5	62	F	28.0 x16.0x 8.0	Primary	Retroperitoneal	Well-differentiated liposarcoma	0%	<10 / 10 HPF	1	FNCLCC
6	33	F	6.0 x 4.0 x 3.0	Recurrence	Intramuscular	Pleomorfic liposarcoma	0%	>10 / 10 HPF	2	FNCLCC
7	77	F	6.5 x 5.5 x 4.5	Recurrence	Intramuscular	Myxofibrosarcoma	0%	>10 / 10 HPF	2	FNCLCC
8	80	F	16.0x13.0x10.0	Primary	Intraabdominal	Abdominal desmoid	0%	0 / 10 HPF	n.a.	
9	76	К	10.0 x 7.0 x 7.0	Primary	Subcutaneous	Undifferentiated pleomorfic sarcoma (OPS), epitheloid	>50%	>20 / 10 HPF	2	FNCLCC
10	67	F	9.5 x 8.0 x 6.0	Primary	Subcutaneous	Well-differentiated liposarcoma	0%	0 / 10 HPF	1	FNCLCC
11	28	F	8.0 x 6.0 x 5.0	Primary	Thorax	Aggressive fibromatosis	0%	<10 / 10 HPF	n.a.	
12	39	F	5.0 x 5.0 x 5.0	Primary	Retroperitoneal	Pleomorfic leiomyosarcoma	<50%	>20 / 10 HPF	3	FNCLCC
13	81	К	11.0 x 8.0 x 8.0	Primary	Intramuscular	Undifferentiated pleomorfic sarcoma (OPS), spindle cell	<50%	>20 / 10 HPF	3	FNCLCC
14	73	к	7.5 x 5.5 x 4.5	Primary	Subcutaneous	Spindle-cell lipoma	0%	0 / 10 HPF	n.a.	
15	77	К	8.0 x 4.0 x 3.5	Primary	Subcutaneous	Angiosarcoma	0%	<10 / 10 HPF	2	WHO

Supplementary Table 2. Clinical characteristics of sarcoma patient cohort

ANTIGEN	FLUOROCHROME	CLONE	ISOTYPE	COMPANY	CATALOG NO.
CD3	PE	OKT3	Mouse IgG2a, к	Biolegend	317308
CD3	PE-CF594	SP34-2	Mouse IgG1, κ	BD	562406
CD4	PE	SK3	Mouse IgG1, κ	Biolegend	344606
CD4	Pacific Blue	SK3	Mouse IgG1, κ	Biolegend	344625
CD8	PE-Cy7	RPA-T8	Mouse IgG1, κ	BD	557746
CD8a	PerCP-Cy5.5	RPA-T8	Mouse IgG1, κ	Biolegend	301032
CD16	PerCP-Cy5.5	3G8	Mouse IgG1, κ	Biolegend	302028
CD16	Pacific Blue	3G8	Mouse IgG1, κ	Biolegend	302032
CD56	PE-Cy7	HCD56	Mouse IgG1, κ	Biolegend	318318
CD56	BV785	5.1H11	Mouse IgG1, κ	Biolegend	362550
CD56	BV570	HCD56	Mouse IgG1, к	Biolegend	318329
CD45	BV650	HI30	Mouse IgG1, к	Biolegend	304043
CD107a	PerCP-Cy5.5	H4A3	Mouse IgG1, κ	Biolegend	328615
CD107a	FITC	H4A3	Mouse IgG1, κ	Biolegend	328606
IFN-γ	APC	B27	Mouse IgG1, κ	Biolegend	506510
Ki-67	AF700	B56	Mouse IgG1, κ	BD	561277
S6(pS235/pS236)	AF488	N7-548	Mouse IgG1, κ	BD	560434
8-Hydroxy-2'- Deoxyguanosine	1	N45.1	Mouse IgG1	Abcam	Ab48508
NCAM/CD56	1	polyclonal	Rabbit, IgG	Proteintech	14225-1
TXNIP	1	EPR14774	Rabbit, IgG	Abcam	ab188865
Thioredoxin-1	1	EPR6111	Rabbit, IgG	Abcam	ab109385
Cell Trace [™] Violet	1	1	1	Invitrogen	C34557
CFSE	1	/	1	Biolegend	423801
AUQA live/dead	1	/	1	Invitrogen	L34957
Near-IR live/dead	1	/	/	Invitrogen	L10119

Supplementary Table 3. Antibody and reagent information

Supplementary Table 4.	Primers used for qRT-PCR
------------------------	--------------------------

Gene	Forward (5'-3')	Reverse (5'-3')
ТВР	CCACTCACAGACTCTCACAAC	CTGCGGTACAATCCCAGAACT
ΤΧΝ	GTGAAGCAGATCGAGAGCAAG	CGTGGCTGAGAAGTCAACTACTA
TXN2	TTCAAGACCGAGTGGTCAACA	CACCTCATACTCAATGGCGAG
TXNIP	GGTCTTTAACGACCCTGAAAAGG	ACACGAGTAACTTCACACACCT
TXNRD1	TAGGACAAGCCCTGCAAGACT	CCCCAATTCAAAGAGCCAATGT