Abstract

Hypoxia/HIF-1α– and extracellular adenosine/A2 adenosine receptor–mediated immunosuppression protects tissues from collateral damage by antipathogen immune cells. However, this mechanism also protects cancerous tissues by inhibiting antitumor immune cells in hypoxic and extracellular adenosine–rich tumors that are the most resistant to current therapies. Here, we explain a potentially novel, antiimmunosuppressive reasoning to justify strategies using respiratory hyperoxia and oxygenation agents in cancer treatment. Earlier attempts to use oxygenation of tumors as a monotherapy or to improve radiotherapy have failed because oxygenation protocols were not combined with immunotherapies of cancer. In contrast, the proposal for therapeutic use of antihypoxic oxygenation described here was motivated by the need to prevent the hypoxia/HIF-1α–driven accumulation of extracellular adenosine to (a) unleash antitumor immune cells from inhibition by intracellular cAMP and (b) prevent immunosuppressive transcription of cAMP response element– and hypoxia response element–containing immunosuppressive gene products (e.g., TGF-β). Use of oxygenation agents together with inhibitors of the A2A adenosine receptor may be required to enable the most effective cancer immunotherapy. The emerging outcomes of clinical trials of cancer patients refractory to all other treatments provide support for the molecular and immunological mechanism–based approach to cancer immunotherapy described here.

Authors

Stephen M. Hatfield, Michail V. Sitkovsky

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement