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Figure S1: Details of air pollution exposure (A) Ambient temperature, humidity and average daily air 
quality during the time of exposure. The datasets were derived from the website airnow.gov and 
timeanddate.com (show average weather conditions in Cleveland, Ohio). (B) Data-Ram readings using 
high sensitivity real-time telemetry, (DataRAM4, Thremo Scientific) indicates weekly averages of exposure 
chamber concentrations, temperature and humidity.  (C) Average, exposed level of PM2.5 (based on filter 
concentration) in the PM2.5 and filtered air groups. (D)  The average filter PM2.5 concentration (µg/m3) during 
the entire duration of exposure. (E) Chemical composition of air pollution particles in ambient and 
concentrated air. All data are depicted as means SEM. (F) Schematic diagram illustrating PM2.5 and filtered 
air (FA) exposure in mice. 
 
 
  



 

Figure S2: The summary of glucose tolerance and insulin tolerance test  (A) Body mass of female and 
male mice exposed to either FA or PM2.5 for 14 weeks (n=12/group). (B) Glucose tolerance test (GTT) and 
insulin tolerance test (ITT) in male (n=12) and female mice (n=12) of FA, PM2.5 and HFD groups. All data 
are depicted as means ± SEM. *<0.05, by unpaired t-test vs. mice fed ND and exposed with FA. (C) Dot 
plot depicts the individual variability in the GTT and ITT results in the FA and PM2.5 mice. (D) Respiratory 
quotient. Line graphs indicate averages of day and night cycles over a 48h period, bar graphs indicate the 
total value at the time points indicated (n=6). 
 
 
  



 

Figure S3: Impact of PM2.5 exposure and high-fat diet (HFD) on hepatic pathology and inflammation. 
(A) Representative images of hematoxylin and eosin (arrow indicates lipid deposition hepatocyte 
enlargement), oil red O (arrow indicates lipid droplets in red), and Masson trichrome staining (arrow 
indicating fibrosis in blue), from liver sections of FA, PM2.5 or HFD-FA mice exposed for 14 weeks 
(magnification= 20X, n=4). (B) Total triglycerides and cholesterol measured in plasma (n=10 per group) 
and liver tissue of FA, PM2.5 and HFD mice (n=4), (C) Hepatic mRNA gene expression levels of M1 (TNF-
α, IL-6, IL1β, TLR4, IFN-γ and adiponectin) and (D) M2 genes (IL-4, IL-10, and TGF-β). (E) Hepatic 
glycogen levels in all 3 study groups. Values shown as mean ± SEM, *p<0.05, unpaired t-test.  
 
 
 
  



 

Figure S4: Principal component analysis (PCA) plots of central and peripheral tissues samples 
(N=50). (A) PCA plots of liver(n=11), muscle (n=9), BAT (n=9), WAT (n=10) and hypothalamus tissue 
(n=11) under all three experimental conditions Individual PCA plots depicting the variation in principle 
components across the different groups in (B) Hypothalamus, (C) Liver, (D) Skeletal muscle, (E) White 
adipose tissue, and (F) Brown adipose tissue. All PCA plots were plotted using FA, PM2.5, and HFD 
transcriptome datasets. (G) Venn diagrams depicting common and unique genes from DEGs of FA, PM2.5 
and HFD-fed mice. Hypergeometric test was performed to find significance of overlapped DEGs. 

 
  



 

Figure S5: BAT transcriptome summary for PM2.5 and HFD specific Differentially Expressed Genes 
(DEGs) (A) Venn diagram of FA vs PM2.5 DEGs and Chow vs HFD DEGs. (B) Heatmap of statistically 
significant differentially expressed genes, and functional annotation for HFD and PM2.5 specific DEGs. IPA 
analysis performed to find DEG associated pathways grouped by HFD induced or repressed expression, 
and PM induced or repressed expression. (C) Gene Set Enrichment Analysis (GSEA) using up-regulated 
and down-regulated DEGs (FDR<0.1) in PM2.5.  

 
  



 

Figure S6: White adipose tissue (WAT)  transcriptome summary for PM2.5 and HFD specific 
Differentially Expressed Genes (DEGs) using GO term and IPA. (A) Venn diagram of PM2.5 and HFD 
DEGs in WAT. 65 DEGs overlapped between the PM2.5 and HFD conditions. (B) Heatmap of DEGs, and 
functional annotation for HFD and PM specific DEGs using IPA and GO term analysis. (C) Protein network 
visualization from the STRING database. (D) qPCR validation for high-fold change genes in WAT. The bar 
graph depicts the individual expression level quantified by qPCR.  

 

 

 
  



 

Figure S7: Liver transcriptome summary for PM2.5 and HFD specific Differentially Expressed Genes 
(DEGs) (A)Venn Diagram of DEGs from the PM2.5 and HFD liver samples with 35 DEGs common to both 
PM2.5 and HFD. (B) Heatmap of statistically significant differentially expressed genes, and functional 
annotation for HFD and PM2.5 specific DEGs using IPA and GO term analysis. IPA analysis performed to 
find DEG associated pathways using DEGs grouped by HFD induced or repressed expression, and PM2.5 
induced or repressed expression. (C) Scatterplot of correlations between overlapping PM2.5 and HFD 
DEGs.  (D) Disease and canonical pathways of liver DEGs. (E) TGF-beta signaling pathway was matched 
with DEG. 
  



 

Figure S8: GSEA analysis using differentially expressed genes (DEGs) in liver. (A) Gene Set 
Enrichment Analysis (GSEA) using up-regulated and down-regulated DEGs (FDR<0.1) in PM2.5.  
  



 

Figure S9: Skeletal muscle and hypothalamus transcriptome summary for PM2.5 and HFD specific 
Differentially Expressed Genes (DEGs). (A) Venn diagram of DEGs from PM2.5 and HFD muscle 
transcriptome datasets. 164 DEGs were HFD specific, 7 DEGs PM2.5 specific while 15 DEGs overlapped. 
(B) Heatmap of statistically significant differentially expressed genes, and functional annotation for HFD 
and PM2.5 specific DEGs using IPA and GO term analysis. (C) Venn diagram of DEGs from PM2.5 and HFD 
muscle transcriptome datasets. 756 DEGs were HFD specific, 12 DEGs PM2.5 specific while 5 DEGs 
overlapped. (D) Heatmap of statistically significant differentially expressed genes, and functional annotation 
for HFD and PM2.5 specific DEGs using IPA and GO term analysis.  

 

 

 
  



 

Figure S10: Transcription Factor Enrichment Analysis (TFEA) (A). Enriched up-stream TF in BAT 
sorted by p-value. (B) Enriched up-stream TF in WAT. (C) Enriched up-stream TF in skeletal muscle. (D) 
Enriched up-stream TF in hypothalamus. (E) Enriched up-stream TF in liver. 
  



 

Figure S11: Global chromatin accessibility changes according to fragment size distribution. (A) Liver 
sample ATAC-seq differential fragment size analyses difference between FA (n=4, merged datasets) and 
PM2.5 (n=3, merged datasets) liver ATAC datasets.  Values < 100 bp fragment size represents nucleosome-
free open chromatins, the 100-180bp as intermediate size, and the 180-250 bp fragments as mono-
nucleosome size chromatins. (B) Venn diagram showing the PM2.5 specific (1,937) and HFD specific (1,531) 
reproducible open chromatins from ATAC-seq liver tissue (n=12), and genomic distribution (C) The 
summary of the gain of accessibility (GA) and loss of accessibility (LA) in PM2.5 and HFD. Hypergeometric 
test was performed to find significance of overlapped DARs. 

 
  



 

Figure S12: Effect of PM2.5 Cessation on glucose tolerance testing (GTT) and insulin tolerance 
testing (ITT). (A) and (B) indicates GTT/ITT analysis from male mice exposed to FA control (n=8), PM2.5 
for 14wks (n=8) and 8 weeks of cessation (n=8). One-way ANOVA test performed using AUC values, and 
we observed significance phenotypic reversal in GTT. We tested ITT using additional four mice in PM2.5 
exposed mice (n=12). (C) and (D) depicts the dot plot of the individual variability in the GTT and ITT results. 
  



 

 

Figure S13. Impact of exposure cessation vs continued PM2.5 exposure in liver. (A) Reversal of liver 
DEGs upon 8-week PM2.5 cessation (14-22wks). The length of the bars indicates the degree of gene 
expression change (B) Genome browser screenshots of Rgs16 and Nr4a1 from OMNI ATAC-seq 
datasets to visualize all fragments or small fragments under conditions of FA, PM2.5 and PM2.5 cessation.   



 

Figure S14: Chromatin accessibility and nucleosome positioning change in the cessation. (A) 
Differentially accessible regions analysis and heatmap (B)  PM2.5 specific (3,467) open chromatin from 
OMNI ATAC-seq in liver tissue (n=8), and genomic distribution.  GREAT cis-regulatory element analysis 
using differentially accessible regions (DARs). (C) OMNI-ATAC seq from liver of 14 wk. PM2.5 exposed 
(n=4) and 8wk PM2.5 cessation mice (n=4). (D) Schematic diagram representing mechanisms of epigenome 
changes in male mice subject to FA/PM2.5 or PM2.5 cessation.   

 
  



 

Figure S15: Genome browser shot with the circadian rhythm gene (Arntl1/Bmal1), and model of 
epigenetic mechanism (A) Potential enhancer site (gene body) that is >1kb distance from TSS was 
differentially accessible regions. (B) Schematic diagram that illustrates the potential epigenetic pathways 
(DNA methylation, Nucleosome positioning, and DNA accessibility)  
 

 

 

 

 

 

 

 



Table S1: Summary of sequenced transcriptome samples for the study 

 

Tissue types FA (M*) PM2.5 (M) HFD (M) Total (N) 

Liver (14ws) 4 3 4 11 

Liver (reversal,5mth) 3 4 - 7 

White adipose 4 3 3 10 

Brown adipose 3 3 3 9 

Quad (muscle) 3 3 3 9 

Hypothalamus 4 3 4 11 

Total samples 21 19 17 57 

*M: Male 

 
 
 
Table S2: hypergeometric analysis for Figure 2D 

Tissue types Odds ratios Expressed 

genes in PM2.5 

P-value 

Liver (down) 55.83 12,491 2.2e-16 

Liver (up) 31.39 12,491 3.045e-09 

BAT (down) 10.79 13,656 2.2e-16 

BAT (up) 0.74 13,656 0.5262 

WAT (down) 12 16,674 4.32e-07 

WAT (up) 9.68 16,674 2.2e-16 

Muscle (down) 74.31 13,996 2.2e-16 

Muscle (up) 0 13,996 1 

Hypothalamus (down) 6.42 13,566 0.1682 

Hypothalamus (up) 17.49 13,566 9.562e-07 

 
 
 
 
 



Methodological Details 
Air pollution exposure and phenotyping 
Male and female C57BL/6J mice (3 weeks) were purchased from Jackson Laboratory (n=64/group). At 3 
weeks of age, mice were initially housed in groups and maintained at 21°C on a 12-hr light/12-hr dark cycle, 
to help acclimatize them to the new environment; they had free access to water and were fed either a 
regular chow or a high-fat diet with 60% of its calories derived from lipid (Research Diet, NJ, USA; D12492). 
Mice fed normal chow were exposed through inhalation to either filtered air (FA) or concentrated PM2.5 
(~10x ambient level/ ~60-120ug/m3) for 6 hours/day, 5 days/week for 14 weeks. A group of high fat fed 
animals were exposed to filtered air alone to serve as high-caloric diet controls. Weights were documented 
weekly, along with assessment of measures of glucose homeostasis and insulin responses. Inhalation 
exposure was carried out in a Versatile Aerosol Concentrator and Exposure System (VACES) air pollution 
exposure facility at Case Western Reserve University Animal Facility per IACUC protocol (2016-0319). The 
design of VACES has been described previously and provides stable concentrations of PM2.5 which is 
roughly 10x of the ambient exposure (1, 2). All animal procedures and experiments were approved by the 
IACUC committee before they were undertaken.  
 
Exposure Cessation Experiments: For these experiments we utilized a set of mice that had undergone 
exposures to FA or PM2.5 and fed normal chow diet for 14 weeks. Mice fed high fat diet exposed to FA, 
served as controls for a contrasting environmental exposure over the same 14-week duration.  At the end 
of 14 weeks of exposure, 8-12 mice in the PM2.5 group were switched to FA. The mice in the 3 groups were 
sacrificed at the end of 8 weeks and various tissues (liver, BAT, WAT, skeletal muscle) were isolated. 
 
Evaluation of insulin resistance and Glucose Homeostasis 
Body weight and food intake was monitored on a weekly basis. Glucose tolerance test (GTT): GTT was 
performed at weeks 2, 9, 13, and 22, during the course of the experimental period. After 13 weeks of PM2.5 
exposure, fasting glucose and post bolus blood glucose were measured. Briefly, mice were fasted overnight 
with access to water following which their blood glucose levels were evaluated (time=0). A sterile glucose 
solution was injected intraperitoneally at 2 g/kg of body mass. Glucose was measured in tail blood at times: 
15, 30, 60, 90, and 120 minutes post glucose injection. Blood glucose levels were determined using the 
handheld Bayer Contour glucometer, and both kinetic curve and area under the curve (AUC) were 
generated to evaluate the glucose levels in different treatment groups. Insulin tolerance tests (ITT) were 
performed following a 6 hour fast.  Insulin was injected at 1 U/kg, followed by an assessment of blood 
glucose on the same timescale as GTT.  
 
Whole Body Metabolism and FDG-PET for Brown Adipose Tissue Glucose Uptake 
Energy expenditure and RER levels were measured using the Columbus Instruments Laboratory Animal 
Monitoring System (CLAMS) (Columbus, OH, USA) over 48 hours. 18F-Fluorodeoxyglucose (FDG) was 
synthesized by nucleophilic substitution method using an FDG synthesizing instrument. Positron emission 
tomography (PET) was performed using an advance scanner (Philip Mosaic PET Scanner). Eight hours 
fasted mice were restrained and injected with 0.9% saline (control) or insulin (0.75 units/kg) diluted in 0.9% 
saline for 5 min, and then received intravenous administration of FDG (200-300 µCi/mice). Mice underwent 
small-animal PET and microcomputed tomography, and whole-body PET images were acquired 30 min 
later using an acquisition time of 15-30 min. FDG uptake quantification was performed by region-of-interest 
analysis using Carimas II Research Workplace software.(3, 4) The PET analysis was performed in a blinded 
manner by an independent observer in a core laboratory without knowledge of the group assignments. 
 
Tissue collection and DNA/RNA Extraction 
Mice were euthanized after 14 weeks of PM2.5 exposure with CO2 gas at room temperature. Tissues were 
snap-frozen in liquid nitrogen and moved to -80°C until further processing. The left liver lobe was collected 
to assess liver transcriptome, while remaining liver sections were utilized for other assays including multi-
omics analysis. DNA/RNA was extracted from tissues using a QIAGEN All Prep kit after pulverizing the 
tissue using a Freezer Mill (6775 Freezer/Mill® Cryogenic Grinder). RNA quantity and quality were checked 
using NanoDrop (Thermo Fisher) and BioAnalyzer (Agilent Santa Clara, CA USA), respectively. Samples 
that had a RIN (RNA Integrity Number) value of 6.8 or higher were screened for this study. Additionally, 
quadricep muscle, subscapular brown adipose tissue (BAT) and epididymal adipose (white adipose tissue, 
WAT) were collected to evaluate relevant tissue-specific genes expression. 



RNA-Sequencing 
 
The extracted RNA was quantified by NanoDrop (Thermo Fisher Scientific, MA) and the quality was 
assessed using a 2100 Bioanalyzer (Agilent Technologies, CA). The Agilent Bioanalyzer is a microfluidics 
platform used for sizing, quantification, and quality control for RNA (and DNA/ proteins) and provides an 
“RNA Integrity Number” (RIN), which quantifies the fragmentation of the RNA sample. The RNA samples 
were selected for sequencing if RIN value was more than 6.5. On average, 500-1,000mg of RNA samples 
were used for library preparation and double-stranded cDNA generation. We utilized the NEBNext® Ultra 
RNA Library Prep Kit (New England BioLabs, Inc, Ipswich, MA) for liver tissues and a TrueSeq RNA Library 
Prep Kit (Illumina, San Diego, CA) to generate strand-specific libraries for all other mentioned issues. The 
library was amplified by 15-cycle according to the manufacturer protocol. After PCR primers removal with 
Agencourt AMPure PCR purification kit (Beckman Coulter, CA), the sequencing library was quantified on 
TapeStation (TapeStation Instrument). The prepared library was sequenced by HiSeq series sequencer 
including HiSeq4000, HiSeqX (Illumina, San Diego, CA). The raw BCL files were converted into FastQ files 
using CASAVA 1.8.2 (CASAVA).  
 
Transcriptome datasets were derived from tissues and treatments as summarized in Supplementary Table 
1. We also included the transcriptome profiles from the liver after 8 weeks of exposure cessation, A total of 
5.8 billion reads were used, on an average of 50 million reads per sample. For transcriptome analysis we 
used STAR Gencode M13 reference features. Prior to sequence alignment, we used trim galore (version 
0.4.3) with cutadapt package (version 1.12) (5) for sequence trimming and to improve data quality. We then 
mapped sequencing reads to the mouse reference genome (mm10) using STAR aligner (6), and calculated 
the raw count using FeatureCounts package (gene-level) (4). We performed Principle Component Analysis 
(PCA) for testing biological reproducibility within replicates and to identify the variability between treatments. 
All datasets are deposited under GEO accession number are accessible to the scientific community. 
All protocols and analyses were performed by the Johns Hopkins University and University of Michigan 
sequencing core according to the standard operation procedures.  
 
 
Differentially Expressed Genes (DEGs) and functional annotations 
For transcriptome analysis, we assayed for protein-coding gene expression (Gencode M13- Freeze date 
Oct 2016). We used Rsubread and feature Counts to generate a gene-by-sample matrix of reading counts 
that was analyzed using edgeR after lane normalization and removing unwanted variation (RUVg) (7). The 
output of this analysis is a set of differentially expressed genes that are distinguished between experimental 
groups. We applied the limma based edgeR method to determine differentially expressed transcripts; cutoff: 
log2FC > 0.8, CPM>2, FDR < 0.05. A low threshold in fold change (low-fold change DEGs: log2FC between 
0.8 and 1.0) was prioritized due to the potentially small effect size of environmental exposure on epigenome 
or transcription. We also applied a higher fold change cutoff for stringent analysis (logFC > 1.0) was also 
applied for GO and Pathway analyses using DEGs and control genes. For gene set enrichment analysis, 
we also utilized the relaxed cutoff (FDR<0.1) to include more candidate DEGs with a minimum of five genes 
in the enriched gene sets. R package TopGO (8) was utilized to process GO term enrichment analysis. In 
addition, IPA (Ingenuity Systems Inc., Redwood City, CA) was conducted to identify enriched pathways 
from DEGs and upstream regulators (TF, enzyme, receptors). To validate our findings Transfac, and 
HOMER analysis (9) were performed to confirm upstream regulators from the DEGs list.  
 
 
Bioinformatics analysis for RNA sequencing data 
Raw sequencing reads were processed using TaRGETII RNA-seq pipeline which was prepared large size 
RNA-seq sample processing (https://github.com/Zhang-lab/RNA-seq_QC_analysis). Prior to sequence 
alignment, we used trim galore (version 0.4.3) with cutadapt package (version 1.12) (5) for sequence 
trimming and to improve data quality. We then mapped sequencing reads to the mouse reference genome 
(mm10) using STAR aligner (6), and calculated the raw count using FeatureCounts package (gene-level). 
The RNA-seq read counts for genes were normalized and log-transformed into using limma, edgeR 
packages. We performed Principle Component Analysis (PCA) for testing biological reproducibility within 
replicates and to identify the variability between treatments. Heatmap and volcano plots were generated by 
R packages (gplots, RColorBrewer). The differential gene expression analysis between FA and PM (or 



HFD) was performed by limma package after correction of potential batch effect using RUVg (7). We applied 
the limma based edgeR method to determine differentially expressed transcripts; cutoff: log2FC > 0.8, 
CPM>2, and FDR < 0.05. For gene set enrichment analysis (GSEA), we also utilized the relaxed cutoff 
(FDR<0.1) to include more candidate DEGs with a minimum of five genes in the enriched gene sets.  
 
 
Open chromatin signatures from liver samples 
10mg of frozen liver powder was used to prepare ATAC-seq library. ATAC-seq protocol has been applied 
(10), preparing nuclei prep and applying transposase reaction. The library was purified using 1X AMPure 
beads (100-500bp fragment size). We utilized Hi-Seq system to sequence the libraries. In addition, we also 
performed OMNI ATAC-seq using frozen liver tissue from all groups including PM2.5 cessation group (11), 
in order to increase the signal-to-background ratio and the number of enriched peaks. Briefly, all reads were 
trimmed using cutadapt package (5), and trimmed read (>36bp minimum alignment length) were mapped 
against mm10 genome using BWA aligner (12). We used de-duplicated and uniquely mapped reads for 
peak calling analysis after excluding black-list regions defined by ENCODE. The candidate peaks were 
predicted by MACS peak calling software (13). We used predicted open chromatin peaks where at least 
two biological replicates were reproducible for the downstream motif binding analysis using IDR cutoff 0.05 
(14). In addition, we also applied the limma based edgeR method to determine differentially accessible 
regions (DARs); cutoff: log2FC > 1.0, CPM>2, p-value < 0.01. TaRGETII RNAseq, and ATAC-seq pipelines 
are freely available via git hub and docker image developed by Bo Zhang lab at WASHU 
(https://github.com/Zhang-lab/TaRGET-II-ATACseq-pipeline) as a part of TaRGETII consortium 
Bioinformatics Working Group. Finally, the candidate open chromatin regions were submitted to search 
potential transcription factor binding sites using HOMER (9) software (mm10 -size 150 -len 11). We 
performed differential motif binding analysis (15) with available ChIP-seq datasets (16) and GREAT 
analysis. 
 
 
Statistical analysis 
For all phenotypic analyses, a p-value < 0.05 was considered significant (*). For statistics for glucose 
tolerance and insulin tolerance test, we performed a two-way ANOVA test using Prism software version 8 
(GraphPad Software, San Diego CA). False discovery rate (FDR) correction was used to account for Type 
I error using adjusted BH method. For differential gene analysis, we used the negative binomial test with a 
cutoff of the false discovery rate (FDR) <0.05. For batch effect correction, we used 5,000 empirically 
selected not significantly changed genes (FDR<0.05) as a negative control gene set. We used the same 
method for differential binding analysis from ATAC-seq data, however, we additionally performed IDR 
(FDR<0.05) to check the reproducibility of enriched ATAC peaks. We used predicted open chromatin peaks 
where at least two biological replicates were reproducible for the downstream motif binding analysis. To 
determine differentially accessible regions, we used the negative binomial test with edgeR (cutoff: log2FC 
> 1.0, CPM>2, p-value < 0.01). The hypergeometric analysis was done by using fisher.test using R using 
2x2 matrix of overlapped genes, unique to group HFD-FA, unique to group PM2.5, and total expressed 
genes in PM2.5.  
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