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Figure S1: Details of air pollution exposure (A) Ambient temperature, humidity and average daily air
quality during the time of exposure. The datasets were derived from the website airnow.gov and
timeanddate.com (show average weather conditions in Cleveland, Ohio). (B) Data-Ram readings using
high sensitivity real-time telemetry, (DataRAM4, Thremo Scientific) indicates weekly averages of exposure
chamber concentrations, temperature and humidity. (C) Average, exposed level of PM2s (based on filter
concentration) in the PM2.5 and filtered air groups. (D) The average filter PM2.s concentration (ug/m?®) during
the entire duration of exposure. (E) Chemical composition of air pollution particles in ambient and
concentrated air. All data are depicted as means SEM. (F) Schematic diagram illustrating PM2.5 and filtered
air (FA) exposure in mice.
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Figure S2: The summary of glucose tolerance and insulin tolerance test (A) Body mass of female and
male mice exposed to either FA or PM2s for 14 weeks (n=12/group). (B) Glucose tolerance test (GTT) and
insulin tolerance test (ITT) in male (n=12) and female mice (n=12) of FA, PM25s and HFD groups. All data
are depicted as means + SEM. *<0.05, by unpaired t-test vs. mice fed ND and exposed with FA. (C) Dot
plot depicts the individual variability in the GTT and ITT results in the FA and PM2.s mice. (D) Respiratory
quotient. Line graphs indicate averages of day and night cycles over a 48h period, bar graphs indicate the
total value at the time points indicated (n=6).
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Figure S3: Impact of PM2.5 exposure and high-fat diet (HFD) on hepatic pathology and inflammation.
(A) Representative images of hematoxylin and eosin (arrow indicates lipid deposition hepatocyte
enlargement), oil red O (arrow indicates lipid droplets in red), and Masson trichrome staining (arrow
indicating fibrosis in blue), from liver sections of FA, PM2s or HFD-FA mice exposed for 14 weeks
(magnification= 20X, n=4). (B) Total triglycerides and cholesterol measured in plasma (n=10 per group)
and liver tissue of FA, PMzsand HFD mice (n=4), (C) Hepatic mRNA gene expression levels of M1 (TNF-
a, IL-6, IL1B, TLR4, IFN-y and adiponectin) and (D) M2 genes (IL-4, IL-10, and TGF-B). (E) Hepatic
glycogen levels in all 3 study groups. Values shown as mean + SEM, *p<0.05, unpaired t-test.
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Figure S4: Principal component analysis (PCA) plots of central and peripheral tissues samples
(N=50). (A) PCA plots of liver(n=11), muscle (n=9), BAT (n=9), WAT (n=10) and hypothalamus tissue
(n=11) under all three experimental conditions Individual PCA plots depicting the variation in principle
components across the different groups in (B) Hypothalamus, (C) Liver, (D) Skeletal muscle, (E) White
adipose tissue, and (F) Brown adipose tissue. All PCA plots were plotted using FA, PM2s, and HFD
transcriptome datasets. (G) Venn diagrams depicting common and unique genes from DEGs of FA, PM2s
and HFD-fed mice. Hypergeometric test was performed to find significance of overlapped DEGs.
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Figure S5: BAT transcriptome summary for PM2.5s and HFD specific Differentially Expressed Genes
(DEGs) (A) Venn diagram of FA vs PM2s DEGs and Chow vs HFD DEGs. (B) Heatmap of statistically
significant differentially expressed genes, and functional annotation for HFD and PMz.s specific DEGs. IPA
analysis performed to find DEG associated pathways grouped by HFD induced or repressed expression,
and PM induced or repressed expression. (C) Gene Set Enrichment Analysis (GSEA) using up-regulated
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Figure S6: White adipose tissue (WAT) transcriptome summary for PM2s and HFD specific

Differentially Expressed Genes (DEGs) using GO term and IPA. (A) Venn diagram of PM2s and HFD
DEGs in WAT. 65 DEGs overlapped between the PM2s and HFD conditions. (B) Heatmap of DEGs, and
functional annotation for HFD and PM specific DEGs using IPA and GO term analysis. (C) Protein network
visualization from the STRING database. (D) gPCR validation for high-fold change genes in WAT. The bar
graph depicts the individual expression level quantified by gPCR.
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Figure S7: Liver transcriptome summary for PM2s and HFD specific Differentially Expressed Genes
(DEGs) (A)Venn Diagram of DEGs from the PMz.s and HFD liver samples with 35 DEGs common to both
PM2s and HFD. (B) Heatmap of statistically significant differentially expressed genes, and functional
annotation for HFD and PM:.s specific DEGs using IPA and GO term analysis. IPA analysis performed to
find DEG associated pathways using DEGs grouped by HFD induced or repressed expression, and PM2s
induced or repressed expression. (C) Scatterplot of correlations between overlapping PM2.s and HFD
DEGs. (D) Disease and canonical pathways of liver DEGs. (E) TGF-beta signaling pathway was matched
with DEG.
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Figure S8: GSEA analysis using differentially expressed genes (DEGSs) in liver. (A) Gene Set
Enrichment Analysis (GSEA) using up-regulated and down-regulated DEGs (FDR<0.1) in PMz.
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Figure S9: Skeletal muscle and hypothalamus transcriptome summary for PM2s and HFD specific
Differentially Expressed Genes (DEGs). (A) Venn diagram of DEGs from PMzs and HFD muscle
transcriptome datasets. 164 DEGs were HFD specific, 7 DEGs PMz.s specific while 15 DEGs overlapped.
(B) Heatmap of statistically significant differentially expressed genes, and functional annotation for HFD
and PM::s specific DEGs using IPA and GO term analysis. (C) Venn diagram of DEGs from PM2.5s and HFD
muscle transcriptome datasets. 756 DEGs were HFD specific, 12 DEGs PM2s specific while 5 DEGs
overlapped. (D) Heatmap of statistically significant differentially expressed genes, and functional annotation
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Figure $10: Transcription Factor Enrichment Analysis (TFEA) (A). Enriched up-stream TF in BAT
sorted by p-value. (B) Enriched up-stream TF in WAT. (C) Enriched up-stream TF in skeletal muscle. (D)
Enriched up-stream TF in hypothalamus. (E) Enriched up-stream TF in liver.
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Figure S11: Global chromatin accessibility changes according to fragment size distribution. (A) Liver
sample ATAC-seq differential fragment size analyses difference between FA (n=4, merged datasets) and
PM:. (n=3, merged datasets) liver ATAC datasets. Values < 100 bp fragment size represents nucleosome-
free open chromatins, the 100-180bp as intermediate size, and the 180-250 bp fragments as mono-
nucleosome size chromatins. (B) Venn diagram showing the PM2.5 specific (1,937) and HFD specific (1,531)
reproducible open chromatins from ATAC-seq liver tissue (n=12), and genomic distribution (C) The
summary of the gain of accessibility (GA) and loss of accessibility (LA) in PM2s and HFD. Hypergeometric
test was performed to find significance of overlapped DARSs.
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Figure S12: Effect of PM.s Cessation on glucose tolerance testing (GTT) and insulin tolerance
testing (ITT). (A) and (B) indicates GTT/ITT analysis from male mice exposed to FA control (n=8), PM2s
for 14wks (n=8) and 8 weeks of cessation (n=8). One-way ANOVA test performed using AUC values, and
we observed significance phenotypic reversal in GTT. We tested ITT using additional four mice in PM2s
exposed mice (n=12). (C) and (D) depicts the dot plot of the individual variability in the GTT and ITT results.
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Figure S$13. Impact of exposure cessation vs continued PM2.s exposure in liver. (A) Reversal of liver
DEGs upon 8-week PM2.5 cessation (14-22wks). The length of the bars indicates the degree of gene
expression change (B) Genome browser screenshots of Rgs16 and Nr4a1 from OMNI ATAC-seq
datasets to visualize all fragments or small fragments under conditions of FA, PM2.sand PM2 5 cessation.
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Figure S14: Chromatin accessibility and nucleosome positioning change in the cessation. (A)
Differentially accessible regions analysis and heatmap (B) PMas specific (3,467) open chromatin from
OMNI ATAC-seq in liver tissue (n=8), and genomic distribution. GREAT cis-regulatory element analysis
using differentially accessible regions (DARs). (C) OMNI-ATAC seq from liver of 14 wk. PM2s exposed
(n=4) and 8wk PM2s cessation mice (n=4). (D) Schematic diagram representing mechanisms of epigenome
changes in male mice subject to FA/PM25 or PM2.5 cessation.
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Table S1: Summary of sequenced transcriptome samples for the study

Tissue types FA (M*¥) PMzs (M) HFD (M) Total (N)
Liver (14ws) 4 3 4 11
Liver (reversal,5mth) 3 4 - 7
White adipose 4 3 3 10
Brown adipose 3 3 3 9
Quad (muscle) 3 3 3 9
Hypothalamus 4 3 4 11
Total samples 21 19 17 57
*M: Male

Table S2: hypergeometric analysis for Figure 2D

Tissue types Odds ratios Expressed P-value

genes in PMzs

Liver (down) 55.83 12,491 2.2e-16
Liver (up) 31.39 12,491 3.045e-09
BAT (down) 10.79 13,656 2.2e-16
BAT (up) 0.74 13,656 0.5262
WAT (down) 12 16,674 4.32e-07
WAT (up) 9.68 16,674 2.2e-16
Muscle (down) 74.31 13,996 2.2e-16
Muscle (up) 0 13,996 1
Hypothalamus (down) 6.42 13,566 0.1682

Hypothalamus (up) 17.49 13,566 9.562e-07




Methodological Details

Air pollution exposure and phenotyping

Male and female C57BL/6J mice (3 weeks) were purchased from Jackson Laboratory (n=64/group). At 3
weeks of age, mice were initially housed in groups and maintained at 21°C on a 12-hr light/12-hr dark cycle,
to help acclimatize them to the new environment; they had free access to water and were fed either a
regular chow or a high-fat diet with 60% of its calories derived from lipid (Research Diet, NJ, USA; D12492).
Mice fed normal chow were exposed through inhalation to either filtered air (FA) or concentrated PM2s
(~10x ambient level/ ~60-120ug/m3) for 6 hours/day, 5 days/week for 14 weeks. A group of high fat fed
animals were exposed to filtered air alone to serve as high-caloric diet controls. Weights were documented
weekly, along with assessment of measures of glucose homeostasis and insulin responses. Inhalation
exposure was carried out in a Versatile Aerosol Concentrator and Exposure System (VACES) air pollution
exposure facility at Case Western Reserve University Animal Facility per IACUC protocol (2016-0319). The
design of VACES has been described previously and provides stable concentrations of PM2s which is
roughly 10x of the ambient exposure (1, 2). All animal procedures and experiments were approved by the
IACUC committee before they were undertaken.

Exposure Cessation Experiments: For these experiments we utilized a set of mice that had undergone
exposures to FA or PM2s and fed normal chow diet for 14 weeks. Mice fed high fat diet exposed to FA,
served as controls for a contrasting environmental exposure over the same 14-week duration. At the end
of 14 weeks of exposure, 8-12 mice in the PM2.5 group were switched to FA. The mice in the 3 groups were
sacrificed at the end of 8 weeks and various tissues (liver, BAT, WAT, skeletal muscle) were isolated.

Evaluation of insulin resistance and Glucose Homeostasis

Body weight and food intake was monitored on a weekly basis. Glucose tolerance test (GTT): GTT was
performed at weeks 2, 9, 13, and 22, during the course of the experimental period. After 13 weeks of PMzs
exposure, fasting glucose and post bolus blood glucose were measured. Briefly, mice were fasted overnight
with access to water following which their blood glucose levels were evaluated (time=0). A sterile glucose
solution was injected intraperitoneally at 2 g/kg of body mass. Glucose was measured in tail blood at times:
15, 30, 60, 90, and 120 minutes post glucose injection. Blood glucose levels were determined using the
handheld Bayer Contour glucometer, and both kinetic curve and area under the curve (AUC) were
generated to evaluate the glucose levels in different treatment groups. Insulin tolerance tests (ITT) were
performed following a 6 hour fast. Insulin was injected at 1 U/kg, followed by an assessment of blood
glucose on the same timescale as GTT.

Whole Body Metabolism and FDG-PET for Brown Adipose Tissue Glucose Uptake

Energy expenditure and RER levels were measured using the Columbus Instruments Laboratory Animal
Monitoring System (CLAMS) (Columbus, OH, USA) over 48 hours. 18F-Fluorodeoxyglucose (FDG) was
synthesized by nucleophilic substitution method using an FDG synthesizing instrument. Positron emission
tomography (PET) was performed using an advance scanner (Philip Mosaic PET Scanner). Eight hours
fasted mice were restrained and injected with 0.9% saline (control) or insulin (0.75 units/kg) diluted in 0.9%
saline for 5 min, and then received intravenous administration of FDG (200-300 uCi/mice). Mice underwent
small-animal PET and microcomputed tomography, and whole-body PET images were acquired 30 min
later using an acquisition time of 15-30 min. FDG uptake quantification was performed by region-of-interest
analysis using Carimas || Research Workplace software.(3, 4) The PET analysis was performed in a blinded
manner by an independent observer in a core laboratory without knowledge of the group assignments.

Tissue collection and DNA/RNA Extraction

Mice were euthanized after 14 weeks of PM2.s exposure with CO2 gas at room temperature. Tissues were
snap-frozen in liquid nitrogen and moved to -80°C until further processing. The left liver lobe was collected
to assess liver transcriptome, while remaining liver sections were utilized for other assays including multi-
omics analysis. DNA/RNA was extracted from tissues using a QIAGEN All Prep kit after pulverizing the
tissue using a Freezer Mill (6775 Freezer/Mill® Cryogenic Grinder). RNA quantity and quality were checked
using NanoDrop (Thermo Fisher) and BioAnalyzer (Agilent Santa Clara, CA USA), respectively. Samples
that had a RIN (RNA Integrity Number) value of 6.8 or higher were screened for this study. Additionally,
quadricep muscle, subscapular brown adipose tissue (BAT) and epididymal adipose (white adipose tissue,
WAT) were collected to evaluate relevant tissue-specific genes expression.



RNA-Sequencing

The extracted RNA was quantified by NanoDrop (Thermo Fisher Scientific, MA) and the quality was
assessed using a 2100 Bioanalyzer (Agilent Technologies, CA). The Agilent Bioanalyzer is a microfluidics
platform used for sizing, quantification, and quality control for RNA (and DNA/ proteins) and provides an
“‘RNA Integrity Number” (RIN), which quantifies the fragmentation of the RNA sample. The RNA samples
were selected for sequencing if RIN value was more than 6.5. On average, 500-1,000mg of RNA samples
were used for library preparation and double-stranded cDNA generation. We utilized the NEBNext® Ultra
RNA Library Prep Kit (New England BioLabs, Inc, Ipswich, MA) for liver tissues and a TrueSeq RNA Library
Prep Kit (lllumina, San Diego, CA) to generate strand-specific libraries for all other mentioned issues. The
library was amplified by 15-cycle according to the manufacturer protocol. After PCR primers removal with
Agencourt AMPure PCR purification kit (Beckman Coulter, CA), the sequencing library was quantified on
TapeStation (TapeStation Instrument). The prepared library was sequenced by HiSeq series sequencer
including HiSeq4000, HiSegX (lllumina, San Diego, CA). The raw BCL files were converted into FastQ files
using CASAVA 1.8.2 (CASAVA).

Transcriptome datasets were derived from tissues and treatments as summarized in Supplementary Table
1. We also included the transcriptome profiles from the liver after 8 weeks of exposure cessation, A total of
5.8 billion reads were used, on an average of 50 million reads per sample. For transcriptome analysis we
used STAR Gencode M13 reference features. Prior to sequence alignment, we used trim galore (version
0.4.3) with cutadapt package (version 1.12) (5) for sequence trimming and to improve data quality. We then
mapped sequencing reads to the mouse reference genome (mm10) using STAR aligner (6), and calculated
the raw count using FeatureCounts package (gene-level) (4). We performed Principle Component Analysis
(PCA) for testing biological reproducibility within replicates and to identify the variability between treatments.
All datasets are deposited under GEO accession number are accessible to the scientific community.

All protocols and analyses were performed by the Johns Hopkins University and University of Michigan
sequencing core according to the standard operation procedures.

Differentially Expressed Genes (DEGs) and functional annotations

For transcriptome analysis, we assayed for protein-coding gene expression (Gencode M13- Freeze date
Oct 2016). We used Rsubread and feature Counts to generate a gene-by-sample matrix of reading counts
that was analyzed using edgeR after lane normalization and removing unwanted variation (RUVg) (7). The
output of this analysis is a set of differentially expressed genes that are distinguished between experimental
groups. We applied the limma based edgeR method to determine differentially expressed transcripts; cutoff:
log2FC > 0.8, CPM>2, FDR < 0.05. A low threshold in fold change (low-fold change DEGs: log2FC between
0.8 and 1.0) was prioritized due to the potentially small effect size of environmental exposure on epigenome
or transcription. We also applied a higher fold change cutoff for stringent analysis (logFC > 1.0) was also
applied for GO and Pathway analyses using DEGs and control genes. For gene set enrichment analysis,
we also utilized the relaxed cutoff (FDR<0.1) to include more candidate DEGs with a minimum of five genes
in the enriched gene sets. R package TopGO (8) was utilized to process GO term enrichment analysis. In
addition, IPA (Ingenuity Systems Inc., Redwood City, CA) was conducted to identify enriched pathways
from DEGs and upstream regulators (TF, enzyme, receptors). To validate our findings Transfac, and
HOMER analysis (9) were performed to confirm upstream regulators from the DEGs list.

Bioinformatics analysis for RNA sequencing data

Raw sequencing reads were processed using TaRGETIlI RNA-seq pipeline which was prepared large size
RNA-seq sample processing (https://github.com/Zhang-lab/RNA-seq_QC_analysis). Prior to sequence
alignment, we used trim galore (version 0.4.3) with cutadapt package (version 1.12) (5) for sequence
trimming and to improve data quality. We then mapped sequencing reads to the mouse reference genome
(mm10) using STAR aligner (6), and calculated the raw count using FeatureCounts package (gene-level).
The RNA-seq read counts for genes were normalized and log-transformed into using limma, edgeR
packages. We performed Principle Component Analysis (PCA) for testing biological reproducibility within
replicates and to identify the variability between treatments. Heatmap and volcano plots were generated by
R packages (gplots, RColorBrewer). The differential gene expression analysis between FA and PM (or



HFD) was performed by limma package after correction of potential batch effect using RUVg (7). We applied
the limma based edgeR method to determine differentially expressed transcripts; cutoff: log2FC > 0.8,
CPM>2, and FDR < 0.05. For gene set enrichment analysis (GSEA), we also utilized the relaxed cutoff
(FDR<0.1) to include more candidate DEGs with a minimum of five genes in the enriched gene sets.

Open chromatin signatures from liver samples

10mg of frozen liver powder was used to prepare ATAC-seq library. ATAC-seq protocol has been applied
(10), preparing nuclei prep and applying transposase reaction. The library was purified using 1X AMPure
beads (100-500bp fragment size). We utilized Hi-Seq system to sequence the libraries. In addition, we also
performed OMNI ATAC-seq using frozen liver tissue from all groups including PMz.s cessation group (11),
in order to increase the signal-to-background ratio and the number of enriched peaks. Briefly, all reads were
trimmed using cutadapt package (5), and trimmed read (>36bp minimum alignment length) were mapped
against mm10 genome using BWA aligner (12). We used de-duplicated and uniquely mapped reads for
peak calling analysis after excluding black-list regions defined by ENCODE. The candidate peaks were
predicted by MACS peak calling software (13). We used predicted open chromatin peaks where at least
two biological replicates were reproducible for the downstream motif binding analysis using IDR cutoff 0.05
(14). In addition, we also applied the limma based edgeR method to determine differentially accessible
regions (DARs); cutoff: log2FC > 1.0, CPM>2, p-value < 0.01. TaRGETII RNAseq, and ATAC-seq pipelines
are freely available via git hub and docker image developed by Bo Zhang lab at WASHU
(https://github.com/Zhang-lab/TaRGET-II-ATACseq-pipeline) as a part of TaRGETIl consortium
Bioinformatics Working Group. Finally, the candidate open chromatin regions were submitted to search
potential transcription factor binding sites using HOMER (9) software (mm10 -size 150 -len 11). We
performed differential motif binding analysis (15) with available ChIP-seq datasets (16) and GREAT
analysis.

Statistical analysis

For all phenotypic analyses, a p-value < 0.05 was considered significant (*). For statistics for glucose
tolerance and insulin tolerance test, we performed a two-way ANOVA test using Prism software version 8
(GraphPad Software, San Diego CA). False discovery rate (FDR) correction was used to account for Type
| error using adjusted BH method. For differential gene analysis, we used the negative binomial test with a
cutoff of the false discovery rate (FDR) <0.05. For batch effect correction, we used 5,000 empirically
selected not significantly changed genes (FDR<0.05) as a negative control gene set. We used the same
method for differential binding analysis from ATAC-seq data, however, we additionally performed IDR
(FDR<0.05) to check the reproducibility of enriched ATAC peaks. We used predicted open chromatin peaks
where at least two biological replicates were reproducible for the downstream motif binding analysis. To
determine differentially accessible regions, we used the negative binomial test with edgeR (cutoff: log2FC
> 1.0, CPM>2, p-value < 0.01). The hypergeometric analysis was done by using fisher.test using R using
2x2 matrix of overlapped genes, unique to group HFD-FA, unique to group PMzs, and total expressed
genes in PM2s.
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