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Introduction
The overwhelming clinical success of 
T cells that are genetically modified 
with chimeric antigen receptors (CARs) 
against refractory hematologic malig-
nancies (1–3) led to the commercializa-
tion of two different CAR-T cell prod-
ucts. Their widespread use has provided 
key insight into features associated with 
long-lasting clinical remission, namely 
(a) robust in vivo expansion and (b) sus-
tained persistence (4–6). Indeed, CAR-T 
cells that are unable to persist can serve 
only as a bridge without inducing defini-
tive cures. Persistence-prolonging modi-
fications may prove particularly valuable 
in improving the efficacy of CAR-T cells 
directed toward solid tumors, which have 
yielded less impressive results (7, 8). 

Thus, ongoing efforts to enable CAR-T 
cells to avoid exhaustion and persist 
indefinitely are a priority for the field.

What makes the difference in 
persistence?
There are two prominent schools of 
thought regarding the differences in per-
sistence between CAR constructs, both 
of which revolve around the influence of 
signal strength on the delicate balance 
between T cell activation and exhaustion. 
The predominant hypothesis has focused 
on how quantitative signaling impacts T 
cell exhaustion, as exhausted CAR-T cells 
express more inhibitory receptors, such as 
PD-1 (9–11). However, qualitative differ-
ences in signaling are perhaps as import-
ant a factor in CAR-T cell persistence.

Although construct differences may 
play a role in driving CAR-T cell per-
sistence, the primary predictive factor 
relates to variations in the costimulatory 
domain (12–14). CAR-T cells containing 
CD28 have shorter persistence compared 
with 4-1BB (irrespective of other construct 
differences), which has important clinical 
consequences. In the case of CD19-tar-
geted immunotherapy, most practitioners 
strongly consider stem cell transplant for 
patients who achieve remission follow-
ing CD28-based CAR-T cells. However, 
patients who remain in remission following 
treatment with 4-1BB–based CAR-T cells 
often enter a disease surveillance program, 
with their likelihood of requiring (or need-
ing to proceed to) a transplant diminishing 
the longer they remain in remission (4, 11).

The limited persistence of second- 
generation CARs containing CD28 and 
CD3ζ tandem signaling domains likely 
relates to (a) constitutive activation via 
CAR aggregation that leads to activation 
of the exhaustion-associated receptor 
PD-1, which preferentially inhibits CD28 
signaling (15); (b) CAR-CD3ζ domain 
phosphorylation, which is accentuated 
by CD28 and CD3ζ signaling redundan-
cy (16); as well as the (c) spatiotemporal 
constraints imparted by the structure of  
second-generation CARs (17).

CAR-T cells containing 4-1BB co-
stimulatory domains, on the other hand, 
possess a more memory T cell–like sur-
face phenotype that may ameliorate 
CAR-T exhaustion (12–14, 18). Mecha-
nism aside, multiple clinical trials have 
corroborated the decreased persistence 
of CD28-based CARs versus those with 
4-1BB (1, 3, 4, 19). However, costimula-
tory domains are not one-size-fits-all: 
4-1BB, for example, while quite effective 
in CD19-targeting CARs, may negligibly 
mediate other CAR constructs, particu-
larly those targeting solid tumors (20). 
The choice of costimulatory domain 
therefore has emerged as the premier 
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Sustained persistence of chimeric antigen receptor T (CAR-T) cells is a 
key characteristic associated with long-term remission in patients with 
hematologic malignancies. Attempts to uncover mechanisms that enhance 
persistence and thus functionality will have a substantial impact in 
broadening application of CAR-T cell therapy, especially for solid tumors. 
In this issue of the JCI, Guedan et al. describe a promising strategy to limit 
T cell exhaustion and improve persistence by changing a single amino 
acid in the costimulatory domain of CD28. The authors demonstrated that 
this single amino acid substitution in CD28-based mesothelin CAR-T cells 
results in improved persistence and functionality in a xenograft model of 
pancreatic cancer. Furthermore, reciprocal alteration of the same residue in 
inducible costimulator–containing (ICOS-containing) CAR-T cells resulted 
in limited antitumor activity and persistence. These findings suggest that 
simple alterations in the costimulatory domain may enhance CAR-T cell 
persistence, warranting future evaluation in other CD28-costimulatory CARs 
in an effort to improve durable antitumor effects.
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YMFM and ICOS-directed CAR T cells 
behaved markedly differently in a Capan-2 
pancreatic xenograft mouse model com-
pared with wild-type CD28 CAR-T cells (21).

Treatment with wild-type CD28 
CAR-T cells or CD28-YMFM CAR-T 
cells decreased the size of subcutaneous 
Capan-2 tumors within 23 days. However, 
tumors of mice treated with CD28 CAR-T 
cells resumed growth after 23 days. Simi-
larly to mice treated with ICOS-CAR-T 
cells, CD28-YMFM CAR-T cells durably 
controlled tumors. As predicted, differ-
ences in antitumor efficacy correlated with 
CAR-T cell persistence. Mice treated with 
either CD28-YMFM or ICOS CAR-T cells 
had circulating CD8+ and CD4+ mesothe-
lin CAR-T cells in peripheral blood 30 days 
after treatment, whereas wild-type CD28 
CAR-T cells exhibited limited persistence, 
similar to nontransduced control T cells 
(findings similar in both subcutaneous and 
metastatic models). Phenotypic analysis 
of peripheral CD28-YMFM CAR-T cells 
identified as late as day +30 revealed a less 
exhausted, less terminally differentiated 
profile, a profile consistent with that of 
highly activated, resilient CAR-T cells (21).

In order to further explore the mech-
anism by which this single residue switch 
improved functionality, the authors 
generated the various CAR-T cell con-
structs from four healthy donors. Analy-
sis of CD28-YMFM CAR-T cells revealed 
increases in AKT activation with concom-
itant decreases in VAV1 activation, in com-
parison with CD28 CAR-T cells manufac-
tured from the same donors. These are all 
expected consequences of the disruption in 
the Grb2-binding domain of CD28 caused 
by the YMFM alteration. Altered down-
stream VAV1 signaling results in decreased 
NFAT activation, IL-2 production, and 
ultimately calcium release through PLCγ1 
and ERK activation, a schematic of which 
is shown in Figure 1 (21).

To simulate the chronic antigen stim-
ulation that triggers T cell exhaustion, 
Guedan et al. studied whether signaling 
alterations resulted in transcriptional 
changes in an in vivo model of pancreatic 
cancer. Interestingly, while T cell infil-
tration and initial antitumor effects were 
similar in all CAR constructs, Ki67 prolifer-
ation assays revealed that only CD28-YM-
FM and ICOS CAR-T cells continued to 
actively proliferate two weeks after treat-

YMXM motif on differential signaling 
(22, 23). Specifically, evidence suggests 
that stimulating the asparagine within the 
YMNM motif of CD28, using a cognate 
antigen, exaggerates calcium release and 
increases NFAT signaling, thus driving T 
cell exhaustion and dysfunction (24). The 
authors therefore hypothesized that this 
single amino acid difference may ulti-
mately direct differences in persistence 
of CAR-T cells containing CD28 ver-
sus ICOS intracellular domains. In this 
study, the authors changed asparagine to  
phenylalanine to rescue CD28-costimu-
lated CAR-T cells from exhaustion and 
prolong T cell persistence and durable 
antitumor effects (21).

Using site-directed mutagenesis, 
Guedan et al. (21) generated mesothelin- 
directed CAR-T cells containing single 
amino acid alterations in the YMXM motif 
(CD28-YMFM and ICOS-YMNM). In 
vitro comparison of CD28-YMFM, ICOS-
YMNM, and wild-type CD28 CAR-T cells 
revealed comparable phenotype, differen-
tiation, tonic signaling, and cytotoxicity in 
response to target cells. Despite similar in 
vitro characteristics, the mutated CD28- 

controllable predictor of CAR-T cell per-
sistence, making it a primary focus of 
efforts to improve CAR-T cell function.

Can a single residue switch 
improve persistence?
In this issue of the JCI, Guedan and col-
leagues (21) substituted a single amino  
acid of a CD28-based CAR-T cell that 
targets the mesothelin tumor differenti-
ation antigen. The researchers tested the 
in vivo persistence and functionality of 
these CD28-modified T cells in xenograft 
models of pancreatic cancer. The authors 
previously showed that CD28-based 
antimesothelin CARs have limited per-
sistence compared with those containing 
either the 4-1BB or inducible costimu-
latory (ICOS) domains (13, 14). ICOS, 
a T cell costimulatory receptor of the 
B7-CD28 superfamily, shares the YMXM 
signaling motif with CD28 in its intracel-
lular domain. The difference between 
these intracellular domains is a single 
amino acid at the X position, an aspar-
agine in CD28 and a phenylalanine in 
ICOS. Previous publications established 
the impact of alterations in the shared 

Figure 1. Possible mechanisms of improved persistence in CD28-YMFM–costimulatory CAR-T cells. 
Signaling pathways proposed by Guedan and colleagues (21) suggest that second-generation CARs with 
costimulatory domains containing a single amino acid substitution YMNM (yellow) or YMFM (blue) dif-
ferentially interact with VAV1/Grb2. CD28-YMNM CAR T cells show increased activation (++) and additive 
activation (+++) from multiple pathways. CD28-YMFM CAR-T cells show decreased NFAT activation, IL-2 
production, calcium release, with T cell persistence.
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of whether this substitution affects motifs  
outside of YMNM, as well as the role 
enhanced AKT activation will ultimately 
play in functionality.

Nevertheless, Guedan et al. (21) pro-
vide promising evidence that alterations 
in the Grb2/VAV signaling pathways 
enhance CAR-T cell persistence, resulting 
in durable antitumor effects. Therefore, 
these experiments should be extended to 
other CD28-costimulatory CARs, includ-
ing clinically validated ones, followed by 
comparison with 4-1BB counterparts.
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ment. These findings indicate that lack 
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least partly a result of T cell dysfunction 
and exhaustion following chronic anti-
gen stimulation. Gene expression analysis 
at this time point revealed clustering of 
CD28-YMFM with ICOS CAR-T cells (as 
opposed to CD28 CAR-T cells) (21).

To provide further evidence of the 
impact this single residue alteration has on 
the CD28 intracellular signaling domain 
and CAR-T cell functionality, the authors 
changed phenylalanine to asparagine in 
the YMFM motif of the ICOS-based CAR 
to create a reciprocal ICOS-CAR design. 
This single residue substitution decreased 
in vivo functionality. Differences in per-
sistence were even more striking than in 
antitumor activity. ICOS CAR-T cells per-
sisted up to 36 days after treatment, while 
ICOS-YMNM CAR-T cell persistence was 
almost indistinguishable from that of 
first-generation CAR-T cells (21).

Minor modifications may lead 
to major mileage gains
In the quest for ideal CAR-T cells, per-
sistence ranks at the top of the list of desired 
characteristics. In this issue, Guedan and 
colleagues provide preclinical proof of 
principal that a single amino acid substitu-
tion strategy can enhance the in vivo per-
sistence, and thus antitumor efficacy, of 
mesothelin-targeted CAR-T cells contain-
ing the CD28 costimulatory domain (21). 
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(25, 26), this strategy could easily be com-
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data, whether the modification described 
here enhances functionality of all CD28- 
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remains an important open question. Future 
studies also should address how this modi-
fication works in combination with other 
genetic modifications or enhancements.  
Furthermore, prior to broader applica-
tion, we must improve our understanding 
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