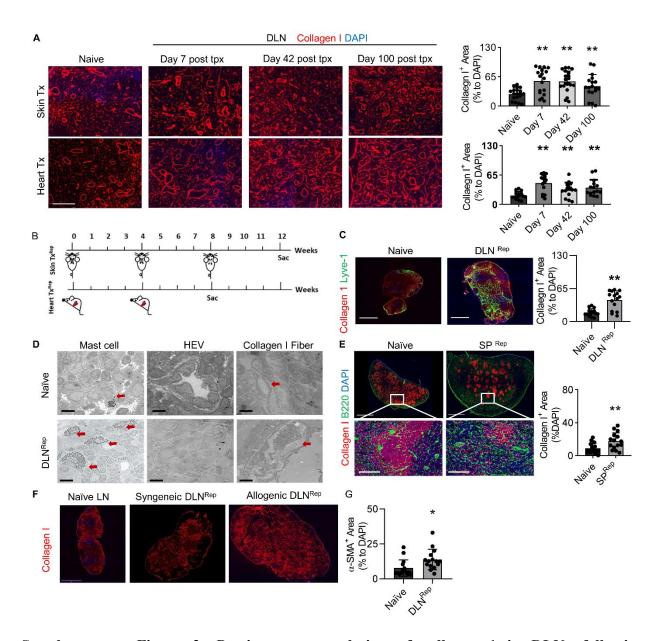
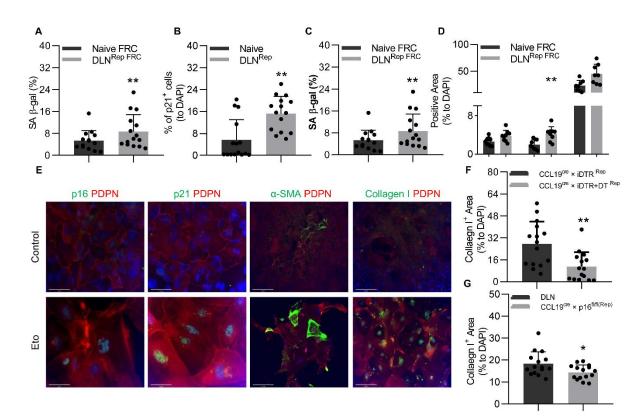

| Mcpt2  | Forward 5'-ATTTCATTGCCTAGTTCCTCTGAC-3'  |
|--------|-----------------------------------------|
|        | Reverse 5'-CAGGATGAGAACAGGCTGGGAT-3'    |
| Mcpt4  | Forward 5'-GTAATTCCTCTGCCTCGTCCTTC-3'   |
|        | Reverse 5'-GTAATTCCTCTGCCTCGTCCTTC-3'   |
| Mcpt6  | Forward 5'-AGTAAGTGGCCCTGGCAGGTGAGCC-3' |
|        | Reverse 5'-GGTCCCCATAGTATAGATACTGCTC-3' |
| Vegfa  | Forward 5'-CACAGCAGATGTGAATGCAG-3'      |
|        | Reverse 5'-TTTACACGTCTGCGGATCTT-3'      |
| Fgf2   | Forward 5'- GAAACACTCTTCTGTAACACACTT-3' |
|        | Reverse 5'- GTCAAACTACAACTCCAAGCAG-3'   |
| 116    | Forward 5'-CTCTGGGAAATCGTGGAAAT-3'      |
|        | Reverse 5'-CCAGTTTGGTAGCATCCATC-3'      |
| Callal | Forward 5'-CCTGGTAAAGATGGTGCC-3'        |
| Collal | Reverse 5'-CACCAGGTTCACCTTTCGCACC-3'    |
| T-A-1  | Forward 5'-CAACAATTCCTGGCGTTACCTTGG-3'  |
| Tgfb1  | Reverse 5'-GAAAGCCCTGTATTCCGTCTCCTT-3'  |
| Smad2  | Forward 5'-ATGTCGTCCATCTTGCCATTC-3'     |
|        | Reverse 5'-AACCGTCCTGTTTTCTTTAGCTT-3'   |
| Acta2  | Forward 5'-CTGACAGAGGCACCACTGAA-3'      |
|        | Reverse 5'-CATCTCCAGAGTCCAGCACA-3'      |
| Fn1    | Forward 5'-CGAGGTGACAGAGACCACAA-3'      |
|        | Reverse 5'-CTGGAGTCAAGCCAGACACA-3';     |
| Smad2  | Forward 5'-ATGTCGTCCATCTTGCCATTC-3'     |
|        | Reverse 5'-AACCGTCCTGTTTTCTTTAGCTT-3'   |
| Smad7  | Forward 5'-GGGCTTTCAGATTCCCAACTT-3'     |
|        | Reverse 5'-CACGCGAGTCTTCTCCTCC-3'       |
| Bmp7   | Forward 5'-CAAGCAGCGCAGCCAGAATCG-3'     |
|        | Reverse 5'-CAATGATCCAGTCCTGCCAGCCAA-3'; |
| Cdkn2a | Forward 5'-CCCCAGTGTCCTTACAGAGTG-3'     |
|        | Reverse 5'-GTGCCCAGAGTGGATGTCT-3'       |

Supplementary Table 1: Sequences of primers used for Real-time PCR.

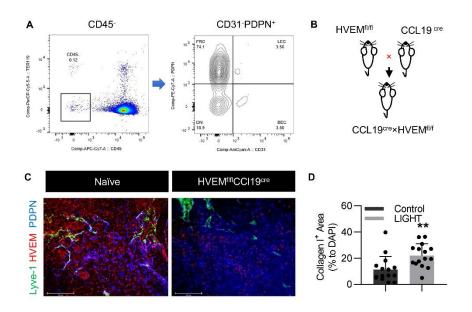

| Cdkn1a | Forward 5'-TGGT- GCTCATCCCTACCTTCA-3'        |
|--------|----------------------------------------------|
|        | Reverse 5' -TTCTCTCTATCCTC TCCCCCAG-3'       |
| Trp53  | Forward 5'-TGTGTTCACCACACTAAGGGGG-3'         |
|        | Reverse 5'-CCTTTGTTCTTGGCAGAAGACT-3'         |
| Cdkn1c | Forward 5'-CTCAAGCTTCAAGATGTGGACCGTGCCAGT-3' |
|        | Reverse 5'-GAGGAATTCGGGCGAGAACCTTCCAGAA-3'   |
| Gadph  | Forward 5'-AGCCACATCGCTCAGACAC-3'            |
|        | Reverse 5'-AGGCAGGTTTGATCTCCGTT-3'           |

## Supplementary Figure and Figure legends

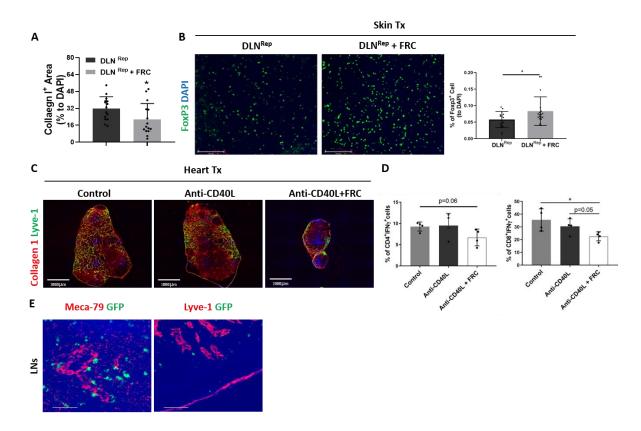



Supplementary Figure 1: Ischemia activates mast cell-induced collagen 1 accumulation and lymphangiogenesis in DLNs following skin transplantation. (A) Comparison and semi-

quantitative analysis of collagen I staining in DLNs from BALB/c  $\rightarrow$  Rag1<sup>-/-</sup> skin transplant recipient mice in comparison to the axillary lymph nodes of Rag1<sup>-/-</sup> mice at day 1 after skin transplantation. Scale bar 100µm. (B) Comparison and analysis of collagen I staining and between DLNs of BALB/c→C57BL/6J skin transplant recipient mice with and without clodronate treatment. Scale bar 100µm. (C) Assessment of collagen 1<sup>+</sup> region in the DLNs of naïve BALB/c mice, and those that received skin allografts from C57BL/6J and Kit<sup>W-sh/W-sh</sup> mice (n=4). (D) Fluorescence micrographs of DLNs of BALB/c recipients of skin allografts from C57BL/6-Tg(UBC-mCherry) donor mice demonstrate presence of mast cells within 2 hours following transplantation, as demonstrated by co-staining of the mast cell markers FceR1 (green, left) and tryptase (green, right) with mCherry (red). (E) IF staining of Lyve-1<sup>+</sup> lymphatic vessels and collagen 1<sup>+</sup> region and semi-quantitative assessment in the DLNs following transplantation of WT and ischemic organs (~8 hours cold ischemia time, scale bars  $1000\mu m$  and  $100\mu m$ , n=4). (F) Gene expression level of Collal in the DLNs following transplantation of WT and ischemic organs (n=6). (G) Fluorescence micrographs and analysis of collagen III<sup>+</sup> and collagen IV<sup>+</sup> region in naïve LNs and DLNs following transplantation of WT and ischemic organs. Scale bars 50µm (n=3). Percentage of area stained positive in fluorescence micrographs was assessed in 3-6 random microscopic fields for each mouse. \*p < 0.05; \*\*p < 0.01 by Student's t test and 2-way ANOVA with Tukey's multiple-comparisons test.




Supplementary Figure 2: Persistent accumulation of collagen 1 in DLNs following transplantation. (A) Fluorescence microscopic analysis shows marked increase of collagen 1 fibers (red) at 7, 42, and 100 days following skin and heart transplantation. Scale bar 100µm (n=3). (B) Schematic for the timelines of repetitive skin transplantation and heart transplantation models. (C) Fluorescence micrograph of collagen I<sup>+</sup> (red) and Lyve-1<sup>+</sup> (green) staining and semi-quantitative analysis of collagen 1<sup>+</sup> region in DLN<sup>Rep</sup> following repetitive BALB/c  $\rightarrow$  C57/BJ6 heart transplantation. Scale bar 1000µm (n=3). (D) Electron micrograph of one to two mast cells


located near lymphatics, HEVs, and collagen 1 fibers (red arrow) in naïve LN and higher number in DLN<sup>Rep</sup>, along with obliteration of HEV lumen, detachment of HEV, and higher collagen 1 fiber density. Scale bar 2µm in mast cell and HEV images, 8µm in collagen 1 fiber images. (E) Fluorescence micrographs of collagen I<sup>+</sup> fibers (red) and B220<sup>+</sup> B cells (green) in the spleens of mice that underwent repetitive transplantation. Scale bars 1000µm and 50 µm (n=3). (F) Gene expression levels of collagen 1<sup>+</sup> (red) in LNs of naïve mice and DLN<sup>rep</sup> of recipients of syngeneic and allogenic skin transplantation. Scale bar 1500µm. (G) Assessment of  $\alpha$ -SMA<sup>+</sup> staining in naïve LNs and DLNs following repetitive skin transplantation. Scale bar 1000µm (n=4). Data in graphs are represented as means ± SD. Percentage of area stained positive in fluorescence micrographs was assessed in 3-6 random microscopic fields for each mouse. \*p < 0.05; \*\*p < 0.01 by Student's t test and 2-way ANOVA with Tukey's multiple-comparisons test.



Supplementary Figure 3: Senescent FRCs promote fibrosis. Analysis of the percentage of (A)  $\beta$ -gal<sup>+</sup> cells and (B) p21<sup>+</sup> cells in naïve LNs and DLN<sup>Rep</sup> (n=4). Analysis of (C) surface area percentage occupied by  $\beta$ -gal<sup>+</sup> cells, and (D)  $\alpha$ -SMA<sup>+</sup>, collagen 1<sup>+</sup>, and p21<sup>+</sup> cells among FRCs isolated from naive LNs and DLN<sup>REP</sup> (n=3). (E) IF staining shows that the expression levels of p16, p21, collagen 1, and  $\alpha$ -SMA by cultured FRCs increase after etoposide treatment. Evaluation of collagen 1<sup>+</sup> region in DLNs of (F) CCL19<sup>cre</sup>×iDTR and (G) CCL19<sup>cre</sup>×p16<sup>fl/fl</sup> allogeneic skin transplant recipients (n=4). Data in graphs are represented as means ± SD. Percentage of area stained positive in fluorescence micrographs was assessed in 3-6 random microscopic fields for each mouse. \**p* < 0.05; \*\**p* < 0.01 by Student's t test.



Supplementary Figure 4: HVEM expression in FRCs of C57BL/6J and CCL19<sup>cre</sup>×HVEM<sup>fl/fl</sup> mice. (A) Gating strategy for flow cytometric analysis of FRCs. (B) Schematic for generation of  $CCL19^{cre} \times HVEM^{fl/fl}$  mice. (C) IF staining shows HVEM (red) expression by PDPN (blue)<sup>+</sup> LYVE-1(green)<sup>-</sup> FRCs. (D) Semi-quantitative analysis of collagen I<sup>+</sup> fibers in naive (control) and LIGHT-treated FRCs (n=4). Data in graphs are represented as means ± SD. \*p < 0.05; \*\*p < 0.01by Student's t test.



FRC Supplementary Figure 5: treatment improves immunosuppression posttransplantation. (A) Assessment of collagen I<sup>+</sup> staining in the DLNs of untreated mice (DLN<sup>Rep</sup>) and mice treated with FRCs (DLN<sup>Rep</sup> + FRC) (n=4). (B) IF staining of Foxp3<sup>+</sup> Tregs in DLN<sup>rep</sup> from mice treated with and without FRCs. (C) Co-staining of LYVE-1 (green) and collagen 1 (red) in DLNs at 7 days after heart transplantation. Scale bar 1000 $\mu$ m. (D) Percentages of CD4<sup>+</sup>IFN- $\gamma^+$ cells and CD8<sup>+</sup>IFN $\gamma^+$  cells in splenocytes as measured by flow cytometry (each dot represents one biological replicate). (E) Fluorescence micrographs of DLNs of C57BL/6J mice harvested 24 hours following injection of CMFDA-FRCs. GFP signal was detected along with Meca-79<sup>+</sup> HEVs (Red) and Lyve-1<sup>+</sup> lymphatic vessels (Red). Data in graphs are represented as means  $\pm$  SD. Percentage of area stained positive in fluorescence micrographs was assessed in 3-6 random microscopic fields for each mouse. \*p < 0.05; \*\*p < 0.01 by Student's t test and 2-way ANOVA with Tukey's multiple-comparisons test.