

Supplemental Figure 1. High prevalence of autoantibodies in ICL patients regardless of clinical autoimmunity status. (A) Distribution of the ICL patients, analyzed by the autoantigen array, based on autoimmunity category. Group 1, in white, patients with no autoimmune disease and no clinical autoantibodies. Group 2, in cyan, patients with clinical autoantibodies but no specific autoimmune diagnosis. Group 3, in blue, patients with autoimmune disease. (B) Cluster showing the Ab scores of the 57 IgG auto-antibodies found in the ICL patients. Data were supervised at the sample level (x-axis) and unsupervised at the autoantibody level (y-axis). (Cont.)

(Cont.) Supplemental Figure 1. High prevalence of autoantibodies in ICL patients regardless of clinical autoimmunity status. (C) Cluster showing the Ab scores of the 39 IgM auto-antibodies found in the ICL patients. Data were supervised at the sample level (x-axis) and unsupervised at the autoantibody level (y-axis). (D) Principal Component Analysis using the combined IgG and IgM Ab scores for each patient. Each symbol represents one patient. ICL patients cluster (blue circle) separately from HC cluster (black discontinuous circle), and the three ICL subgroups cluster together. Pairwise Adonis test with adjusted p values for FDR: p<0.001 for all three comparisons, HC vs group 1, HC vs group 2 and HC vs group 3. Differences within the three ICL subgroups by autoimmunity status were not statistically significant. (cont).

(Cont.) Supplemental Figure 1. High prevalence of autoantibodies in ICL patients regardless of clinical autoimmunity status. (E) Strip plot showing the targets of the 57 IgG autoantibodies found in ICL patients. For each target, the range Ab healthy controls (HC) of the score of was calculated and its 95th percentile was used to set up the threshold for positivity. For each sample and target, the ratio of Ab score to the respective HC 95th percentile is shown with HC in black and the three different ICL autoimmune categories in white, light blue and dark blue. Ratio >1 was considered positive (grey discontinuous line). The number of positive samples in the ICL and HC groups, respectively, are shown in parenthesis next to the targets' name. (F) Strip plot showing the targets of the 39 IgM autoantibodies found in ICL patients with Ab scores ratios calculated as described in E. PR3 and TNF- α are shown separately due to higher values found in ICL patients.

*Hepatocyte Nuclear Factor 4 Alpha

Supplemental Figure 2. Z scores and top upstream regulators from protoarray data

analysis. (**A**) Z-scores were calculated as the number of standard deviations of antibody score from the mean of HC. At Z \geq 1 and Z \geq 2 there was no discrimination between HC and ICL groups. (**B**) Percentage of participants (HC, grey; ICL, blue) that shared any of the 3,418 and 668 targets found in the ICL and HC groups, respectively, at Z \geq 3. (**C**) Top upstream regulators of the 2,159 proteins targeted by ICL antibodies at Z \geq 4, using the Ingenuity Pathway Analysis. Data pooled from three independent experiments.

Supplemental Figure 3. Correlation of IgG antibodies against different cell subsets. Correlation of IgG anti-CD4-cell Ab versus either NK cells (A) or B cells (B) found in the same individual patient. Data were pooled from 17 independent experiments done on 71 ICL patients and 30 HC as described on Figure 3A. A ratio \geq 2 (dotted lines) was considered as positive antibody deposition. R and p values obtained by a two-tailed Spearman correlation.

Supplemental Figure 4. Lymphopenias associated with primary immune deficiencies (PID) exhibit similar anti-lymphocyte antibodies that can lead to complement activation. (A) Anti CD4 T cell antibody detection measured as in Figure 3A. One patient (in blue) with bi-allelic *DOCK8* mutations had IgG Ab and a second patient (in orange) with a *PI3KCD* mutation had both IgG and IgM. (B) Complement deposition induced by patients' sera measured as in Figure 5A.

Supplemental Figure 5. Deposition of C4c and levels of complement inhibitor CD55 on ICL CD4 T cells. (A) Staining for C4c and C3b on one HC PBMC and five ICL PBMC tested positive previously for C1q and C3b, directly ex vivo without any further incubation or manipulation. Numbers in the quadrants represent the percentage of positive cells out of the CD4 T cell gate. (B) MFI of complement inhibitors CD55 on CD4 T cells from HC or ICL patients with and without ex vivo complement (C) deposition as described in Figure 6. Circles represent individual donors and the horizontal lines the median value for each group.

Supplemental Figure 6. Venn diagram of the three functional autoreactivities found ICL patients and table with the in individual information organized bv autoimmune status. (A) Venn diagram representing the number of patients with complement deposition on their CD4 T cells observed directly ex vivo (ex vivo C dep., n=10), whose sera induced complement deposition on HC CD4 T cells (in vitro sera C3b dep., n=10), whose sera induced ADCC on HC CD4 T cells (ADCC, n=8) and overlap generated by any combination of these three functional autoreactivities. All 28 patients shown in this graph had antibodies against lymphocyte membrane proteins. (B) Table showing in green, the presence of anti-CD4 Ab (either IgG or IgM) (Ig α CD4); in orange, the presence of Ab with ADCC activity, Ab with complement deposition activity in vitro (C3b dep.), or complement activation on the T cells in vivo (Ex vivo C dep.), and in red CD4 numbers <75 for each ICL patient, and how they relate to their autoimmune status. Autoimmune status color coded as in Supplemental Figure 1. The specific autoimmune diseases are listed.

В	EPIC #	lg (aCD4)	ADCC	C3b dep.	Ex vivo C dep.	#CD4	Autoimmunity
	10						
	11						
	18						
	27						
	30						
	42						
	48						
	56						
	72						
	86						
	90						
	92						
	97						
	2						
	5						
	21						
	40						
	45						
	54						
	59						
	64						
	66						
	71						
	74						
	78						
	1						
	37						
	44						
	53						
	63						
	67						
	98						
	23						
	26						
	33						
	38						
	41						
	69						
	76						
	77						
	80						
	87						
	89						
	7						Sarcoidosis, Vitiligo, Autoimmune Thyroid Disease
	9						Autoimmune Hemolytic anemia, atopic dermatitis
	12						ITP
	25						Autoimmune Thyroid Disease Psoriatic Arthritic Autoimmune Thyroid Disease
	43						Sarcoidosis
	51						Autoimmune Thyroid Disease
	58						Ulcerative colitis
	73						Autoimmune Thyroid Disease
	94						Ankylosing spondilitis
	99						Ulcerative colitis
	15						Sarcoidosis
	16						SLE
	24						Autoimmune Thyroid Disease
	49						Autoimmune Thyroid Disease
	50						Autoimmune Thyroid Disease, Psoriasis
	62						Vitiligo, ITP
	83						Autoimmune Thyroid Disease
	91						Psoriatic rash, Alopecia totalis
	30						Carco/JUSIS

					CD3 ^{C, D}	CD4	CD8	NK	В	lgG [⊧]	lgM
ICL	Sex ^A	Age ^B	Autoimmune disease	Infectious Complications	(cells/	(cells	(cells	(cells	(cells	(mg/	(mg/d
					μL)	/μL)	/μL)	/μL)	/μL)	dL)	L)
1	М	33	None (2)	HPV	375 [₽]	139	216	91	125	1127	141
2	F	58	None (1)	HPV/Histoplasma	50	18	26	99	419 ^G	833	105
5	М	51	None (1)	HPV/VZV	279	40	168	77	54	531	58
7	F	51	Sarcoidosis, Vitiligo, Autoimmune Thyroid Disease (3)	Histoplasma	197	150	42	267	244	1286	150
9	М	68	Autoimmune Hemolytic anemia, Atopic dermatitis (3)	NO	305	158	144	88	20	745	291
10	М	62	None (1)	VZV	689	100	558	211	144	675	48
11	М	44	None (1)	NO	617	242	280	87	43	1025	42
12	М	69	ITP (3)	NO	278	172	105	159	30	1011	48
15	М	56	Sarcoidosis (3)	Cryptococcus	131	66	61	160	81	802	75
16	F	31	SLE (3)	HPV/Molluscum	111	13	47	118	250	1070	245
18	F	60	None (1)	NO	261	149	109	89	55	524	74
21	F	55	None (1)	VZV	80	11	35	130	<i>392</i>	1010	53
23	F	59	None (2)	HPV/Cryptococcus	1432	63	1344	137	134	902	57
24	F	61	Autoimmune Thyroid Disease (3)	HPV/VZV/Cryptococcus	101	44	40	74	106	563	149
25	М	66	Autoimmune Thyroid Disease (3)	NO	437	255	163	334	164	928	92
26	F	39	None (2)	HPV/Cryptococcus	829	59	651	161	211	942	120
27	М	27	None (1)	NO	962	143	769	176	156	1088	68
28	F	39	Psoriatic Arthritis (3)	HPV/VZV	233	34	118	90	434	871	187
30	М	62	None (1)	Candida	408	240	158	177	176	797	92
33	F	33	None (2)	HPV	848	70	761	102	127	685	239
34	М	62	None (1)	VZV	420	168	240	177	69	1083	60
37	М	45	None (2)	HPV/VZV/Cryptococcus	364	127	132	128	221	1170	72
38	М	58	None (2)	HPV/VZV/Cryptococcus	100	33	30	68	130	842	80
20	F	62	Psoriatic Arthritis,		570	122	425	170	150	1700	120
22	<u> </u>	02	Autoimmune Thyroid Disease (3)	INU	570	122	433	1/0	100	1200	120
40	F	54	None (1)	Cryptococcus	560	46	453	134	101	758	129
41	F	31	None (2)	HPV	138	22	72	193	182	1096	85

Supplemental Table 1. Clinical and laboratory characteristics of ICL participants.

42	Μ	32	None (1)	NO	459	250	145	128	39	807	74
43	F	51	Sarcoidosis (3)	NO	440	272	188	116	64	686	90
44	F	64	None (2)	HSV-1	251	205	53	104	59	1558	41
45	Μ	36	None (1)	Molluscum	157	15	55	137	322	720	58
46	F	36	None (1)	HPV/HSV-1/Cryptococcus	642	76	460	246	96	739	128
48	F	38	None (1)	HPV	458	203	217	132	97	669	87
49	F	57	Autoimmune Thyroid Disease (3)	NO	127	41	69	323	<u>368</u>	828	91
50	с	61	Autoimmune Thyroid Disease,	DNAL	100	11	21	250	12	740	62
	1	01	Psoriasis (3)	FIVIL	108		21	238	42	740	02
51	F	66	Autoimmune Thyroid Disease (3)	NO	416	282	145	129	110	926	239
53	Μ	50	None (2)	Cryptococcus	428	160	170	106	99	1553	139
54	F	58	None (1)	Cryptococcus	843	71	732	129	134	544	56
56	Μ	77	None (1)	KSHV	192	138	45	77	14	842	47
58	Μ	63	Ulcerative colitis (3)	NO	417	230	175	176	20	633	97
59	Μ	75	None (1)	Cryptococcus	168	24	118	165	187	1190	72
60	Μ	54	None (2)	VZV/Molluscum/MAC	41	6	8	138	<u>339</u>	979	22
62	Μ	41	Vitiligo, ITP (3)	HPV/Cryptococcus	324	49	214	447	123	1165	45
63	F	60	None (2)	NO	109	78	20	129	234	1362	129
64	Μ	48	None (1)	Cryptococcus/Molluscum	105	32	40	213	222	891	90
66	F	35	None (1)	HPV	41	9	13	139	223	850	167
67	F	27	None (2)	HPV	467	145	258	365	327	590	110
69	Μ	53	None (2)	Cryptococcus	133	2	25	211	306	949	71
71	Μ	50	None (1)	Cryptococcus	186	2	58	50	144	736	61
72	Μ	66	None (1)	NO	640	268	291	70	78	771	46
73	Μ	65	Autoimmune Thyroid Disease (3)	CMV	713	190	495	173	20	1697	41
74	F	62	None (1)	PML	875	71	800	88	<u>363</u>	545	32
76	Μ	43	None (2)	NO	113	26	46	78	158	1113	81
77	Μ	39	None (2)	HPV	71	32	42	46	3	1218	52
78	Μ	71	None (1)	Cryptococcus/Aspergillosis/CM\	155	17	111	18	56	638	32
79	Μ	30	Psoriasis (3)	HPV	474	118	294	276	275	1149	98
80	F	66	None (2)	VZV	263	74	123	186	109	653	230
81	М	47	None (2)	HPV	345	166	156	78	259	665	71
83	F	48	Autoimmune Thyroid Disease (3)	HPV/VZV/Cryptococcus	132	23	82	260	102	719	56
84	F	46	None (1)	NO	133	41	58	96	212	936	65

86	F	35	None (1)	HPV/Molluscum	991	126	801	203	175	704	64
87	Μ	29	None (2)	HPV/Molluscum/Cryptococcus	576	24	518	99	114	1531	77
88	F	46	None (2)	NO	213	58	94	138	81	1287	92
89	Μ	31	None (2)	Molluscum/Histoplasma	357	26	194	110	161	968	125
90	F	38	None (1)	NO	689	111	545	102	92	1242	51
91	F	20	Psoriatic rash, Alopecia totalis (3)	HPV/Molluscum	142	50	28	176	163	1037	140
92	Μ	61	None (1)	NO	168	105	50	120	72	802	89
93	Μ	37	None (1)	HPV/Cryptococcus/Coccidiodes	984	79	792	192	193	529	53
94	Μ	70	Ankylosing spondilitis (3)	NO	441	183	236	342	72	633	76
96	Μ	36	Sarcoidosis (3)	РСР	118	42	68	37	56	823	185
97	F	37	None (1)	NO	934	93	782	87	149	693	223
98	F	34	None (2)	HPV	372	187	150	92	101	827	189
99	Μ	52	Ulcerative colitis (3)	MAC	197	121	60		100	674	53

^AF=Female, M=Male

^BAge at time of enrollment

^cLaboratory values on the day of anti-CD4 T cell membrane autoantibody testing by flow

^DRange of normal values (cells/μL): CD3 714-2266, CD4 359-1565, CD8 178-853, NK 126-729 and B cells 61-320

^ERange of normal values for serum immunoglobulins (mg/dL): IgG 700-1600 and IgM 40-230

^FIn red and bold, values below the normal range

^GIn blue and italic, values above the normal range

	Targets of IgG AutoAb	p-value ^A	log2(fc) ^B
1	AGTR1 ^C	9.76E-06	3.37
2	Alpha.actinine	5.98E-07	3.44
3	Amyloid	9.18E-05	1.16
4	AQP4	2.94E-10	3.88
5	b2.glycoprotein.I ^D	6.63E-06	2.47
6	b2.microglobulin	4.96E-06	2.82
7	BPI	1.75E-09	2.60
8	CENP.A	1.02E-08	2.88
9	CENP.B	5.82E-06	2.26
10	Collagen.IV	2.79E-05	1.06
11	Collagen.V	1.14E-04	1.09
12	complement.C1q	4.20E-09	2.60
13	complement.C3	7.96E-07	2.22
14	complement.C4	1.04E-04	1.37
15	complement.C5	6.63E-06	1.93
16	complement.C9	7.73E-05	1.61
17	Total.Histone	3.46E-05	2.44
18	CRP	2.37E-10	3.10
19	Factor.B	2.85E-05	1.48
20	Factor.H	2.75E-04	1.40
21	Fibrinogen.IV	8.98E-09	3.82
22	Fibrinogen.S	7.28E-08	3.34
23	GBM	1.41E-08	2.65
24	GP2	4.57E-08	3.07
25	Hemocyanin	1.05E-07	2.39
26	Histone.H2B	2.87E-05	2.65
27	Intrinsic.Factor	5.71E-05	1.93
28	Jo.1	6.68E-09	2.76
29	Ku.P70.P80.	7.54E-06	1.87
30	LC1	4.57E-08	2.89
31	LKM1	2.44E-08	2.43
32	M2	3.80E-06	2.83
33	Mitochondrial.antigen	2.87E-04	1.87
34	MPO ^E	2.61E-07	4.80
35	Muscarinic.receptor ^E	2.90E-07	4.73
36	Myelin.basic.protein	2.23E-04	2.17
37	PCNA	1.32E-06	2.26
38	Peroxiredoxin.1	3.42E-06	2.94
39	PL.12	3.51E-10	3.41

Supplemental Table 2. Top molecules targeted by IgG Ab found in ICL sera.

40	PL.7 ^E	8.93E-09	4.94
41	PM.Scl.100	7.06E-08	2.98
42	PM.Scl.75	1.66E-08	2.84
43	Ribosomal. Phosphoprotein. P0	1.55E-08	2.72
44	Ribosomal. Phosphoprotein. P1	2.11E-04	1.89
45	Ribosomal. Phosphoprotein. P2	2.12E-04	2.02
46	Ro.SSA.52.Kda.	3.38E-05	2.11
47	Scl.70	5.58E-05	1.78
48	SmD1	1.70E-05	3.93
49	SmD3	7.03E-07	4.50
50	SRP54	3.94E-04	1.99
51	T1F1.gamma	4.01E-06	1.65
52	Thyroglobulin	1.20E-09	4.26
53	Topoisomerase.I	3.80E-07	3.65
54	ТРО	2.64E-10	4.04
55	TTG	1.65E-07	2.56
56	U1.snRNP.B.B.	6.43E-08	2.89
57	Vitronectin	1.58E-05	1.74

^ABonferroni correction

^Bfc= fold change ICL/HC.

^CList organized by alphabetical order

^DIn pink background, targets recognized by both IgG and IgM autoAb

^EIn bold, top three targets mentioned in the text.

	IgM autoantibodies	p-value ^A	log2(fc) ^B
1	Aggrecan ^C	9.55E-06	1.51
2	b2.glycoprotein.l ^D	7.31E-07	3.31
3	CENP.A	2.03E-04	2.81
4	CENP.B	3.38E-05	2.40
5	Collagen.VI ^E	6.16E-07	4.53
6	complement.C3	4.24E-06	3.06
7	Elastin	9.73E-06	2.41
8	Factor.H	1.43E-04	2.63
9	Factor.I	2.29E-05	3.21
10	Fibrinogen.IV	1.21E-06	3.76
11	Fibrinogen.S ^E	1.60E-06	3.78
12	Genomic.DNA	7.53E-05	1.31
13	GliadinIgG.	2.48E-06	2.58
14	GP2	2.62E-06	3.24
15	gP210	1.28E-06	3.51
16	Hemocyanin	3.41E-04	2.45
17	Insulin	5.32E-08	2.67
18	Intrinsic.Factor	4.30E-05	2.73
19	La.SSB	8.29E-05	2.71
20	LC1	5.71E-05	2.57
21	LPS	2.09E-04	1.08
22	Matrigel	1.36E-06	3.02
23	MPO	5.71E-05	2.77
24	Myosin	7.92E-05	2.65
25	PL.12	7.92E-05	2.21
26	PL.7	1.28E-06	3.37
27	PM.Scl.75	8.66E-07	2.96
28	PR3	1.33E-11	2.33
29	Proteoglycan	5.30E-07	1.10
30	Prothrombin.protein	1.56E-04	2.92
31	Ribosomal.Phosphoprotein.P2	1.43E-04	2.45
32	SmD1 ^E	8.46E-10	3.84
33	SmD3	4.69E-05	1.39
34	T1F1.gamma	4.96E-05	2.18
35	Thyroglobulin	2.92E-06	3.06
36	TNFa	3.43E-11	1.29
37	Topoisomerase.I	2.12E-04	2.58
38	ТРО	2.12E-04	2.71
39	Vimentin	9.14E-08	1.12

Supplemental Table 3. Top molecules targeted by IgM Ab found in ICL sera.

^ABonferroni correction ^Bfc= fold change ICL/HC. ^CList organized by alphabetical order ^DIn pink background, targets recognized by both IgG and IgM autoAb ^EIn bold, top three targets mentioned in the text.

	Gumbal	News	% (N) ICL	Cellular
	Symbol	Name	patients	compartment
1	UGT3A1	UDP glycosyltransferase 3 family	35.3 (12)	Intracellular
2	CDCA7	Cell division cycle associated 7	26.5 (9)	Intracellular
3	ZCCHC17	Zinc finger CCHC domain containing 17	26.5 (9)	Intracellular
4	KLHL32	Kelch-like family member 32 (Drosophila)	23.5 (8)	Intracellular
5	NME3	Non-metastatic cells 3	23.5 (8)	Intra and extracellular
6	PDGFB	Platelet-derived growth factor beta polypeptide	23.5 (8)	Extracellular
7	SPSB3	SpIA/ryanodine receptor domain and SOCS box containing 3	23.5 (8)	Intracellular
8	USF1	Upstream transcription factor 1	23.5 (8)	Intracellular
9	BMF	Bcl2 modifying factor	20.6 (7)	Intracellular
10	CFHR2	Complement factor H-related 2	20.6 (7)	Extracellular
11	CREM	CAMP responsive element modulator	20.6 (7)	Extracellular
12	DKK4	Dickkopf WNT signaling pathway inhibitor 4	20.6 (7)	Intracellular and plasma membrane
13	EIF2B1	Eukaryotic translation initiation factor 2B subunit alpha	20.6 (7)	Intracellular
14	HMGB2	High mobility group protein B2	20.6 (7)	Intra and extracellular
15	ISCA2	Iron-sulfur cluster assembly 2	20.6 (7)	Extracellular
16	NPY	Neuropeptide Y	20.6 (7)	Intracellular
17	NUP133	Nuclear pore complex protein Nup 133	20.6 (7)	Extracellular
18	PNLIPRP1	Pancreatic lipase-related protein 1	20.6 (7)	Intracellular
19	PRELID1	PRELI domain containing 1	20.6 (7)	Intracellular
20	RNF128	Ring finger protein 128	20.6 (7)	Extracellular
21	RP11-49G10.8	BASE	20.6 (7)	Extracellular

Supplemental Table 4. List of most frequently shared targets among ICL patients at Z≥4.

Supplemental Table 5. List of the most frequently shared targets in ICL group 3 that are the least shared by the rest of patients at $Z \ge 3$.

Symbol	% Group 3	% Group (1+2)	Description
LETM1	64	13	leucine zipper-EF-hand containing transmembrane protein 1 (LETM1)
AASDHPPT	45	9	aminoadipate-semialdehyde dehydrogenase- phosphopantetheinyl transferase (AASDHPPT)
SPRED1	36	0	Sprouty-related, EVH1 domain containing 1 (SPRED1), mRNA
PRSS33	36	0	protease, serine, 33 (PRSS33)
MGC39821	36	4	Sorting nexin-18
CIAPIN1	36	4	cytokine induced apoptosis inhibitor 1 (CIAPIN1)
MX1	36	4	myxovirus (influenza virus) resistance 1, interferon- inducible protein p78 (mouse) (MX1)
KCNIP2	36	4	Kv channel interacting protein 2 (KCNIP2), transcript variant 2
PTPRC	36	4	Leukocyte common antigen
XAF1	36	4	XIAP associated factor-1 (XAF1), transcript variant 1
LOC100128510	36	4	cDNA clone MGC:59959 IMAGE:4137660, complete cds
CDC7	36	4	Cell division cycle 7-related protein kinase
OSM	27	0	oncostatin M (OSM)
C5orf39	27	0	Annexin-2 receptor
MINA	27	0	MYC-induced nuclear antigen
C9orf163	27	0	Uncharacterized protein C9orf163
WWC2	27	0	Protein WWC2
NRN1L	27	0	Neuritin-like protein
NUS1	27	0	Nogo-B receptor
NR2E3	27	0	Photoreceptor-specific nuclear receptor
ACSM3	27	0	acyl-CoA synthetase medium-chain family member 3 (ACSM3), transcript variant 1
IL-19	27	0	Interleukin-19
ODF2L	27	0	outer dense fiber of sperm tails 2-like (ODF2L)
LOC649946	27	0	ribosomal protein L23a pseudogene (LOC649946)
LOC401068	27	0	PREDICTED: Homo sapiens hypothetical LOC401068 (LOC401068)
C13orf24	27	0	chromosome 13 open reading frame 24 (C13orf24)
LOC400849	27	0	PREDICTED: Homo sapiens hypothetical LOC400849 (LOC400849)

Marker	ICL	Ν	НС	Ν	P-value ^A
C1q (µg/mL)	78.6 (65.7-97.5)	57	87.8 (66.3-109) ^B	20	ns
C5a (ng/mL)	16 (10.1-39)	40	78 (18-152)	19	0.0003
C9 (µg/mL)	4 (2.5 – 5.1)	57	4.7 (1.8-6.4)	8	ns
CIC ^C C1q (µg EQ/mL)	41 (29-136)	42	68 (30-136)	8	ns
CIC ^C C3d (µg EQ/mL)	138 (95-222)	57	174 (101-217)	8	ns
CH50 U EQ/mL	169 (112-206)	66	147 (116-179)	37	ns
BLD ^D C5a (pg/mL)		16		0	0.0079*
BLD ^D CIC ² C1q (µg EQ/mL)		13		0	0.0160*

Supplemental Table 6. Serum and plasma complement related measurements from ICL and HC donors.

^AMann-Whitnney or Fischer's Exact test

^BMedian values with IQR in parenthesis

^cComplement Immune complex

^DBelow limit of detection

Antigen	Clone	Fluorochrome	Supplier
C1q	polyclonal	FITC	Dako
C3b	1H8	PE	BD Biosciences
CD19	SJ25C1	BV510	BD Biosciences
CD19	SJ25C1	BV510	BD Biosciences
CD19	SJ25C1	APC	BD Biosciences
CD3	SK7	BUV395	BD Biosciences
CD3	SK7	PE-cy7	BD Biosciences
CD3	OKT3	Percp-cy5.5	Biolegend
CD4	SK3	PE	BD Biosciences
CD4	SK3	BUV737	BD Biosciences
CD4	L200	BV605	BD Biosciences
CD4	OKT-4	BV711	Biolegend
CD56	HCD56	BV421	Biolegend
CD56	NCAM	BV421	Biolegend
CD56	B159	V450	BD Biosciences
CD8	SK1	BV711	Biolegend
CD8	RPA-T8	Pacific Blue	BD Biosciences
lg	Polyclonal	FITC	Biolegend
lgG	polyclonal	FITC	Jackson ImmunoResearch
lgG1	HP6001	PE	Southern Biotech
lgG2	HP6002	PE	Southern Biotech
lgG3	HP6005	AF647	Southern Biotech
lgG4	HP6025	AF647	Southern Biotech
lgM	polyclonal	APC	Jackson ImmunoResearch
CD55	IA10	APC	BD Biosciences
CD59	P282(H19)	BV711	BD Biosciences

Suppplemental Table 7. Antibodies used for flow cytometry analysis.

Supplemental figure legends

Supplemental Figure 1. High prevalence of autoantibodies in ICL patients regardless of clinical autoimmunity status. (A) Distribution of the ICL patients, analyzed by the autoantigen array, based on autoimmunity category. Group 1, in white, patients with no autoimmune disease and no clinical autoantibodies. Group 2, in cyan, patients with clinical autoantibodies but no specific autoimmune diagnosis. Group 3, in blue, patients with autoimmune disease. (B) Cluster showing the Ab scores of the 57 IgG auto-antibodies found in the ICL patients. Data were supervised at the sample level (x-axis) and unsupervised at the autoantibody level (y-axis). (C) Cluster showing the Ab scores of the 39 IgM auto-antibodies found in the ICL patients. Data were supervised at the sample level (x-axis) and unsupervised at the autoantibody level (y-axis). (**D**) Principal Component Analysis using the combined IgG and IgM Ab scores for each patient. Each symbol represents one patient. ICL patients cluster (blue circle) separately from HC cluster (black discontinuous circle), and the three ICL subgroups cluster together. Pairwise Adonis test with adjusted p values for FDR: p<0.001 for all three comparisons, HC vs group 1, HC vs group 2 and HC vs group 3. Differences within the three ICL subgroups by autoimmunity status were not statistically significant. (E) Strip plot showing the targets of the 57 IgG autoantibodies found in ICL patients. For each target, the range of the Ab score of healthy controls (HC) was calculated and its 95th percentile was used to set up the threshold for positivity. For each sample and target, the ratio of Ab score to the respective HC 95th percentile is shown with HC in black and the three different ICL autoimmune categories in white, light blue and dark blue. Ratio >1 was considered positive (grey discontinuous line). The number of positive samples in the ICL and HC groups, respectively, are shown in parenthesis next to the targets' name. (F) Strip plot showing

the targets of the 39 IgM autoantibodies found in ICL patients with Ab scores ratios calculated as described in E. PR3 and TNF- α are shown separately due to higher values found in ICL patients.

Supplemental Figure 2. Z scores and top upstream upregulators from protoarray data analysis. (A) Z-scores were calculated as the number of standard deviations of antibody score from the mean of HC. At $Z \ge 1$ and $Z \ge 2$ there was no discrimination between HC and ICL groups. (B) Percentage of participants (HC, grey; ICL, blue) that shared any of the 3,418 and 668 targets found in the ICL and HC groups, respectively, at $Z \ge 3$. (C) Top upstream regulators of the 2,159 proteins targeted by ICL antibodies at $Z \ge 4$, using the Ingenuity Pathway Analysis. Data pooled from three independent experiments.

Supplemental Figure 3. Correlation of IgG antibodies against different cell subsets. Correlation of IgG anti-CD4-cell Ab versus either NK cells (A) or B cells (B) found in the same individual patient. Data were pooled from 17 independent experiments done on 71 ICL patients and 30 HC as described on Figure 3A. A ratio ≥ 2 (dotted lines) was considered as positive antibody deposition. R and p values obtained by a two-tailed Spearman correlation.

Supplemental Figure 4. Lymphopenias associated with primary immune deficiencies (PID) exhibit similar anti-lymphocyte antibodies that can lead to complement activation. (A) Anti CD4 T cell antibody detection measured as in Figure 3A. One patient (in blue) with bi-allelic *DOCK8* mutations had IgG Ab and a second patient (in orange) with a *PI3KCD* mutation had both IgG and IgM. (B) Complement deposition induced by patients' sera measured as in Figure 5A. **Supplemental Figure 5. Deposition of C4c and levels of complement inhibitor CD55 on ICL CD4 T cells.** (A) Staining for C4c and C3b on one HC PBMC and five ICL PBMC which tested positive previously for C1q and C3b, directly ex vivo without any further incubation or manipulation. Numbers in the quadrants represent the percentage of positive cells out of the CD4 T cell gate. (B) MFI of complement inhibitor CD55 on CD4 T cells from HC or ICL patients with and without ex vivo complement (C) deposition as described in Figure 6. Circles represent individual donors and the horizontal lines the median value for each group.

Supplemental Figure 6. Venn diagram of the three functional autoreactivities found in ICL patients and table with the individual information organized by autoimmune status. (A) Venn diagram representing the number of patients with complement deposition on their CD4 T cells observed directly ex vivo (ex vivo C dep., n=10), whose sera induced complement deposition on HC CD4 T cells (in vitro sera C3b dep., n=10), whose sera induced ADCC on HC CD4 T cells (ADCC, n=8) and overlap generated by any combination of these three functional autoreactivities. All 28 patients shown in this graph had antibodies against lymphocyte membrane proteins. (B) Table showing in green, the presence of anti-CD4 Ab (either IgG or IgM) (Ig aCD4); in orange, the presence of Ab with ADCC activity, Ab with complement deposition activity in vitro (C3b dep.), or complement activation on the T cells in vivo (Ex vivo C dep.), and in red CD4 numbers <75 for each ICL patient, and how they relate to their autoimmune status. Autoimmune status color coded as in Supplemental Figure 1. The specific autoimmune diseases are listed.