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Distinguishing HIV latency and HIV persistence
More than 20 years after the discovery of combination antiretro-
viral therapy (ART), complete eradication of HIV infection has not 
yet been achieved, with the notable exception of a few rare cases 
(1, 2). While ART blocks new cycle of viral replication and partially 
restores immune functions, it is not a cure. In the vast majority of 
people living with HIV (PLHIV), interrupting ART leads to rapid 
viral load rebound, usually within a few weeks after treatment ces-
sation (3), even if treatment was initiated during the first weeks of 
infection and maintained for years (4). These clinical observations 
indicate that HIV persists in reservoirs that are largely insensi-
tive to antiretroviral drugs. Viral reservoirs have been defined as 
cell types or anatomical sites in association with which replica-
tion-competent forms of the virus persist with more stable kinetic 
properties than in the main pool of actively replicating virus (5, 
6). This definition implies that any infected cell with a half-life 
of more than 2 days, which corresponds to the average half-life 
of productively infected cells (7, 8), may represent a reservoir for 
HIV. Using ultrasensitive methods to quantify and characterize 
traces of virus persisting in PLHIV and receiving fully effective 
ART, two types of viral reservoirs that could both contribute to 
HIV persistence have been identified (Figure 1).

A first reservoir is thought to be maintained by residual viral 
replication during ART, which has been attributed to the subopti-
mal diffusion of antiretroviral drugs in lymphoid tissues (9), allow-
ing the virus to replicate at low levels. Whether this phenomenon 
occurs in the majority of individuals on ART is still controversial 
(10). Ongoing viral replication during ART is supported by a few 
studies that have demonstrated viral evolution in virally sup-
pressed individuals (11) and perturbation in the reservoir following 

treatment intensification (12, 13), suggesting that ART is not fully 
efficient. The fact that HIV-specific CD8+ T cells may not be able 
to access anatomical sites in which ongoing replication occurs, for 
example in the germinal center of second lymphoid organs (14, 15) 
or in immune-privileged organs such as testis (16), may also con-
tribute to residual levels of viral replication during ART. In addi-
tion, HIV-specific cytotoxic T lymphocytes have limited killing 
capacity (17, 18), possibly due to their persistent exhaustion status 
(19) and/or to immunosuppressive environments (20), which may 
permit the replenishment of the HIV reservoir.

While residual levels of viral replication may occur in a frac-
tion of individuals on ART, particularly those who received less 
efficient antiviral drugs and whose immune functions were not 
restored by ART, multiple studies failed to identify strong evidence 
for ongoing viral replication in individuals receiving new-gener-
ation antiviral drugs (21–24). Although the replenishment of the 
HIV reservoir through de novo infection during ART cannot be 
excluded, its demonstration is difficult, and the recent data indi-
cating that the bulk of the reservoir is established near the time of 
ART initiation argue against it (25).

The second type of viral reservoir that contributes to HIV per-
sistence is a small pool of latently infected cells that persists for 
decades in PLHIV receiving ART (26–28). Latently infected cells 
can be defined as cells harboring integrated and intact proviruses 
that do not actively produce infectious virions, but that have the 
capacity to do so upon stimulation (5). Even though HIV can estab-
lish latency, it differs from herpesviruses, which produce viral 
proteins that are specifically required for the establishment and 
maintenance of a viral latency program. The capacity of HIV to 
lie dormant within specific types of cells and at extremely low fre-
quencies suggests that it can establish latency under rare circum-
stances. The first evidence that HIV can establish a nonproduc-
tive state of infection in CD4+ T cells was demonstrated in 1995, 
before the implementation of combined ART in PLHIV: Chun et 
al. isolated resting CD4+ T cells from the blood of individuals with 
active HIV infection and observed that a small fraction of these 
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cells that do not produce viral particles) may express low levels of 
short viral transcripts (34, 35). Although these abortive transcripts 
are frequently produced, they rarely elongate enough to generate 
complete or spliced transcripts (36). Accordingly, production of 
viral proteins by latently infected cells appears to be rare (37, 38). 
This suggests that several blocks may contribute to the inability 
of persistently infected cells to produce infectious viral particles, 
including blocks in elongation of transcription (36), nuclear export 
(39), multiple splicing (34), and translation, as detailed below.

Even if the majority of persistently infected cells do not pro-
duce viral particles spontaneously, low levels of viremia, below 
the limit of detection of commercial assays, can be measured in 
the majority of PLHIV on ART (40, 41). The presence of residu-
al viremia indicates that a small fraction of persistently infected 
cells produces viral particles at a given time. As mentioned above, 
residual viremia is unlikely to originate from low levels of resid-
ual replication, but rather from the production of viral particles 
from a stable pool of persistently infected cells. Indeed, the small 
population of viral particles circulating in individuals on ART is 
dominated by a predominant plasma clone not found in the latent 
reservoir, indicating that these virions are unlikely to replenish 
the persistent reservoir (42, 43). Residual levels of viremia show 
a two-phase decay, suggesting that it may arise from at least two 
cell compartments, one in which viral production decays over 
time and a second in which viral production remains stable for at 
least 7 years (44). The source of residual viremia remains currently 
unknown. The existence of this “active reservoir” is an additional 
challenge to the development of effective curative strategies, since 
it represents a likely cause of viral rebound upon ART interruption.

cells harbored integrated HIV genomes and could produce viral 
particles upon stimulation ex vivo (29). The fraction of resting 
CD4+ T cells with integrated provirus is similarly low in blood and 
lymph nodes and much lower than the frequency of cells harbor-
ing unintegrated viral genomes, which are much shorter-lived (30) 
but can complicate the measurement of the HIV reservoir during 
untreated HIV infection. In 1997, the implementation of effec-
tive ART in PLHIV revealed the clinical importance of this pool 
of latently infected cells: three studies reported the presence of a 
small number of persistently infected cells harboring replication- 
competent HIV in individuals on suppressive ART (26–28). 
Although these cells are extremely rare (around 1 in 1 million rest-
ing CD4+ T cells), the reservoir is long-lived, with an estimated 
half-life of 44 months (31, 32), indicating that ART alone will not 
eradicate the pool of latently infected cells in a lifetime.

Although it was rapidly apparent that this small pool of per-
sistently infected cells would represent a formidable challenge to 
HIV eradication, more than 20 years later, the precise nature of 
the HIV reservoir remains unclear. In addition to the diversity in 
the tissues and cellular subsets in which HIV persists during ART 
(discussed below), a variety of nonproductive infection states have 
been described. The assessment of the transcriptional and trans-
lational status of persistent HIV proviruses in virally suppressed 
individuals challenges our definition of HIV latency. Whereas 
viral latency is often associated with transcriptional latency (i.e., 
the lack of transcription from the HIV promoter), an increasing 
number of studies indicate that complete silencing of the HIV pro-
moter is a rare event (33, 34). Therefore, a relatively large fraction 
and possibly the majority of latently infected cells (as defined by 

Figure 1. Distinguishing HIV persistence and HIV 
latency. During untreated HIV infection, the majority 
of infected cells are short-lived: HIV viremia is 
sustained by a dynamic process involving continu-
ous rounds of de novo infection. Initiation of ART 
(blue dashed lines) leads to a dramatic reduction in 
the levels of viral replication and in the frequency 
of infected cells. Residual viremia persists and can 
originate from low levels of ongoing replication or, 
more likely, from the continuous production of viral 
particles from stable reservoirs. The majority of 
infected cells in PLHIV on ART do not produce viral 
particles and are defined as latently infected cells. 
Although the production of spliced transcripts or 
viral proteins is rare, a relatively large fraction of 
these cells produce short, abortive viral transcripts. 
Complete silencing of HIV genomes may also occur 
when epigenetic regulators repress the LTR tran-
scriptional activity.
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longed therapy may either prevent the establish-
ment or accelerate the clearance of viral reservoirs. 
Altogether, these observations indicate that early 
ART may not entirely prevent the establishment of 
the reservoir, but may accelerate its decay.

For obvious reasons, human studies of early 
reservoir establishment are much more complicat-
ed to conduct: very recently infected individuals 
are difficult to identify, and access to tissues from 
PLHIV poses logistical and ethical challenges. The 
unique case of an individual infected during the 
initiation of pre-exposure prophylaxis who initiat-
ed ART only 10 days after infection is informative: 

even if HIV could not be detected in blood and tissues from this 
individual after 2 years of therapy, he experienced viral rebound 
225 days after ART cessation, suggesting that a persistent reservoir 
was established in less than 10 days (54). In line with this obser-
vation, initiation of ART in eight individuals at the earliest stage 
of diagnosable HIV infection (Fiebig I stage) drastically reduced 
the size of the pool of HIV-infected cells but did not prevent viral 
rebound upon ART initiation (4, 55). A recent and larger study of 
acutely treated PLHIV revealed that the pool of infected cells rap-
idly increases and reaches its maximal size in tissues in the first 2 
weeks of infection, i.e., before seroconversion (56). Interestingly, 
the majority of these early targets are rapidly cleared upon ART 
initiation, suggesting that infected cells have a greatear ability to 
persist after peak viremia. This is in line with the study by Okoye et 
al. in nonhuman primates (53) and suggests that the early reservoir 
may be relatively labile. The virological and immunological mech-
anisms supporting this phenomenon remain to be determined.

As mentioned above, circulating cells are not the unique site 
of HIV replication and are unlikely to represent the most favorable 
environment for the establishment of HIV latency. Less than 2% of 
the total body T cells are found in peripheral blood. Therefore, it is 
not surprising that HIV-infected cells are found in multiple tissues 
after years of ART (57, 58), particularly in gut and lymph nodes, and 
at lower frequencies in the spleen, liver, lung, central nervous sys-
tem, and bone marrow (59). Since gut-associated lymphoid tissue 
(GALT) and lymph nodes are particularly enriched in persistently 
infected cells during ART (56, 60), lymphoid tissues may represent 
a favorable environment for the establishment of viral latency.

The anatomical location and the timing of the emergence of 
persistently infected cells offer a glimpse into some of the mech-
anisms contributing to the establishment of HIV latency (Fig-
ure 2). Latently infected cells are mainly resting memory CD4+ 
T cells (26–28, 30, 61). The transition from an activated state to 
quiescence may offer a narrow window of opportunity that per-

Although the HIV reservoir is usually defined as a pool of cells 
harboring replication-competent (and therefore intact) genomes, 
several lines of evidence indicate that defective proviruses, even 
if not capable of replication, have the ability to produce viral tran-
scripts and viral proteins (45, 46). Albeit indirectly, these defective 
genomes likely contribute to sustained inflammation and T cell 
activation even after prolonged ART (47, 48), which may in turn 
contribute to HIV persistence by promoting the proliferation of 
infected T cells (49, 50).

Establishment of HIV latency
When, where, and how HIV latency is established is still the 
object of intensive investigations. In the absence of ART, activat-
ed CD4+ T cells represent the main target for HIV and die rapidly 
upon infection (7, 8). Only a minute fraction of these cells survives 
and enters the pool of persistent and long-lived latently infected 
cells (51). Although the timing of the establishment of the pool of 
latently infected cells in humans remains unclear, several groups 
recently used nonhuman primate models of HIV infection (rhesus 
macaques infected with SIV) to precisely determine the duration 
of untreated infection needed to establish persistent infection (52, 
53). In these studies, ART was initiated at different times after 
infection, and the size of the pool of persistent SIV-infected cells 
during prolonged suppressive therapy was evaluated by measure-
ment of markers of viral persistence and by analytical treatment 
interruption. Whitney et al. (52) reported that initiation of ART 3 
days after SIV inoculation blocked the emergence of viral RNA and 
proviral DNA in peripheral blood. Nevertheless, after discontinua-
tion of ART following 24 weeks of fully suppressive therapy, virus 
rebounded in all animals (with a moderate but statistically signifi-
cant delay in comparison with animals initiating ART later). In con-
trast, Okoye et al. (53) observed that ART initiation at days 4 and 5 
followed by suppressive therapy for 2 years led to viral control and 
possibly eradication of the virus, indicating that very early and pro-

Figure 2. Models for the establishment of HIV latency. 
Postactivation latency refers to a phenomenon by 
which activated productively infected CD4+ T cells revert 
back to a quiescent state, which is accompanied by the 
silencing of the HIV promoter. In preactivation latency, 
resting CD4+ T cells, which are usually refractory to HIV 
infection, become permissive and establish latency 
directly (i.e., in the absence of T cell activation).
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infection (74, 75). Similarly, CCL19 and CCL20, two chemok-
ines involved in the trafficking of cells to lymph nodes and GALT, 
enhance HIV infection of resting CD4+ T cells by modifying the 
actin cytoskeleton, thereby increasing nuclear entry and integra-
tion of the viral DNA (76). Furthermore, the anatomical localiza-
tion of resting CD4+ T cells may influence their susceptibility to 
HIV infection: CD4+ T cells isolated from lymphoid tissues (spleen 
and tonsil), which display an intermediate level of activation, are 
more permissive to HIV infection and latency (77). A model in 
which cell-to-cell transmission from activated, productively infect-
ed CD4+ T cells to resting CD4+ T cell leads to latent infection may 
mimic the spread of HIV infection in anatomical sites with a high 
density of T cells, such as germinal centers in lymph nodes (78). All 
these studies support an alternative model in which direct nonpro-
ductive infection of resting CD4+ T cells may result in viral latency.

Recent data also suggest that the strength of the T cell recep-
tor engagement could influence the transcriptionally active versus 
latent status of the provirus. Intermediate and low signals predis-
pose cells toward latent infections that are refractory to reversal 
(79). Evans et al. demonstrated that interactions between anti-
gen-presenting cells (APCs) and resting CD4+ T cells favor latency 
establishment (80). Signals from mDCs induce downregulation 
of the NF-κB pathways and upregulation of Krüppel-like factor 6 
(KLF6) in CD4+ T cells, thereby promoting T cell quiescence. In 
vitro, only mDCs and CD14+ monocytes expressing specific cell 
surface molecules involved in cell-cell interaction have the ability 
to induce HIV latency in CD4+ T cells (69), suggesting that cell-cell 

mits HIV silencing and persistence of the infected cells. During 
the contraction phase of the immune response, when the antigen 
load decreases and activated cells transition from an effector to 
a memory phenotype, a rare subset of cells are still permissive 
to HIV infection but also are transcriptionally programmed to 
become quiescent, a state that is favorable to HIV latency (62). 
The role of cytokines such as TGF-β, IL-10, and IL-8 in this 
phenomenon has been confirmed in in vitro experiments using 
polarized CD4+ T cells (63). Additionally, immune checkpoint 
molecules are known to dampen T cell activation and may conse-
quently favor HIV latency. PD-1, LAG-3, and TIGIT were initially 
identified as markers of HIV-infected cells during ART (64–66). 
Further investigations demonstrated the active role of PD-1 in 
silencing HIV transcription (67, 68). Interestingly, the presence 
of monocytes or myeloid dendritic cells (mDCs) in coculture 
with activated HIV-infected T cells may favor their transition to a 
postactivation state of latency, highlighting the role of cell-to-cell 
contact in the establishment of HIV latency (69, 70).

Several lines of evidence suggest that latency may also be 
directly established in resting CD4+ T cells. Although resting 
CD4+ T cells are refractory to productive infection as a result of 
numerous blocks in the HIV replication cycle, cell-cell interactions 
increase their susceptibility (71–73). Soluble factors are also known 
to increase the susceptibility of resting CD4+ T cells to latent HIV 
infection. For instance, IL-7, a cytokine involved in T cell homeo-
stasis, modulates the activity of the restriction factor SAMHD1 
and increases the permissiveness of resting CD4+ T cells to HIV 

Figure 3. Mechanisms and targets of HIV latency. HIV silencing is regulated by key control elements acting on (i) HIV transcription initiation (histone 
acetylation/deacetylation, histone and DNA methylation, transcription factors), (ii) HIV transcription elongation (positive transcription elongation factor 
b [P-TEFb] and viral protein Tat), (iii) HIV RNA export (polypyrimidine tract–binding protein [PTB]), and (iv) HIV RNA degradation (miRNAs). Pathways 
promoting HIV expression are shown with black arrows, whereas those inhibiting HIV expression are shown in red. These pathways can be targeted in vivo 
(in italics) in order to reverse HIV latency (latency-reversing agents [LRAs], purple), promote HIV latency (latency-promoting agents [LPAs], blue), or edit 
the HIV genome (CRISPR/Cas9, green).
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mechanism that governs HIV expression is linked to the location of 
the integration site. HIV proviruses are more frequently integrat-
ed in introns of actively transcribed gene (109, 110). Integration in 
the same orientation of actively transcribed genes can impair HIV 
expression through transcriptional interference (111). HIV integra-
tion site may also influence the degree of latency, with deeply latent 
proviruses being mostly located in non-genic regions (112).

As for transcriptionally active cellular genes, the HIV genome 
needs to be accessible to the transcriptional machinery, and this 
access is epigenetically controlled. The HIV promoter is wrapped 
around nucleosomes nuc-0 and nuc-1 (113). These histone com-
plexes are posttranslationally modulated by epigenetic marks to 
induce HIV transcription through acetylation (114, 115), or silen-
cing through deacetylation (116, 117) and methylation (118). In 
addition, two CpG islands found in the HIV long terminal repeat 
(LTR) can be methylated and consequently maintain viral repres-
sion (119). The protein complex HUSH also contributes to the 
epigenetic control of HIV transcription by silencing proviruses 
harboring H3K9me3 methylation marks when the viral proteins 
vpr and vpx are not expressed (120, 121).

In addition, initiation of HIV transcription requires the bind-
ing of the cellular transcription factor NF-κB to the viral promoter 
(122). Notably, binding sites for the ubiquitous transcription factors 
Sp1 and AP-1 and for the immune cell–specific NFAT (123) are also 
present in the LTR. The elongation of HIV transcripts is relatively 
inefficient in latently infected cells: a considerable amount of short, 
abortive transcripts lacking the poly(A) tail are detected in latently 
infected cells from PLHIV on ART (36). NF-κB plays an addition-
al role by recruiting the elongation factor P-TEFb (124). However, 
this recruitment is mostly accomplished by the viral protein Tat 
once it has been translated (125). In addition to transcriptional 
regulation, the lack of viral production by infected cells can also be 
attributed to post-transcriptional blocks. Unspliced viral RNA and 
as many as 40 different singly and multiply spliced RNAs can be 
transcribed from a single genome (126). A defect in splicing may 
contribute to the absence of viral proteins, particularly Tat, which 
is required for expression of all viral transcripts (34). Furthermore, 
viral RNAs accumulate in the nucleus of latently infected cells, and 
this defect in RNA export can be reverted by overexpressing the 
polypyrimidine tract–binding protein (PTB) in resting cells (39). 
Finally, microRNA can prevent the translation of coding viral RNA 
by complementary homology. HIV infection is known to impact the 
miRNA profile of the cell (127). Cellular miRNA, such as miR-132 
(128), can promote HIV replication indirectly by silencing proteins 
involved in transcriptional regulation. Conversely, latency can be 
maintained by miRNAs directly targeting the 3′ end of HIV tran-
scripts (miR-28, miR-125b, miR-150, miR-223, miR-382) (129) or 
the HIV nef RNA (miR-29a) (130). Altogether, these studies high-
light the multiplicity of the cellular mechanisms that contribute to 
the nonproductive state of HIV-infected cells during ART.

Maintenance of latently infected cells by cell 
proliferation
As discussed above, the majority of persistently infected cells do 
not produce viral particles during ART. These latently infected 
cells are maintained through both cell survival signals, preventing 
HIV-infected cells from death, and cell division signals, promoting 

interactions modify the transcription network of CD4+ T cells to 
establish a prolatency environment in a cell-specific manner.

Locations of HIV reservoirs
In addition to blood, persistently infected cells are found in the 
lymph nodes (64), gut (81–83), central nervous system (84), lungs 
(85), bone marrow (86, 87), and genital tract (16, 88–90). Recent-
ly, a study performed with tissues collected from six PLHIV post-
mortem revealed the presence of HIV DNA in all 28 tissues ana-
lyzed (58). If HIV DNA can be easily detected in most parts of the 
body at relatively high frequencies, these measures overestimate 
the size of the reservoir. In the blood, replication-competent pro-
viruses are present in only 1 in 1 million CD4+ T cells (26, 27), 
whereas HIV DNA quantification typically measures frequencies 
that are two to three orders of magnitude higher. This difference 
is due to a large proportion of HIV genomes presenting various 
defects preventing them from replicating (91). In the blood, defect-
ive proviruses represent 95%–98% of the viral genomes (92), and 
these defects accumulate rapidly in the course of infection (93). 
Only a few studies have investigated the presence of intact or repli-
cation-competent genomes in tissues from PLHIV (30, 58, 64, 94). 
Therefore, the exact contribution of these anatomical reservoirs to 
the pool of persistently infected cells remains largely unknown.

It is generally accepted that memory CD4+ T cells represent 
the major cellular reservoir for HIV, at least quantitatively (30, 
61). To a lesser extent, cellular reservoirs may also comprise 
myeloid cells such as monocytes, tissue-resident macrophages, 
and follicular dendritic cells (reviewed in refs. 95, 96), although 
whether these cells represent long-lived reservoirs for the virus 
after prolonged ART remains unclear (97–99). The CD4+ T cell 
compartment can be divided into subsets endowed with different 
functional, proliferative, and survival capacities. Several studies 
have shown that the less differentiated memory subsets, includ-
ing stem cell memory (Tscm) and central memory (Tcm), are 
particularly enriched in HIV genomes during ART (61, 100, 101). 
These cells possess a high proliferation potential and, following 
antigen stimulation, can give rise to effector memory T (Tem) 
cells (102, 103). While Tcm cells have been shown to highly con-
tribute to the pool of cells harboring integrated HIV DNA (61), the 
Tem subset may encompass the majority of intact and potential-
ly replication-competent proviruses (104). In addition to these 
memory subsets, specific functionally polarized subsets of CD4+ 
T cells have also been shown to be enriched in persistent HIV: 
blood- and gut-derived Th17 cells are enriched in HIV provirus-
es (105), and a large portion of replication-competent viral gen-
omes are found within the Th1 and T follicular helper cell (Tfh) 
subsets (64, 92). HIV also preferentially persists in tissue-resident 
memory T cells (106). The diversity of the cellular reservoirs for 
HIV, which are characterized by distinct mechanisms of mainten-
ance, adds another level of complexity to the development of HIV 
eradication strategies (38, 107, 108).

Molecular mechanisms of HIV latency
Unlike herpesviruses, HIV does not encode for proteins specific for 
a latency program. Nonetheless, HIV expression is under the con-
trol of molecular components of the infected cell that can induce 
and/or maintain a nonproductive state of infection (Figure 3). A first 
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the expansion of HIV-infected clones (61, 131). Several studies over 
the past 10 years have clearly demonstrated that clonal expansions 
occur in the persistent HIV reservoir, as shown by the duplication of 
partial and near-full-length HIV genomes and/or integration sites 
(92, 109, 110, 112, 132–139). These infected clones wax and wane 
during ART, resulting in a dynamic pool of infected cells over time 
(133, 137, 140, 141). Several mechanisms contribute to the dynam-
ics of the HIV reservoir (142): (a) antigen-driven proliferation (134, 
143, 144), (b) homeostatic proliferation (61, 137, 145), and/or (c) 
HIV integration–induced proliferation (109, 110, 146). Although 
antigen-driven proliferation has been proposed as the major driver 
of HIV persistence, all three phenomena likely coexist (142, 147).

Targeting HIV latency in vivo
The ultimate objective of an HIV cure is to eradicate all infect-
ed cells from the body or to induce durable immune control of 
the HIV reservoir (reviewed in ref. 148). Here, we will focus on 
strategies that target the pool of latently infected cells and that 
consist of either depletion of these cells or permanent silencing 
of the integrated proviruses.

The shock-and-kill strategy combines the reactivation of 
latent proviruses (“shock”) and the elimination of the resulting 
productively infected cells (“kill”), with the hypothesis that viral 
cytopathic effects or clearance of virus-expressing cells by the 
immune system will reduce the size of the latent reservoir (149, 
150). To induce proviral expression, a large number of latency- 
reversing agents (LRAs) have been identified (151). These agents 
need to be potent enough to reactivate efficiently most HIV provi-
ruses without inducing a cytokine release syndrome, which would 
result in major adverse events. This fine balance is a major obsta-
cle to the success of these strategies: the administration of an anti-
CD3 antibody together with IL-2, although efficient at reactivating 
HIV, was highly toxic in PLHIV on ART (152).

LRAs can be divided in several pharmacological classes and 
can be used alone or in combinations: histone deacetylase inhibi-
tors (HDACis [refs. 117, 153–156]), protein kinase C (PKC) agonists 
(157–160), P-TEFb agonists (161, 162), second mitochondria- 
derived activator of caspase (SMAC) mimetics (163–165), and Toll-
like receptor (TLR) agonists (166, 167). These agents target differ-
ent cellular pathways, all of which are nonspecific to the induction 
of HIV transcription. In fact, most of these LRAs were originally 
developed for other indications. For instance, the HDACi suber-
anilohydroxamic acid had been shown to be active against leuke-
mia and breast cancer cell lines (168, 169). Similarly, the fusion 
inhibitor maraviroc, which was originally used as an antiretrovi-
ral drug, has been shown to induce HIV transcription through the 
NF-κB pathway in vivo and may also be used as an LRA (170).

The majority of clinical trials conducted so far mostly used 
HDACis such as valproic acid (171–175), vorinostat (176–178), 
panobinostat (179), and romidepsin (180), and demonstrated a 
transient increase in cell-associated HIV RNA and/or residual 
plasma viremia in virally suppressed PLHIV. Low doses of the 
PKC agonist bryostatin were also recently tested in a phase I clin-
ical trial and did not result in an induction of HIV transcription 
in vivo (181). Disappointingly, none of these studies resulted in a 
significant decrease in the size of the HIV reservoir in individu-
als on ART. Several factors may explain these negative results: 

(a) LRAs may have differential effects between tissues (177); (b) 
LRAs are not equally efficient in all populations of CD4+ T cells, 
suggesting that they may be largely ineffective in some cellular 
reservoirs (107, 108); (c) effector cells may be lacking at sites of 
active viral production such as lymph nodes (14, 15, 17); (d) the 
persistent immune exhaustion of CD8+ T cells may not allow the 
efficient elimination of productively infected cells (182); (e) some 
LRAs, particularly HDACis, have been shown to impair cytotox-
ic effector responses (183) and antigen presentation by APCs 
(184), which could hamper viral reservoir elimination; and (f) pro-
ductively infected cells may be inherently resistant to immune- 
mediated killing through the expression of prosurvival factors (185).

Several improvements have been proposed to increase the 
efficacy of LRAs at reactivating latent HIV proviruses in individu-
als on ART, including the use of LRA combinations, development 
of new pharmacological classes of LRAs, and enhancement of 
cytotoxic immune responses (186). Overall, a better understand-
ing of the effects of LRAs in vivo is needed to improve future 
shock-and-kill strategies.

The opposite of shock-and-kill strategies, block-and-lock 
strategies are aimed at promoting permanent silencing of HIV 
proviruses using latency-promoting agents (LPAs). This approach 
is based on the hypothesis that HIV latency can be induced in an 
irreversible way, which would prevent viral rebound upon ART 
cessation. These LPAs act by inhibiting viral or cellular proteins 
involved in HIV transcription (187). The best-described LPA is 
didehydro-cortistatin A (dCA), a Tat inhibitor (188, 189) shown 
to decrease viral RNA in cells and tissues and delay viral rebound 
upon ART cessation in a humanized mouse model (189). The effi-
cacy of LPAs at preventing viral rebound in HIV-infected individu-
als has not been investigated yet.

Another approach to reduce the reservoir of latently infect-
ed cells is to permanently inactivate the integrated proviruses. 
Given the recent development of the CRISPR/Cas9 system, the 
excision or inactivation of the HIV genome is now theoretically 
possible (190). Inactivation of the provirus by targeting of differ-
ent conserved HIV sequences was tested in several in vitro mod-
els. Although the approach was originally promising (191, 192), 
it resulted in a long-term escape caused by HIV DNA mutations 
in the targeted sequences, preventing single-guide RNA recog-
nition (193–196). Nonetheless, HIV proviral genome excision by 
CRISPR/Cas9 in a humanized mouse model resulted in promis-
ing observations (197). Future studies are warranted to determine 
whether the combination of multiple-guide RNAs targeting differ-
ent HIV variants and/or genome sites could prevent viral escape.

Conclusions
In individuals on ART, HIV persists at low levels in several tissues 
and multiple cellular subsets and displays different states of tran-
scriptional and translational activities. The multifaceted aspect of 
these HIV reservoirs complicates their analysis and the develop-
ment of efficient therapeutic strategies to target them. The rela-
tive contributions of these reservoirs, from cells that continuously 
produce low levels of viral particles during ART to the extreme 
case of fully transcriptionally silent genomes, remain unclear. 
More importantly, the clinically relevant reservoir that causes 
viral rebound upon ART cessation has not been identified yet. 
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Given the large diversity of the cells in which HIV persists and the 
multiple molecular mechanisms contributing to viral persistence, 
studies conducted on bulk populations of cells are unlikely to 
reveal targetable mechanisms to cure HIV infection. The recent 
development of single-cell approaches to study the transcriptome 
and proteome of individual HIV-infected cells (38, 198, 199) will 
certainly help in this endeavor.
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maladies infectieuses du Fonds de Recherche du Québec Santé 
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