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Cryptococcus neoformans is a basidiomycetous opportunistic yeast 
that is widely present in the environment. It causes human crypto-
coccosis, which mainly affects immunocompromised patients and 
presents as a meningoencephalitis (1) that is lethal without treat-
ment. Clinical presentation is often diagnosed late because clinical 
symptoms are initially mild with a subacute to chronic evolution (2).

Humans are exposed to C. neoformans from the environment. 
In nature, this fungus can survive the predation of various organ-
isms ranging from protozoans to metazoans through ready-made 
virulence traits (3). C. neoformans interacts closely with unicellular 
or multicellular organisms (2–4) and with cells dedicated to innate 
immune responses in metazoans (macrophages, dendritic cells, 
natural killer lymphocytes) with various propensity to be phagocy-
tosed and killed (4–6). C. neoformans is a facultative intracellular 
pathogen (7). Interaction of C. neoformans with host cells can lead 
to phagocytosis, yeast replication within the phagolysosome, and 
is sometimes associated with host cell lysis or with nonlytic exo-
cytosis or cell-to-cell transfer and eventually killing of the yeast 
(8–13). These phases have been well studied in different models of 
interaction with host cells but mainly within macrophages. Indeed, 
intracellular persistence and multiplication in immune cells pro-
vide advantages to the fungus by allowing escape from the immune 
response and later dissemination through epithelial barriers (14, 15).

Characteristics of the infection depend on both hosts and 
microbial factors. Fungal factors described as virulence factors 
influence the outcome of infection, according to data obtained in 
the mouse model of cryptococcosis (16), but also in vitro (17) and 

in humans (8, 18). Microbial adaptation to the hosts is complex and 
has been studied globally in lungs using histopathology (7) and 
global transcriptome analysis upon ameba (19) and macrophage 
ingestion (20) or upon early infection of mice and rabbits (21, 22). 
Quiescence or dormancy is one such adaptation that appears suc-
cessful for enhancing the fungus’s ability to survive, persist, reac-
tivate, and then disseminate (23).

About 60 years of research focusing on how C. neoformans 
causes infection in humans is available in the literature, leading to 
the recent biological demonstration of dormancy in this organism. 
This Review aims to summarize this 60 years of research, starting 
from the knowledge of human infection and ending with the char-
acterization of dormancy biologically. The Review is assembled to 
elucidate how this knowledge has been integrated to lead to more 
recent findings on the biology of C. neoformans characterizing 
dormancy, focusing on (a) the description of the natural history of  
C. neoformans infection in humans; (b) the concept of dormancy in 
fungi; and dormancy in C. neoformans (c) in vivo and (d) in vitro. 
To finish, a section is dedicated to (e) the relevance of the biologi-
cal findings to human infection and a discussion of unsolved ques-
tions that can provide the bases of future work in the field.

Natural history of cryptococcosis in humans
Cryptococcosis is one of the most frequent invasive fungal infec-
tions in humans worldwide (24). The vast majority of patients with 
cryptococcosis are HIV+, mostly those with fewer than 100 CD4+ T 
cells per microliter. Nevertheless, in Western countries, the num-
ber of cryptococcosis cases recorded in HIV– individuals becomes 
higher than the number in HIV+ patients (25). Immunocompro-
mised HIV– patients at risk of cryptococcosis are mainly solid 
organ transplant recipients, patients with systemic autoimmune 
disease, and those with hematological malignancies (26).

The natural history of cryptococcosis is described as following 
two main routes. The first, although rare, occurs after exposure 
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with C. neoformans occurs mainly in immunocompetent children 
as demonstrated by serologic studies with unrecognized (asymp-
tomatic) infection as the main clinical presentation. The proportion 
of children immunized against C. neoformans increases with age. 
Acquisition of cryptococcal antibodies begins very early (1 year) 
with minimal reactivity of the sera. After 5 years, 70% of children 
react with C. neoformans antigens (52). However, the acquisition 
of anticryptococcal humoral immunity varies among geographic 
areas. Cryptococcal antibodies are very common in Bronx children 
but not in another New York area (Dutchess County), nor are they 
common in Manila, the Philippines, another densely populated 
urban area (53). Environmental exposure may depend on climatic 
and environmental factors (temperature, humidity, pigeon density), 
but also on human sociological factors (habitat conditions, financial 
resources). These findings support epidemiological data revealing 
that cryptococcosis in immunocompromised individuals is more 
prevalent in some areas of the world, especially in Africa (24, 54).

Notably, C. gattii exposure and primoinfection does not follow 
the same epidemiological trends as C. neoformans, based on stud-
ies realized in endemic areas in animals and humans (55, 56).

Latency. Serologic evidence of early cryptococcal immunity 
in immunocompetent hosts without recognized infection seems 
paradoxical considering the very low frequency of cryptococcosis 
in immunocompetent hosts. However, immune control of yeasts 
by immunocompetent hosts following primoinfection is possible, 
with latency of the disease or complete clearance of the fungus 
as a consequence. Immunocompetent adults frequently exposed 
to C. neoformans had positive skin test but did not develop clini-
cal disease (57). Autopsy studies have raised the hypothesis that 
pulmonary granulomas could be the site of persistence, because  
C. neoformans is observed in subpleural nodules and draining 
lymph nodes in immunocompetent and immunocompromised 
hosts (58). Indeed, there have been several reports of C. neofor
mans lymphadenitis being exclusively found in and isolated from 
lymph nodes, arguing that initial immune control of the yeast 
operates in lymph nodes (59–65). From recent and old reports, 
the lymph nodes associated with lymphadenitis correspond to 
granuloma composed of epithelioid cells, giant cells, and necrosis 
surrounded by a T cell infiltrate together with yeasts (64, 66, 67).

Analysis of clinical isolates of C. neoformans var. grubii recov-
ered in France from patients born in Africa (who moved to France 
with a median of 110 months elapsing before isolation of the yeast 
in France) revealed that yeast genotypes from these patients clus-
tered together, distinct from the yeast genotypes recovered from 
patients born in Europe (68). This study is the main epidemiolog-
ical evidence for this latency stage of the disease. This latency can 
be translated into the capacity of dormancy of the yeasts, which 
appears to be the more plausible explanation from the point of view 
of the biology of the organism. The same conclusion is also drawn 
from a serologic survey of solid organ transplant recipients (immu-
nocompromised hosts). Interestingly, sera obtained before and 
after transplantation from transplanted patients with cryptococ-
cosis were compared with sera from control transplanted patients 
without history of cryptococcosis. Among patients with cryptococ-
cosis, half exhibited antibody reactivity against C. neoformans only 
after transplantation, suggesting that they were exposed and devel-
oped the disease after transplantation during immunosuppression. 

to C. neoformans while immunocompromised, leading to rapidly 
progressive cryptococcosis; the second is reminiscent of tubercu-
losis, with a phase of latency followed by reactivation and dissem-
ination. This second route appears to be the main mechanism of 
infection and so will be further developed in this Review.

First route of infection: ready-made for disease
Confronted with the need to survive in nature and to survive dif-
ferent hosts in different environments, C. neoformans has select-
ed ready-made virulence traits (3). From a deterministic point of 
view, the C. neoformans population also needs diversity to survive 
predators harboring different killing propensities. The plasticity of 
the C. neoformans genome could lead to this diversity (27). C. neo
formans and C. gattii are haploid organisms that can be found as 
diploid organisms both in nature and in hosts (28, 29). Generation 
of hybrids is possible between the varieties grubii (serotype A) and 
neoformans (serotype D) (29, 30) but also between C. neoformans 
and C. gattii, again illustrating this plasticity (31).

C. neoformans has long been associated with pigeon droppings 
(32). Indeed, pigeon fanciers are known to have higher levels of 
anti–C. neoformans antibodies than control individuals (33). The 
presence of C. neoformans in human dwellings was a risk factor 
(odds ratio 2.05) for the development of cryptococcosis in HIV+ 
patients from Brazil (34). C. gattii has also been found in indoor 
environments in Brazil, although links with human cryptococcosis 
have not been demonstrated (35). Several cases of cryptococco-
sis have been reported in immunosuppressed patients in contact 
with birds (pigeons, parrots, cockatoos, cockatiels) (36–39). The 
presence of C. neoformans has also been observed in the excreta 
of some zoo animals (tawny frogmouths, palm cockatoos, military 
macaws, gray parrots) (40). Nosocomial cases of cryptococcosis 
acquired in various hospital settings have also been suspected (41, 
42). Transmission of C. neoformans through transplanted deep 
organs from a contaminated donor has occurred (43, 44), with, 
in some cases, the demonstration of the same strain in different 
patients with transplanted organs from the same donor (45).

Primary cryptococcosis initiates with lung involvement and 
then disseminates from the lung in immunocompromised hosts. 
Primary pulmonary cryptococcosis is observed in immunocom-
petent and immunocompromised hosts. It can be recognized 
within a broad range of presentation, from isolated asymptom-
atic nodules that can mimic cancer lesions to more disseminat-
ed lesions of the lung with respiratory failure (46–48). Primary 
cutaneous cryptococcosis is also a clinical entity that happens 
after environmental inoculation in immunocompetent or immu-
nocompromised hosts (49, 50).

Second route of infection: ready-made for latency
The majority of cases of cryptococcosis arise from a natural his-
tory of infection following three steps: primary infection in child-
hood and immune control, followed by a silent phase of latency 
that can last for years, and finally reactivation and dissemination 
that are responsible for the symptoms of the disease mainly occur-
ring upon immunosuppression.

Early environmental exposure. Inhalation of aerosolized par-
ticles from soil (desiccated yeasts or basidiospores) is thought to 
be the major route of infection in humans (51). Primary infection 
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and bloom” strategy (85), by which the microorganism population 
will grow rapidly with growth maximization, but upon nutrient 
exhaustion, the majority of the individuals will die, with only few 
cells surviving. These residual cells will resume growth rapidly 
upon exposure to nutrients (86). The second strategy is quiescence, 
in which the bulk of the population exposed to a nutrient-limited 
environment will arrest or slow growth to enter a viable, nonrepli-
cating state for a long time. This can last months or years for Myco
bacterium tuberculosis (87). These cells keep a baseline and specific 
metabolic capacity, maintain their membrane potential, and do 
not undergo major morphological change (88). The third strategy is 
called true dormancy, with sporulation as the purest form, in which 
an asymmetrical replication leads to the formation of a metabol-
ically inactive spore (89). The spore harbors specific morphology 
but shares some biological features with quiescent cells.

Quiescence in Saccharomyces cerevisiae has been studied for a 
long time. Recently, a strain of S. cerevisiae was found “alive” in 
bottles of beer and champagne from the 18th century found in a 
shipwreck in the Baltic Sea, suggesting that this phenomenon can 
last for years in specific conditions. Quiescent yeasts are mainly 
obtained from cultures grown to saturation in glucose-rich media 
(stationary phase) where all nutrients have been consumed. Dif-
ferent phases have been described, including (a) a first phase of 
glycogen production upon rarefaction of glucose (at about 50%) 
(90), followed by (b) the regulation of trehalose before and after 
glucose exhaustion. Then, (c) the yeasts undergo a phase of diaux-
ic shift (following glucose depletion) in which growth is slow and 
metabolism is adapted to limitation of nutrients, relying on respi-
ratory growth of nonfermentable sugars such as ethanol or acetate 
with a switch toward respiration, fatty acid pathway, and glyoxyl-
ate cycle pathway and, as a consequence, increased formation of 
antioxidant defenses (scavenging of ROS) (91). The yeast popula-
tion obtained in the stationary phase is described as a heteroge-
neous population including quiescent cells (composed of daughter 
and young mother cells) but also nonquiescent cells, which lose 
their ability to accumulate ROS, exhibit genomic instability, and 
become senescent or apoptotic (92).

In C. neoformans, growth arrest in the G1 or G2 period has been 
demonstrated in the stationary phase (93). No specific morpholog-
ical differences in the mitochondrial apparatus were observed in 
the logarithmic versus the stationary phase (Figure 1 and ref. 94). 
No comprehensive analysis of the metabolism of C. neoformans 
in the stationary compared with the logarithmic phase existed 
until recently, as part of the investigation of a specific phenotype 
observed upon exposure to drastic conditions (95).

Dormancy in C. neoformans in vivo
The body of evidence for dormancy comprises various parameters, 
primarily viability, which should not be based on culturability, reac-
tivation upon specific stimuli, or specific biological activity. Mea-
surement of viability requires the use and adaptation of tools avail-
able to test viability versus death in mammalian cells (23). For a 
long time, viability and its mirror, killing or death of C. neoformans, 
were investigated using CFU counting (96). Other means to assess 
the viability or death of yeast have now been developed, including 
the use of intercalating dyes such as propidium iodide that are able 
to diffuse and stain the DNA of the yeast only if the extracellular 

But for the other half of the patients, antibody reactivity against  
C. neoformans was found before transplantation; these patients’ 
early development of cryptococcosis after transplantation suggests 
that reactivation and dissemination occur rapidly after transplan-
tation from a preexisting isolate in transplant recipients, thus val-
idating again the latency phenomenon (69). Additionally, a report 
of C. gattii infections in patients who travelled to endemic areas 
years or months before the Vancouver Island C. gattii outbreak pro-
vides more evidence for latency (70).

Reactivation. The earliest manifestation of reactivation is 
observed in individuals in whom asymptomatic cryptococcal anti-
genemia is detected (71–73). Viable yeasts are not recovered from 
clinical sample at this step, but treatment is mandatory to prevent 
symptoms and dissemination (74, 75). Pulmonary cryptococcosis 
is a well-described clinical entity that can evolve differentially 
depending on the immune status of the hosts. In immunocompe-
tent hosts, C. neoformans does not usually disseminate, whereas 
the possibility of dissemination in immunocompromised patients 
is high. It is likely that dissemination occurs after reactivation of 
lung-persistent yeasts, crossing the lung epithelial barrier and dis-
seminating through capillary blood (76, 77). However, abnormal 
chest x-ray or CT scan was observed in 39% of HIV+ patients and 
55% of HIV– patients at diagnosis, although dissemination repre-
sented 60.6% and 38.5% of the cases, respectively (1). However, 
pulmonary symptoms are not the main clinical manifestation of 
cryptococcosis in immunocompromised patients. Indeed, most 
are diagnosed at the stage of dissemination or meningoencephali-
tis (1). Cryptococcosis is characterized by a high frequency of cen-
tral nervous system involvement with positive cerebrospinal fluid 
and dissemination through blood. Cryptococcosis is more severe 
in male HIV+ patients and those infected with C. neoformans 
serotype A (1). Acute cryptococcal meningoencephalitis (CM) is 
always fatal without antifungal therapy (78). Treatment of CM 
requires an antifungal therapy induction based on amphotericin B 
and flucytosine (79). Based on recent large clinical trials in African 
settings, 1 week of amphotericin B combined with oral flucytosine 
followed by high-dose fluconazole is now recognized as the refer-
ence therapy (75, 80). Mycological failure after 2 weeks of induc-
tion is recognized as a factor of bad prognosis, which requires 
continuation of the induction therapy (79). Mycological failure is 
independently associated with initial dissemination, high serum 
antigenemia (>1:512), and lack of initial flucytosine treatment (1, 
80, 81). The 3-month mortality rate during the management of 
acute CM approximates 15% to 20% in Western countries despite 
adequate treatment and management. It is still not clear whether 
this mortality rate is due to individuals’ immune status, genetic 
factors (82), fungal determinants, or a combination of these. Nev-
ertheless, two reports clearly identified that fungal determinants 
specific to the strain are responsible for a given phenotype of inter-
action with host cells (high phagocytosis, high intracellular prolif-
eration) that is associated with mortality in patients (8, 83).

The concept of dormancy in fungi
All microorganisms are exposed to periodic constraint conditions 
and react by inhibiting their growth, entering into a nonreplicative 
state called quiescence or dormancy (84, 85). Three main strate-
gies can be delineated in these conditions. The first is the “bust 
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this study highlighted that a heterogeneous population of yeasts 
was generated in the lungs of infected mice and upon macrophage 
interaction. Indeed, the view of the existence of a homogeneous 
population of yeasts in specific conditions turns out to be inade-
quate, raising the question of the accuracy of studies dealing with 
analysis of the global population of yeasts recovered in specific 
settings. Nevertheless, global transcription analyses supported 
the idea of fungal adaptation to hostile environments such as the 
macrophage phagolysosome (19, 20, 102), inside amebae (19), in 
the lung during murine infection (21), in the central nervous sys-
tem of rabbits (22), or in human cerebrospinal fluid (103).

Heterogeneous populations generated during murine infec-
tion included (a) active yeasts able to bud and multiply, (b) dead 
yeasts, and also (c) a population of more dormant yeasts. These 
dormant yeasts were less prone to grow in comparison with the 
stationary phase, which is already considered as a state in which 
almost all yeasts are quiescent. This explains why these cells have 
been called dormant instead of quiescent cells (23). These cells also 
had a decreased response to stress (low glutathione production), 
increased mitochondrial expression, increased autophagy, and 
decreased gluconeogenesis-associated transcriptional activity (23).

Dormancy in C. neoformans studied in vitro
In the previous study using the mouse model, the authors were able 
to generate as few as 104 dormant yeast cells even after pooling 
several mouse lungs, which is obviously insufficient to study basic 
biological processes that would allow characterization of dorman-
cy. Therefore, the authors worked on an in vitro model to enable 
them to generate a high number of dormant yeast cells. Recently, 
they released their study of the standardized conditions allow-
ing the generation of yeast cells harboring a phenotype close to 
that of dormant cells generated in the lungs of infected mice (95). 
These conditions are based on a combination of low oxygen and 

membrane loses integrity (97). Another means is based on Live/
Dead stains that are not based on DNA staining but on the pres-
ence of intracellular esterase released if the cytoplasm is no longer 
intact (95). These allow assessment of viability or death using flow 
cytometry. Other dyes can be used with the same principle (23, 98). 
These methods assume that a dead yeast cell will lose membrane 
integrity, which may not be necessary at first. Apoptosis should also 
be checked in this context to determine whether the cell is oriented 
toward cell death or will remain viable. The existence of apoptosis 
in fungi is debated (99), but there is evidence for the presence of 
caspase-like proteins in C. neoformans (100) that could act as effec-
tors of mechanisms related to caspase-dependent cell death. Nev-
ertheless, apoptosis in fungi cannot be directly equated with what 
is known in mammalian cells (99, 101).

In C. neoformans’ stationary phase, it was shown that only a 
small proportion of the population was unable to grow and was 
considered dead (23). From in vivo experiments and interaction 
with macrophages, it has been shown that yeast cells were able to 
keep their round shape and capsule although dead as shown with 
different means (23). These dead C. neoformans yeast cells have 
been called Drop Cn owing to the presence of a large central vesi-
cle inside the cell. The cell wall was shown to be thicker than that 
in stationary-phase yeasts (Figure 1). In these dead cells, the intra-
cellular content is collapsed around vesicles including remaining 
membranes (stained with MDY64) and nucleic acids (stained with 
SYTO85) but with no organized nucleus (negative DAPI staining) 
and no mitochondria (negative MitoTracker staining) (23). These 
cells were able to retain CMFDA staining (glutathione staining) in 
their remaining capsule and cell wall, which was supposed to be 
intracellular, producing fluorescence artifacts, allowing detection 
despite being dead. To prevent such bias, multispectral imaging 
flow cytometry was used, allowing observation of the fluorescence 
within the cells to assess location (23). Apart from those dead cells, 

Figure 1. Schematic representation of the evolution of C. neoformans phenotypes and morphology upon incubation under progressive nutrient depri-
vation and anaerobiosis. The reference strain H99 was used in all conditions. STAT: stationary phase; yeast peptone dextrose (YPD), 22 hours with agita-
tion at 150 rpm. VBNC: after incubation for 8 days in anaerobiosis and nutrient deprivation. DEAD: morphology of dead cells called Drop Cn, including one 
or two large vacuole-like structures. Each panel shows optical microscopy (left) and electron microscopy (right) images. Yeast cells under agitation and in 
glucose-rich medium (YPD) are actively multiplying in logarithmic phase (LOG). Quiescent yeasts are culturable (STAT) and do not need specific stimuli to 
grow in normal glucose-rich medium (YPD). Dormant yeasts (VBNC) are not spontaneously culturable and need a trigger stimulus for reactivation (addition 
of pantothenic acid). Dead yeasts (DEAD) are irreversibly unable to grow again (refs. 23, 95).
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natural biofilm (117). In VBNC-inducing conditions in C. neofor
mans, remaining cells able to grow rapidly after long exposure to 
harsh conditions could be related to such persister cells, since a 
particular metabolism seems to occur distinct from that of the 
VBNCs, which need a specific stimulus to grow again. This needs 
to be studied in detail in future research.

Relevance and unsolved questions
The recent study highlighting the capacity of C. neoformans to 
switch to VBNCs can be viewed as a model to explore dorman-
cy and metabolism in this organism and in pathogenic fungi in 
general. Indeed, this phenotype per se has not yet been observed 
biologically in human infection, but experimental conditions and 
the number of yeast cells needed to obtain the demonstration are 
clearly not compatible with what can be recovered from the cere-
brospinal fluid of a patient with CM. The observation of yeast cells 
in the cerebrospinal fluid of patients after 7 days of induction ther-
apy with a negative culture on regular medium obviously raises 
the question of whether these yeasts are VBNCs. Being involved 
in clinical diagnosis, I have observed that the morphology of these 
nonculturable yeasts is abnormal and close to that observed in 
murine infection and called Drop Cn (see above) (8). Indeed, dead 
yeasts are known to persist and keep their intact shape, although 
different stainings can help differentiate them from regular and 
living yeasts (8). VBNCs, or at least part of the VBNC population, 
have proven to be reactivatable by pantothenic acid, part of the 
demonstration that these cells are VBNCs. The mechanism behind 
the specific reactivation has yet to be elucidated. Pantothenic acid 
(vitamin B5) is a precursor of coenzyme A, an essential compound 
that participates in the metabolism of fatty acids, carbohydrates, 
and proteins through the formation of various active thioesters 
and promotes virulence and growth (118). Indeed, fatty acids 
have been shown to be critical in VBNCs (95). VBNCs obtained in  
C. neoformans can be considered as similar to those obtained from 
bacteria or parasites, as the definition relies on viability, cultur-
ability, and reactivation upon specific stimuli. Nevertheless, the 
conditions allowing the generation of VBNCs and the stimuli that 
reactivate the population are different in different organisms. 
Among organisms, many common conditions of induction rely on 
stresses including starvation, low oxygen, low temperature, desic-
cation, or a combination of these. On the other hand, resuscitation 
conditions are extremely variable depending on the organism, 
such as increased nutrient availability, temperature modifications, 
addition of chemicals, or addition of host factors (119).

The biology of dormancy in C. neoformans is a budding field, 
and yet there are many more questions than answers. We still 
lack data on the effect of antifungal drugs on dormant yeast cells, 
because an experimental setting that allows demonstration of the 
effect or absence of effect is not easy to implement in dormant 
cells that are intrinsically not cultivable. Indeed, turning on dor-
mancy with some VBNC inductors that remain to be discovered 
would definitely aid in treating acute infection. On the other hand, 
inducing VBNCs could also cause relapse by producing insen-
sitivity to current antifungal strategies. These factors need to be 
addressed. Moreover, we have no data yet on the possible exten-
sion of the VBNC phenotype to clinical isolates of C. neoformans 
type VNI and to other phylogenetic lineages or species. There is 

limited nutrients inspired by the Wayne and the Loebel models, 
two well-documented models of conditions that allow generation 
of quiescent M. tuberculosis (104). After stationary phase in yeast 
peptone dextrose (YPD) and exposure to anaerobiosis and nutrient 
starvation during 8 days, the authors observed that 95% of yeast 
cells were viable, with few dead cells. They demonstrated that cells 
were not apoptotic upon TUNEL staining. Over time, these yeast 
cells showed a decreased culturability on YPD agar plates, ending 
with about 1% of the cells still able to grow on agar at day 8 of incu-
bation. The phenotype observed in the in vivo subpopulation was 
resumed with delayed growth (increased latency) and low stress 
response (95). In total, the population obtained was homogeneous-
ly composed of cells characterized as viable but nonculturable cells 
(VBNCs) (Figure 1), a phenotype well known in many bacteria and 
first described in 1982 in E. coli (105). Among fungi, this phenotype 
has been described in S. cerevisiae (106), in Candida stellata (107), 
and in Brettanomyces bruxellensis grown in wine synthetic medium 
and induced by sulfur dioxide (108). C. neoformans VBNCs were 
induced by hypoxia and nutrient deprivation, and a proportion of 
them were able to be reactivated by vitamin B5 (pantothenic acid) 
with a doubling number of culturable cells (Figure 1). Notably, it 
has been shown in a specific model in E. coli that the VBNCs were 
potentially unable to reactivate (109). Pantothenic acid is known 
to play a role in the process of division (cell cycle) and in the quo-
rum-sensing phenomenon (110). The use of diluted medium 
(which is poor in nutrients) to try to reactivate VBNCs was attempt-
ed, reflecting the observation that rich medium can be deleterious 
and induce death (111). Diluted medium did not lead to reactiva-
tion of more cells than rich medium, but rather, the cells that did 
reactivate exhibited faster growth and an increased doubling time 
in comparison with rich medium. This cell phenotype induced by 
diluted medium has been called rewiring (95). Finally, drawing on 
large omics methods, the authors of this study were able to show 
that C. neoformans VBNCs harbored a decreased and specific meta-
bolic activity on the basis of phenotypic microarray, transcriptome, 
secretome, and proteome analyses (95). Specifically, the fatty acid 
pathway was required for the maintenance and the viability of the 
VBNCs, and quorum sensing and mTOR pathways seemed to play 
an important role in generating and/or maintaining the phenotype. 
Interestingly, acetyl-CoA is a key precursor for both fatty acids 
and pantothenic acid, suggesting that regulation of acetyl-CoA is 
a major factor for the generation of VBNCs (112). Based on these 
findings, a basic model of the evolution of C. neoformans yeast cells 
from logarithmic phase to dormancy and dead cells can be summa-
rized as depicted in Figure 1.

An analysis of the bulk population of yeasts maintained 8 days 
in nutrient deprivation and anaerobiosis to generate VBNCs iden-
tified another subpopulation of yeasts that are still able and ready 
to grow on agar-rich medium. This population can be considered 
as persister cells. Persister cells have been described in a popula-
tion of bacteria exposed to fungicidal antibiotics as the small pro-
portion of bacteria able to tolerate spontaneously and stochasti-
cally lytic drugs via different mechanisms (113, 114). It has been 
shown that persisters and VBNCs can coexist in a specific model 
in the bacterium Vibrio vulnificus (115). Persister cells have been 
described in Candida albicans biofilm (116) and seem to play a role 
in recurrent infection in human oral candidiasis associated with 
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a chance that all clinical isolates could have varying propensities 
to generate VBNCs, and so the impact on infection could be vari-
able, as already shown for phenotypes of interaction with macro-
phages (8, 83). We are currently exploring the effect of the host on 
the induction and maintenance of VBNCs with regard to the level 
of activation of primary monocytes. Another important subject we 
are currently exploring is the impact of VBNC metabolism on the 
physiology of macrophages. Both studies aim to understand the 
interplay between host and fungal metabolisms, opening the way 
to discovery of specific pathways that could be modulated to push 
the system in one or the other direction (more killing or less prolif-
eration of yeasts).

Conclusions
In summary, C. neoformans can adapt fantastically to various 
environments, even very drastic ones, such as 8 days of com-
plete anaerobiosis without extracellular nutrients. C. neoformans 
uses strategies to resist these conditions. It is first perfectly able 
to enter quiescence in nutrient starvation conditions (stationary 
phase) or to be pushed into dormancy under additional anaerobio-
sis exposure. In vivo, one can imagine that VBNCs/dormant yeasts 

are most likely hidden in the innate immune cells for years before 
being able to reactivate and multiply in the body of immunocom-
promised patients but also in the environment. This makes C. neo
formans the first relevant pathogenic organism in which to study 
fungal dormancy and its role in pathogenesis in humans.
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