Supplemental Figure 1, Liu et al.

Supplemental Figure 1. Generation of two independent skeletal muscle-specific Mll4-knockout mouse lines. (AD) Efficient postnatal deletion of Mll4 in skeletal muscle by Mck-Cre. (A) qRT-PCR analysis of Mll4 expression in skeletal muscle from indicated genotypes at the age of $1,7,10$ days and at 8 weeks. $\mathrm{n}=3-5$ mice per group. (B, C) Bars represent mean \pm SEM gene expression levels of Mll4 using qRT-PCR from gastrocnemius (GC), white vastus lateralis (WV) and soleus muscles of WT and Mll4SET mKO mice (B) at the age of 10 days and (\mathbf{C}) at 8 weeks. $\mathrm{n}=3$ 6 mice per group. (D, E) Western blot analysis of MLL4 expression in skeletal muscle and heart from indicated genotypes. n.s., none-specific band, $\mathrm{n}=3$ mice per group. Values represent mean $\pm \mathrm{SEM}, * P<0.05$ vs. corresponding WT controls, P-value was determined using two-tailed unpaired Student's t-test.

Supplemental Figure 2. Metabolic characterization of Mll4 mKO mice fed on a normal chow diet. (A) Body weight of 13 -week-old male WT or Mll4 mKO mice. $\mathrm{n}=6-7$ mice per group. (B) Body weight in a second set of 20-week-old male WT or Mll4 mKO mice. $\mathrm{n}=4-5$ mice per group. (C-I) Metabolic cage measurements of 13-week-old male WT and Mll4 mKO mice. $\mathrm{n}=5-7$ mice per group. (C) Food consumption. (D, E) Locomotor activity over 12 hour light/dark cycle. (F,G) Oxygen consumption per hour during the light/dark cycle normalized to body weight. (H) Respiratory exchange rate (RER) during the light/dark cycle. (I) Energy expenditure per mouse. Data are represented as mean \pm SEM. P-value was determined using two-tailed unpaired Student's t-test.

Supplemental Figure 3, Liu et al.

Supplemental Figure 3. Metabolic characterization of Mll4SET mKO mice fed on a normal chow diet. (A) Body weight of 9 -week-old male WT or Mll4SET mKO mice. $\mathrm{n}=7-9$ mice per group. (B) Body composition measured to determine fat mass and lean tissue mass the age of 10 weeks. $\mathrm{n}=6$ mice per group. (C-I) Metabolic cage measurements of 9-week-old male WT and Mll4SET mKO mice. $\mathrm{n}=7-9$ mice per group. (C) Food consumption. (D, E) Locomotor activity over 12 hour light/dark cycle. (F, G) Oxygen consumption per hour during the light/dark cycle normalized to body weight. (H) Respiratory exchange rate (RER) during the light/dark cycle. (I) Energy expenditure per mouse. (\mathbf{J}, \mathbf{K}) Representative hindlimbs from WT and Mll4SET mKO mice (\mathbf{J}) at the age of 10 days and (\mathbf{K}) at 12 weeks. $\mathrm{n}=5-7$ mice per group. (L) Weight of gastrocnemius (GC) and tibialis anterior (TA) muscles from 12-weekold male WT and Mll4SET mKO mice. $\mathrm{n}=5-7$ mice per group. (M) H\&E staining of the GC muscle from 8-week-old male WT and Mll4SET mKO mice. Representative images were shown. Scale bar: $50 \mu \mathrm{~m}$. $\mathrm{n}=3-5$ mice per group. Data are represented as mean \pm SEM. P-value was determined using two-tailed unpaired Student's t-test.

Supplemental Figure 4. MLL4 regulates slow-twitch muscle fiber type program. (A, B) Expression of myosin heavy chain (MHC) and representative slow/fast-twitch troponin genes (qRT-PCR) in WV (A) and soleus (B) muscle of Mll4SET mKO mice and WT controls. $\mathrm{n}=5-6$ mice per group. Values represent mean \pm SEM, $* P<0.05$ vs. corresponding WT controls, P-value was determined using two-tailed unpaired Student's t-test.

Supplemental Figure 5. Characterization of Mll4SET mKO mice at P10. (A) Cross-section of soleus muscle from P10 Mll4SET mKO mice stained for MHC1 by immunofluorescence (IF). MHC1 (green). Representative images were shown. Scale bar: $250 \mu \mathrm{~m}$. (B) Quantification of IF data shown in (A) expressed as mean \% total muscle fibers. $\mathrm{n}=5$ mice per group.

Supplemental Figure 6. MLL4-mediated H3K4me1 parallels type I muscle gene expression in primary muscle cells. (A) Representative Western blot analysis of MLL4 and slow myosin protein levels during differentiation of myoblasts into mature myotubes $(\mathrm{n}=3)$. (B) Results of SYBR green-based quantification of H3K4me1 ChIP assays performed on WT primary myoblasts or myotubes ($\mathrm{n}=3$). The graphs show enrichment relative (\%) to input, while the schematic shows PCR primer set location relative to the Myh7 gene transcription start site ($=+1$). (C) Primary myoblasts isolated from Mll4SET ${ }^{\text {f/f }}$ mice were infected with an adenovirus overexpressing Cre or control virus (Ctrl), followed by differentiation into myotubes. ChIP assays in myotubes using anti-H3K4me1 antibody ($\mathrm{n}=3$). Values represent mean $\pm \mathrm{SEM}, * P<0.05$ vs. corresponding controls. P-value was determined using one-way ANOVA coupled to a Fisher's least-significant difference (LSD) post-hoc test.

Supplemental Figure 7. Generation and characterization of a third skeletal muscle-specific Mll4-knockout mouse line. (A) Western blot analysis of MLL4 expression in skeletal muscle and heart from indicated genotypes. (B) Expression of myosin heavy chain (MHC) and representative slow/fast-twitch troponin genes (qRT-PCR) in GC muscle of MIl4SET ${ }^{\mathrm{f} / \mathrm{f}}$ HSA-Cre mice and WT controls. $\mathrm{n}=5-6$ mice per group. Values represent mean $\pm \mathrm{SEM}, * P<$ 0.05 vs. corresponding WT controls, P-value was determined using two-tailed unpaired Student's t-test.

Supplemental Figure 8, Liu et al.

Supplemental Figure 8. Mll4SET ${ }^{\mathbf{f} / \mathbf{f}} \boldsymbol{H S A}$-Cre mice show reduced running endurance capacity. (A) Schematic depicts the increments of speed over time during maximal exercise capacity test ($\mathrm{VO}_{2 \max }$ test). (B) VO_{2} (oxygen consumption) and (C) respiratory exchange ratio (RER) during the course of the high intensity exercise in 8 week-old male Mll4SET ${ }^{\mathrm{t} / \mathrm{f}} H S A$-Cre mice and WT controls. $\mathrm{n}=12-13$ mice per group. (D) RER values were plotted against relative exercise intensity, as estimated by the percentage of mean speed at which peak VO_{2} occurred for each genotype. $\mathrm{n}=12-13$ mice per group. (E) Maximal speed and (F) total distance reached at exhaustion. $\mathrm{n}=12-13$ mice per group. (G) Schematic depicts the increments of speed over time during low intensity endurance exercise. (H) VO_{2} and (I) RER during endurance exercise challenge. $\mathrm{n}=12$ mice per group. The grey shaded area in the VO_{2} and RER line graphs illustrate the difference in time to exhaustion in Mll4SET ${ }^{\mathrm{f} / \mathrm{f}}$ HSACre mice $(91 \pm 12 \mathrm{~min})$ compared to WT controls $(118 \pm 10 \mathrm{~min})$. (J) Maximal speed and (\mathbf{K}) total distance reached at exhaustion. $\mathrm{n}=12$ mice per group. Values represent mean \pm SEM, $* P<0.05$ vs. corresponding controls, P-value was determined using two-tailed unpaired Student's t-test.

Supplemental Figure 9. Relative expression of genes involved in muscle fiber type in MIl4SET mKO mice. Expression of the indicated genes (qRT-PCR) in gastrocnemius muscles from Mll4SET mKO mice compared to WT controls. $n=5-6$ mice per group. Values represent mean \pm SEM, and shown as arbitrary units (AU) normalized ($=1.0$) to the value of WT controls. $* P<0.05$ vs. WT controls, P-value was determined using two-tailed unpaired Student's t-test.

A			
	Genotype	Antibody	Total reads
	Input	----	17818116
WT	MLL4	15774289	
	MII4 mKO	MLL4	12571708

B

C $\begin{array}{lll}\text { WT } & \text { MII4 mKO } \\ \begin{array}{lll}9403 \\ (98 \%)\end{array} & 235 & 767\end{array}$
D

Supplemental Figure 10. Cistromic analysis of MLL4 in skeletal muscle. (A) Total ChIP-seq reads are shown in WT or Mll4 mKO chromatin enriched with an anti-MLL4. (B) Signal intensity plot of MLL4 ChIP-Seq signal in WT or Mll4 mKO chromatin are shown. The peak distribution of MLL4 binding in WT muscle is shown in red, whereas the peak in the Mll4 mKO is shown in blue. (C) MLL4-binding peaks in WT muscle were compared with those of Mll4 mKO. A total of 9403 high-confidence binding regions were identified. (D) Genomic distribution of MLL4binding sites relative to mouse RefSeq genes. The promoter regions are defined as 1 kb upstream to 200 bp downstream of a RefGene transcription start sites (TSS). (E, F) ChIP-Seq binding profiles of MLL4 in WT or Mll4 mKO muscle are shown. Input, genomic DNA from muscle; Gray box indicates the high confidence MLL4 binding regions.

Supplemental Figure 11. MLL4 co-localizes with MEF2 on enhancer of slow-myofiber genes. MLL4-dependent active enhancers on slow-myofiber gene loci are shown (data obtained from published data sets GSE50466 and GSE43223, as well as current data set GSE137368). (Top) ChIP-seq binding profiles for MLL4, MEF2D and histone modifications in WT or Mll4 KO myocytes are shown. mRNA-seq data from WT and Mll4SET mKO muscle is shown at the bottom. Input, genomic DNA from myocytes; Gray box indicates the high confidence MLL4 binding regions.

Supplemental Figure 12. MLL4 regulatory circuit is associated with muscle fiber type remodeling in humans. Paraspinal muscle samples from both the convex ("MX") and concave ("MV") sides of the curvature from 40 patients with adolescent idiopathic scoliosis (AIS) were used for this analysis. (A) mRNA expression levels of muscle contractile genes were determined by qRT-PCR. Significant differences were analyzed using paired Student's t test. (B) Correlation between MLLA and MEF2s gene expression and that of muscle contractile genes. Pearson correlation analysis was used to determine the correlation.

Supplemental Table 1. Human Subject Characteristics		
	Mean $(\mathrm{n}=40$ female $)$	Range
Age (yr)	13.8 ± 0.3	$10-18$
Height (cm)	159.3 ± 0.8	$146-171$
Weight (kg)	45.3 ± 1.0	$35-66$
BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	17.8 ± 0.3	$13.7-23.7$
Initial Major $\operatorname{Cobb}\left({ }^{\circ}\right)$	54.0 ± 2.4	$40-115$

Data represent the mean \pm SEM.

Supplemental Table 2. RT-PCR primers		
Mouse Gene	Forward	Reverse
3664	5'-ATCCCTGACGCACCGCCGTGA	5'-TGCATCTGCTTGGAGCCCACGT
Mll4	5'-CAGTTGAGCTAGTCAAGTGATT	5'-TTCAATGTGGAGGGGAGTGACAG
Myh7	5'-GCCAACTATGCTGGAGCTGATGCCC	5'-GGTGCGTGGAGCGCAAGTTTGTCATAAG
Tnnil	5'-TGAAGCCAAATGCCTCCACAACAC	5'-ACACCTTGTGCTTAGAGCCCAGTA
Tnnt1	5'-TGGATCCACCAGCTGGAATCAGAA	5'-GCTGATGCGGTTGTAGAGCACATT
Tnncl	5'-AGCTCATGAAGGACGGTGACAAGA	5'-AACCGTGCAAGACCAGCATCTACT
Tnni2	5'-AGCAGCAAGGAGCTGGAAGA	5'-ATGGCGTCGGCAGACATAC
Tnnc2	5'-CCATCATCGAGGAGGTGGAC	5'-CTTCCCCTTCGCATCCTCTT
Tnnt3	5'-AACTGGAGACTGACAAATTCGAGT	5'-GCTGTGCTTCTGGGTTTGGT
Myl2	5'-GGACACATTTGCTGCCCTA	5'-ATCGTGAGGAACACGGTGA
Myl3	5'-GGCTCTGGGTCAGAATCCTA	5'-CATCATCTTGGAATTGAGCTCTT
Tрm3	5'-GAGCTGGACAAGTATTCGGAAG	5'-AGGAGGCCACCTCAGCTT
Myom3	5'-AGAGGCGGGTAGGCTTTG	5'-СТСТСGGACCTTCTCСТСТG
Atp2a2	5'-TCGACCAGTCAATTCTTACAGG	5'-CAGGGACAGGGTCAGTATGC
Casq2	5'-CCGCACGATTGAGTTTGAC	5'-CACGATCTCCACTGGGTCTT
Smtnl1	5'-GGATTGGCTCCAGAGTCTACA	5'-CTCACTGGGCGAAGATTCA
Myoz2	5'-TTGTCCCATTTCAGTAATCGTG	5'-TGCATGGCGATATTGTGATT
Ldhb	5'-AGTCTCCCGTGCATCCTCAA	5'-AGGGTGTCCGCACTCTTCCT
Ppplrla	5'-CACCTGGGATCCCAGACACA	5'-GGGGTTGGATTCTGCAGACT
Dgat2	5'-GCTGGTGCCCTACTCCAAG	5'-CCAGCTTGGGGACAGTGA
Fads6	5'-GGTAGCTCTTGAGCATTTGAGG	5'-AGTAAAGGCCCAGGCAGATG
Phyhd1	5'-CTCTGCATGCCCATGACCC	5'-CTTCGCCGCCAAAGTGAG
Myh2	5'-GGCACAAACTGCTGAAGCAGAGGC	5'-GGTGCTCCTGAGGTTGGTCATCAGC
Myh1	5'-GGCAGCAGCAGCTGCGGAAGCAGA GTCTGG	5'-GAGTGCTCCTCAGATTGGTCATTAGC
Myh4	5'-GAGCTACTGGATGCCAGTGAGCGC	5'-CTGGACGATGTCTTCCATCTCTCC
Cptlb	5'-GAGTGACTGGTGGGAAGAATATG	5'-GCTGCTTGCACATTTGTGTT
Slc27al	5'-CGCTTTCTGCGTATCGTCTG	5'-GATGCACGGGATCGTGTCT
Fabp3	5'-ACCTGGAAGCTAGTGGACAG	5'-TGATGGTAGTAGGCTTGGTCAT
Fnip1	5'-TCCGTCAGTGCCTGGTATC	5'-ACAGCTTCTGCTATTGGTTCATC
Ppargcla	5'-CGGAAATCATATCCAACCAG	5'-TGAGAACCGCTAGCAAGTTTG
Ppargclb	5'-TCCAGAAGTCAGCGGCCT	5'-CTGAGCCCGCAGTGTGG
Ppara	5'-ACTACGGAGTTCACGCATGTG	5'-TTGTCGTACACCAGCTTCAGC
Ppard	5'-GTATGCGCATGGGACTCAC	5'-GTCTGAGCGCAGATGGACT
Esrra	5'-AGGAGTACGTCCTGCTG	5'-CCTCAGCATCTTCAATG
Esrrb	5'-ACGGCTGGATTCGGAGAAC	5'-TCCTGCTCAACCCCTAGTAGATTC
Esrrg	5'-TGACTTGGCTGACCGAG	5'-CCGAGGATCAGAATCTCC
ChIP primers	Forward	Reverse
Myh7-2.1k	5'-CATTGAGGGCCAACTTTGAG	5'-CAGGGGTCTTTGCTTTGGGTT
Myh7-3.2k	5'-CTCCCTGAGACAGTTTTGCC	5'-TGTGCTAGGTCCCTCACCTG

Human Gene	Forward	Reverse
MLLA	5'-TGCCCATGAAGGTGAAAGA	5'-GTTTCTGTCAGCCACACACC
MYH7	5'-ACACCCTGACTAAGGCCAAA	5'-TCCAGGGATCCTTCCAGAT
GAPDH	5'-AGCCACATCGCTCAGACAC	5'-GCCCAATACGACCAAATCC
TNNI1	5'-GGGCCAACCTCAAGTCTGT	5'-AGACATGGCCTCCACGTT
TNNC1	5'-TGAGTTCCTGGTCATGATGG	5'-CGATGTAGCCATCAGCATTTT
TNNI2	5'-AGGACCTCAGGATGGGAGAT	5'-CGCTATCTGCAGCATCACAC
MEF2A	5'-TGATGCGGAATCATAAAATCG	5'-TGGAACTGTGACAGACATTGAA
MEF2C	5'-ACAAACTCAGACATCGTGGAGA	5'-TTGTTCAATGCGGAATCGT
MEF2D	5'-GCCCACTGCCTACAACACA	5'-CCCCCAGGTGAACTAAAGG
TNNC2	5'-GGTCACCAGCAACCATGAC	5'-TCATCTCTTCGCTGAGGTAGG
TNNT1	5'-CAGAGGATGATGCCAAGAAAA	5'-TTACCACGCTTCTGTTCTGC
LDHB	5'-GATGGATTTTGGGGGAACAT	5'-AACACCTGCCACATTCACAC

