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Introduction
The notion of precision or personalized medicine was introduced
in 1999 by Francis Collins based on expected consequences of the
Human Genome Project (1). Since then, numerous projects have
tried to incorporate genetic and functional disease identities into
diagnostic and therapeutic potentials across various disciplines
(2). Despite unmet expectations especially in public health issues,
precision medicine has expanded, along with a tremendous expan-
sion of complement therapeutics. Indeed, the renaissance of com-
plement therapeutics has led to the recognition of a wide range
of complement-mediated disorders, also called “complementop-
athies” (3). This term has been proposed for disorders in which
complement dysregulation drives disease pathogenesis, and com-
plement inhibition has the potential to abate the disease course (4).
Recognizing that this field is rapidly expanding, we aim to pro-
vide a state-of-the-art review comprising (a) current understand-
ing of complement biology for the clinician, (b) novel insights into
complement with potential applicability to clinical practice, (c)
complement in disease across various disciplines (hematology,
nephrology, neurology, obstetrics, transplantation, and rheuma-
tology), and (d) our perspective on the future development of pre-
cision medicine for complementopathies.

Current understanding of complement biology
for the clinician

More than 50 soluble and membrane-bound proteins form the com-
plement system, providing innate defense against microbes and
mediating inflammatory responses (5, 6). The complement cascade
is activated by the classical, alternative, and lectin pathways. Impor-
tantly, the alternative pathway of complement serves as an ampli-

Conflict of interest: RAB is a member of the scientific advisory board for and receives
grant funding from Alexion Pharmaceuticals Inc.

Copyright: © 2020, American Society for Clinical Investigation.

Reference information: / Clin Invest. 2020;130(5):2152-2163.
https://doi.org/10.1172/)C1136094.

jci.org  Volume130  Number5  May 2020

The renaissance of complement diagnostics and therapeutics has introduced precision medicine into a widened field of
complement-mediated diseases. In particular, complement-mediated diseases (or complementopathies) with ongoing or
published clinical trials of complement inhibitors include paroxysmal nocturnal hemoglobinuria, cold agglutinin disease,
hemolytic uremic syndrome, nephropathies, HELLP syndrome, transplant-associated thrombotic microangiopathy,
antiphospholipid antibody syndrome, myasthenia gravis, and neuromyelitis optica. Recognizing that this field is rapidly
expanding, we aim to provide a state-of-the-art review of (a) current understanding of complement biology for the clinician,
(b) novel insights into complement with potential applicability to clinical practice, (c) complement in disease across various
disciplines (hematology, nephrology, obstetrics, transplantation, rheumatology, and neurology), and (d) the potential future
of precision medicine. Better understanding of complement diagnostics and therapeutics will not only facilitate physicians
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fication loop for the lectin and classical pathways, accounting for
roughly 80% of complement activation products (7).

The classical pathway is mainly activated by antibody-
antigen complexes recognized via complement component Clq.
Among antibody isotypes, IgM is the most effective in activating
complement. Activation of complement with the four subclasses
of IgGs varies as a function of steric hindrance by the Fab arms in
the approach of Clq to the IgG CH2 sites (IgG3>IgG1>1gG2>1gG4)
(8). Besides antibodies, C1q also binds directly to certain epitopes
from microorganisms or apoptotic cells and to cell surface mol-
ecules, such as acute-phase proteins that bind to pathogens or
affected cells and activate complement (9, 10). Clq subsequently
cleaves Clr, which activates Cls protease. Then, Cls cleaves C4
and C2, leading to the formation of classical pathway C3 conver-
tase (C4bC2a). C3 convertase cleaves C3, generating the anaphyl-
atoxin C5a and C5 convertase (C4bC2aC3b), which cleaves C5
into C5a and C5b, which initiate the terminal pathway of comple-
ment. A schematic of proximal and terminal complement activa-
tion is shown in Figure 1.

In the terminal pathway of complement, C5b binds to C6, gen-
erating C5b-6, which in turn binds to C7, creating C5b-7. C5b-7 is
able to insert into lipid layers of the membrane (11). Once there,
C5b-7 binds C8 and C9, forming a complex that unfolds in the
membrane and binds several C9 molecules, thereby forming the
membrane attack complex (MAC).

Activation of the alternative pathway of complement

The alternative pathway of complement (APC) is summarized by
Figure 2. The APC is continuously activated at low levels through
slow spontaneous hydrolysis of C3, which forms C3(H,0). This pro-
cessis called “tickover.” Therefore, the APC can be activated on any
surface that has the ability to amplify complement, including the
surface of bacteria, apoptotic, and necrotic cells (12). The activated
C3(H,0) binds factor B, generating C3(H,O)B. Factor B is subse-
quently cleaved by factor D, generating the fluid-phase APC C3 con-
vertase, or C3(H,0)Bb. C3 convertase then catalyzes the cleavage
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Figure 1. Targets of complement inhibitors in various stages of clinical development for complement-mediated disorders. Complement-targeting com-
pounds are shown in red and indicate the step of the complement pathway they target. From left to right: sutimlimab inhibits C1s of the classical pathway;
narsoplimab inhibits mannose-binding protein-associated serine protease 2 (MASP-2) of the lectin pathway; pegcetacoplan (formerly APL-2) and AMY-101
inhibit C3 and C3 convertase activity; IONIS-FB-LRx and LPNO23 inhibit factor B; lampalizumab and danicopan inhibit factor D; mini-FH/AMY-201 inhibits
alternative pathway C3 convertase; CLG561 inhibits properdin; MicroCept inhibits C3 and C5 convertases; eculizumab, ravulizumab, crovalimab, ABP359,
tesidolumab, REGN3918, mubodina, coversin, RA101495, cemdisiran, and zimura inhibit C5; and avacopan inhibits C5a receptor; and IFX-1inhibits C5a.

of additional C3 molecules to generate C3a and C3b, which attach
to cell surfaces (13). This initiates the amplification loop, where C3b
pairs with factor B on cell surfaces and bound factor B is cleaved by
factor D to generate a second (surface-phase) APC C3 convertase
(C3bBb). Membrane-bound C3 convertase then cleaves additional
C3 to generate more C3b deposits, closing the amplification loop.
The binding and cleavage of an additional C3 molecule to C3 con-
vertase forms the APC C5 convertase (C3bBbC3b) that cleaves C5
to C5a and C5b. C5b initiates the terminal complement pathway
that forms the MAC, as described above. The process, from initial
spontaneous C3 activation through amplification, is depicted in Fig-
ure 1. Both C3 and C5 APC convertases are stabilized by properdin
(also known as factor P) (14), which also serves as a selective pattern
recognition molecule for de novo C3 APC convertase assembly (12).
Properdin is the only known positive regulator of complement. It
increases the activity of C3 and C5 convertases, which amplify C3b
deposition on cell surfaces (15).

Activation of the lectin pathway of complement
Lectin pathway activation is initiated by mannose-binding lectins
(MBLs) that recognize carbohydrate structures on the surfaces of

microbes, such as viruses, protozoan parasites, fungi, and various
bacteria (16, 17). Other pattern recognition molecules involved in
lectin pathway activation are ficolins and collectin 11 (18). These
molecules act through MBL-associated serine proteases (MASPs),
which generate the C3 convertase (C4bC2a) in a process similar to
that of the classical pathway.

Other mechanisms of complement activation have been pos-
tulated, including the interaction with the coagulation cascade
(discussed below), and heme-induced complement activation (19).
Indeed, a plethora of experimental studies have shown that heme
interacts with classical and alternative complement pathways
(20). This heme-induced complement activation may be relevant
in diseases with intravascular hemolysis. Among them, paroxys-
mal nocturnal hemoglobinuria (PNH) and complement-mediated
hemolytic uremic syndrome (CM-HUS) are well-known models of
complement activation and will be further discussed below. In oth-
ers, such as sickle cell disease, the role of complement activation is
currently being investigated (21). Excessive complement activation
is physiologically prevented by complement-regulatory proteins.
Membrane-bound or soluble complement regulators that are rele-
vant to complement-mediated diseases are summarized in Table 1.
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Insights into complement potentially applicable
to clinical practice

Immune function of complement
Complement was first recognized to modulate adaptive immunity
in the 1970s (22). Since then, a number of studies have investigat-
ed molecular pathways of complement interaction with B and T
cells (23). Complement modulates innate immune responses by
sensing danger signals and interacting with Toll-like receptors
(TLRs) (24). Novel pathways have linked complement-mediated
signaling with the paracrine and autocrine activation of T cells,
and complement proteins have also been implicated in shaping T
cell fate by acting at the intracellular level, as extensively reviewed
by Reis et al. (24). Another emerging feature of complement is the
regulation of cell metabolism extending from adipocytes to liver
and pancreas (25). Complement also modulates metabolic path-
ways in immune cells (26), suggesting that inflammation could
be restrained by targeting of specific complement proteins. As a
result, experimental studies have investigated complement in the
immune modulation of diverse inflammatory diseases, including
asthma, arthritis, and solid cancer (27-29).

In addition to cells traditionally considered part of the
immune system, complement was also recently shown to inter-
act with platelets, which are currently characterized as an innate
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immune cell (30). Accumulating data suggest that complement
and platelets interact during the early cellular and molecular
events that promote atherogenesis (31). Interestingly, signaling
pathways between platelets and complement act on endothelial
cells, affecting their pro-atherogenic features (32). These data sug-
gest the potential involvement of complement in a wide spectrum
of diseases associated with atherogenesis.

Complement and thrombosis

Complement and coagulation were once considered entirely
independent pathways; however, it is now clear there is close
interaction. Many of the key enzymes in both pathways are ser-
ine proteases. Complement-driven diseases, such as PNH, are
characterized by a high thrombosis rate that is abrogated by
complement inhibition, to the extent that anticoagulation is no
longer needed (33).

The underlying mechanisms of complement-mediated throm-
bosis are not fully clarified, but thrombosis is a prominent clinical
feature of all complementopathies. There are multiple proposed
mechanisms of complement and thrombosis interactions, as thor-
oughly reviewed by Hill et al. (34). Direct interactions between
complement and coagulation are mediated by C5a (35) and coag-
ulation factors (i.e., thrombin, plasmin, and coagulation factors
FXa and FXIa), which can activate complement (36-40). Throm-
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Table 1. Complement regulators relevant to complement-mediated disorders

Type Regulator Mechanism of regulation Disorder
Membrane bound (D55 Accelerates the decay of cell surface-bound (3 and (5 convertases PNH

(D59 Inhibits pore formation of MAC PNH

(D46 Accelerates decay of (3 convertases; inactivates (3b to iC3b (M-HUS; glomerulopathies

Thrombomodulin

Regulates factor I-mediated (3b inactivation

(M-HUS; glomerulopathies

Complement receptor 1 Accelerates decay of (3 and (5 convertases; cofactor for factor | CM-HUS; glomerulopathies; CAPS
Vitronectin Inhibits MAC formation CM-HUS

Soluble Factor H Disrupts the APC (3 convertase; cleaves (3b as a cofactor of factor | CM-HUS; glomerulopathies; HELLP
Factor H-related proteins Bind to (3b CM-HUS; glomerulopathies; HELLP; CAPS
Factor | Cleaves cell-bound or fluid-phase (3b and C4b CM-HUS; glomerulopathies; HELLP
Factor B Generates the APC (3 convertase CM-HUS; glomerulopathies
Factor D Cleaves factor B CM-HUS; glomerulopathies

APC, alternative pathway of complement; CAPS, catastrophic antiphospholipid antibody syndrome; CM-HUS, complement-mediated hemolytic
uremic syndrome; HELLP, hemolysis, elevated liver enzymes, and low platelets (syndrome); MAC, membrane attack complex; PNH, paroxysmal

nocturnal hemoglobinuria.

bin was also recently shown to act as a potential C5a convertase in
vitro, generating C5, and C5b,, (41).

Indirect effects of complement on thrombosis have also been
observed in hemolytic anemias (42). Recent evidence suggests
that heme-induced thromboinflammation is significantly atten-
uated by C5 inhibition, with additional benefits observed when
C5 inhibition is combined with an inhibitor of the TLR coreceptor
CD14 (43). In addition, cholesterol crystals can induce coagulation
activation via complement-mediated expression of tissue factor
(44). This novel notion of thromboinflammation is expected to
play a central role in a wide spectrum of disorders, ranging from
thrombotic microangiopathies to autoimmune diseases (45).

Complement in disease

The inability to regulate complement drives the pathophysiology
of a variety of diseases that cross multiple medical specialties.
These disorders are often associated with specific mutations or
autoantibodies that drive complement-mediated end-organ dam-
age. Increasingly, pharmacologic complement inhibition of these
pathways mitigates end-organ damage, which lays the foundation
for precision medicine in complementopathies. Specific com-
plement inhibitors at different sites of the complement cascade,
similar to what exists in coagulation, will soon be widely available.
Since these entities are diagnosed and treated by different medical
specialties, this section of the Review will focus specifically on dis-
ease characteristics and diagnostic and therapeutic features that
concern the complement cascade. Table 2 summarizes disorders
in which complement inhibition has been shown to be beneficial.

Hematology

Paroxysmal nocturnal hemoglobinuria

Complement activation. Paroxysmal nocturnal hemoglobinuria
(PNH) is a clonal hematopoietic stem cell disorder caused by
somatic mutations in PIGA that lead to the absence of glycosylphos-
phatidylinositol-anchored (GPI-anchored) proteins on the surfaces
of affected cells (33). Two of the missing GPI-anchored proteins
(CD55 and CD59) are complement-regulatory proteins (46, 47).

Because of their absence from erythrocyte membranes, hemolysis
in PNH is primarily due to APC activation. Before 1990, diagnosis
of PNH was based on the Ham, or acidified serum, test that was
described in the 1930s (48). This test is based on the susceptibility of
PNH cells to acidified serum, which serves as an APC activator (48).
Thus, incubation of PNH erythrocytes with acidified serum leads
to hemolysis that is not observed in normal erythrocytes. Today,
PNH is diagnosed by flow cytometry. Fluoresceinated monoclo-
nal antibodies against GPI-anchored proteins and/or fluorescein-
labeled proaerolysin (FLAER) are used to detect the absence of GPI-
anchored proteins from the surface of cells in peripheral blood (49,
50). Without therapy, the median survival is roughly 15-20 years;
the leading cause of death is thrombosis, highlighting the important
link between complement and thrombosis (51, 52).

Complement inhibition. Complement inhibition is the treat-
ment of choice for PNH patients with severe hemolytic anemia
and/or thrombosis. There are two FDA-approved drugs: eculi-
zumab (approved in 2007) and ravulizumab (approved in 2019).
Both monoclonal antibodies bind C5 and sterically hinder cleav-
age of C5 by the C5 convertase. This blocks the generation of
the proinflammatory C5a molecule and MAC formation (53, 54).
Ravulizumab has the advantage of 4-fold longer half-life, but oth-
erwise the drugs are noninferior (55, 56). Recently, ravulizumab
has shown sustained 1-year safety and efficacy (57), as well as
decreased breakthrough hemolysis (58). Both drugs stop intravas-
cular hemolysis, eliminate or reduce the need for blood transfu-
sion, improve quality of life, and markedly attenuate the thrombo-
sis risk. Ravulizumab is currently the drug of choice given its long
half-life and more convenient dosing.

Terminal complement inhibition at C5 (downstream of CD55)
in PNH usually results in mild to moderate extravascular hemoly-
sis. This is because PNH red cells are also CD55 deficient, leading
to unimpaired C3b opsonization and subsequent formation of C3
fragments that result in extravascular hemolysis in the liver and
spleen (59). Moreover, complement-amplifying conditions (e.g.,
pregnancy, surgery, infections) can lead to a high density of surface
C3bmolecules that cause steric hindrance and decrease binding of
eculizumab/ravulizumab to C5, ultimately causing breakthrough
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Table 2. Disorders in which complement inhibition is beneficial

Disorder

Age-related macular degeneration
ANCA vasculitis

Antiphospholipid antibody syndrome
Atypical hemolytic uremic syndrome
Cold agglutinin disease
Glomerulopathies

HELLP syndrome

Myasthenia gravis

Neuromyelitis optica

Paroxysmal nocturnal hemoglobinuria
Periodontitis

Transplant-associated TMA

Mechanism of complement activation

Genetic variants of complement-regulatory proteins
(5a-mediated effects of complement-activating autoantibodies
Genetic variants of complement-regulatory proteins
Genetic variants of complement-regulatory proteins; autoantibodies
Complement-activating antibodies
Genetic variants of complement-regulatory proteins; autoantibodies
Genetic variants of complement-regulatory proteins
Complement-activating antibodies
Complement-activating antibodies
GPI anchor deficiency
Local microbially induced complement activation
Genetic variants of complement-regulatory proteins

Complement pathway Proof of benefit from

implicated complement inhibition
Alternative Phase Il clinical trials
Alternative/classical Phase Il clinical trial
Alternative/classical Case reports/series
Alternative Approved treatment
Classical Phase Il clinical trials
Alternative/classical Phase Il clinical trials
Alternative Case reports
Classical Approved treatment
Alternative/classical Approved treatment
Alternative Approved treatment
Alternative Phase Il clinical trial
Alternative Phase Il clinical trial

Disorders are listed alphabetically. ANCA, anti-neutrophil cytoplasmic antibody; GPI, glycosylphosphatidylinositol; HELLP, hemolysis, elevated liver

enzymes, and low platelets; TMA, thrombotic microangiopathy.

intravascular hemolysis (60). The only major adverse effect of C5
inhibition has been an expected increased risk of Neisseria menin-
gitidis infection (0.5% risk annually) (61). The predictable toxicity
from C5 inhibition and lack of other major end-organ toxicity are a
testament to this precision medicine-based approach.

Novel complement inhibitors are in development, as summa-
rized in Figure 1 (62-64). Among them, crovalimab is a subcutane-
ously administered monoclonal antibody that also targets C5 at a dif-
ferent epitope from eculizumab and ravulizumab. It is administered
every 4 weeks and, in a phase I/II trial, was able to stop intravascular
hemolysis in 10 treatment-naive PNH patients (65). Inhibition of tar-
gets upstream of both CD59 and CD55, such as C3, factor D, and fac-
tor B, is even more precise and can block intravascular and extravas-
cular hemolysis because it blocks C3 fragment accumulation on red
blood cells (RBCs). In an open-label phase II trial of treatment-naive
patients, an oral factor D inhibitor (danicopan) resulted in hemoglo-
bin improvement and elimination of intravascular hemolysis with-
out evidence of C3-mediated extravascular hemolysis (66). In a sep-
arate study of 12 eculizumab-treated, transfusion-dependent PNH
patients, danicopan was able to improve hemoglobin and eliminate
the need for blood transfusions (67). In vitro studies suggest that
danicopan preserves classical and lectin pathway activity against
invasive pathogens (68). In addition, increased meningococcal
killing in vaccinated volunteers has been observed in the presence
of danicopan in contrast to anti-C5 inhibitors (69). Pegcetacoplan
is a 15-amino acid cyclic peptide conjugated to polyethylene glycol
that binds to C3 and prevents C3 and C5 cleavage by their respec-
tive convertases. In a phase Ib, open-label clinical study involving
6 transfusion-dependent, eculizumab-treated PNH patients, daily
subcutaneous pegcetacoplan was well tolerated, improved hemoglo-
bin, and stopped the need for transfusions (70). Thus, the treatment
paradigm for PNH is likely to change toward a precision medicine
model as these novel complement inhibitors enter the clinic.

Cold agglutinin disease
Complement activation. Cold agglutinins are autoantibodies (typ-
ically IgM) that agglutinate RBCs at 4°C but may also act at
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warmer temperatures. Cold agglutinin disease (CAD) is classi-
fied as either primary or secondary. Primary CAD is a clonal B
cell lymphoproliferative disorder that is also called primary cold
agglutinin-associated lymphoproliferative disease; it is distinct
from lymphoplasmacytic lymphoma (MYD88 L265P negative),
marginal zone lymphoma, and other low-grade lymphoprolifera-
tive diseases (71). Secondary CAD is a syndrome associated with a
variety of infectious and neoplastic disorders (aggressive lympho-
mas, Hodgkin’s lymphoma, carcinomas, etc.). Hemolysis is driv-
en by activation of the classical complement pathway, resulting
in opsonization and predominantly extravascular hemolysis (72).
Cold agglutinins with high thermal amplitude bind to erythrocytes
in acral parts of the circulation and often have specificity for the
I antigen on RBCs. The IgM cold agglutinin (IgM-CA) antibody
activates the classical complement pathway. C1 esterase acti-
vates C4 and C2, ultimately generating the C3 convertase, which
cleaves C3 to C3a and C3b. Upon return to warmer portions of the
circulation (~37°C), the IgM-CA dissociates from the cell surface,
but C3b remains bound to the RBC. The C3b-coated RBCs are
then sequestered by macrophages of the reticuloendothelial sys-
tem, predominantly in the liver (extravascular hemolysis). C3b of
the surviving RBCs is eventually cleaved, leaving a high number of
circulating RBCs with C3d on the surface. Patients with CAD have
increased early mortality and a high risk of thromboembolism.
Complement inhibition. Rituximab is often used as initial ther-
apy for CAD; it leads to remission (median duration 1 year) in
roughly 50% of patients (73). Sutimlimab is a humanized mono-
clonal antibody that binds to Cl1s and inhibits classical comple-
ment activation (Figure 1). A recent phase Ib trial of sutimlimab in
patients with CAD demonstrated that weekly intravenous dosing
for 4 weeks followed by biweekly dosing thereafter rapidly aborted
complement Cls-mediated hemolysis and significantly increased
hemoglobin levels, precluding the need for RBC transfusions (74).
All patients responded to sutimlimab within a few weeks, with a
median rise in hemoglobin of almost 4 g/dL. Sutimlimab does not
affect the production of cold agglutinins or their binding to RBC
antigens; thus, CAD patients may still experience acrocyanosis.
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More recently, results from the phase III trial of sutimlimab
have demonstrated efficacy in primary endpoints (a composite of
hemoglobin increase = 2 g/dL or hemoglobin > 12 g/dL at treat-
ment assessment [average from weeks 23, 25, and 26] and transfu-
sion avoidance from week 5 to week 26) and secondary endpoints
(change from baseline in hemolytic markers and quality of life)
(75). Thus, targeting of C1s with sutimlimab, a more precise target
than CD20, will likely become standard therapy for CAD.

Nephrology

Atypical or complement-mediated hemolytic uremic syndrome

Complement activation. Atypical hemolytic uremic syndrome
(aHUS) presents as a thrombotic microangiopathy (TMA) with
the clinical triad of microangiopathic hemolytic anemia, throm-
bocytopenia, and organ damage (76) with preserved function
of the disintegrin and metalloproteinase ADAMTS13. Among
TMAs, aHUS has long served as an archetypal disease model of
complement dysregulation. Recently, two published consen-
sus documents have changed the terminology of TMAs from a
model based on underlying disease to a pathophysiology-driven
model (77, 78), introducing the term complement-mediated HUS

Uncontrolled
complement activation

Catastrophic APS

Figure 3. Complementopathies in the clinic. (A) Model of the modified Ham (mHam) test. PIGA™"
(PNH-like) TF1 cells do not express CD55 and CD59 and are therefore susceptible to complement-
mediated killing. Cells are incubated with patient and control sera, then with a WST-1 cell prolifer-
ation dye reagent (Roche). Nonviable cells do not release dye because of complement-mediated
killing, resulting in differences in measured absorbance. The percentage of live cells is calculated
as the ratio of sample absorbance relative to its heat-inactivated control, multiplied by 100. The
percentage of nonviable cells is a measure of complement activation. (B) Proposed model for

APS and CAPS. Recent studies suggest that aPLs induce complement activation in patients with
complement-amplifying trigger(s), such as infection, surgery, or autoimmune disease, and cause
thrombosis in APS. Patients who also have a pathogenic loss-of-function mutation in a comple-
ment-inhibitory factor (e.g., CFH, CFI, CD46, or THBD) or a gain-of-function mutation of a com-
plement-activating factor (e.g., CFB, C3) are likely to be predisposed to uncontrolled complement
activation. In the setting of a complement-amplifying trigger, aPL-induced complement activation
could lead to disseminated thrombosis and ischemic multiorgan failure in CAPS. PIGA, phospha-
tidylinositol N-acetylglucosaminyltransferase subunit A; PNH, paroxysmal nocturnal hemoglo-
binuria; APS, antiphospholipid syndrome; CAPS, catastrophic antiphospholipid syndrome; aPL,

lation shape a predisposing phenotype toward
excessive complement activation. This com-
plement phenotype is then coupled to a second
hit that propagates complement amplification
(79, 80). Complement-amplifying conditions
are often infections, autoimmunity, surgery,
pregnancy, or cancer.
CM-HUS-associated mutations
either loss of function of complement-regu-
latory proteins, including complement factor
H (CFH), complement factor I (CFI), throm-
bomodulin (THBD), and CD46/membrane
cofactor protein (MCP), or gain of function
of complement-activating proteins, includ-
ing complement factor B (CFB) and C3 (81).
Although THBD may also act as a complement
regulator (82), further studies are needed to
confirm the roles of coagulation pathway pro-
teins (83). A recent study also revealed muta-
tions in VTN, which encodes the terminal
complement inhibitor vitronectin, in CM-HUS
patients (84). The only mutations in this dis-
ease that are not associated with complement
dysregulation are found in diacylglycerol
kinase-¢ (DGKE) (85, 86). Figure 2 summa-
rizes mutations in these complement-related

cause

proteins. These germline variants in genes that
regulate the APC are present in about 50% of
patients with CM-HUS (87, 88). Factor H auto-
antibodies may also be found in up to 10% of
CM-HUS (89). The majority of these patients
lack CFHR1 and CFHR3, owing to homozygous deletion of the
genomic region that expresses them (90). Sequencing results do
not affect early treatment decisions given the acute presentation,
the time it takes to get results, and the uncertainty regarding the
relevance of some germline variants (91).

Traditional biomarkers used in clinical complement labo-
ratories, such as hemolytic assays of classical and alternative
pathway activity (CH-50 and AP-50, respectively) and ELISA
of C3 concentration or APC activity (Wieslab), are not reliable
for CM-HUS diagnosis (92). Soluble C5b-9 is not diagnostic for
CM-HUS because values have a substantial overlap with other
TMAs (93). Translational studies have also used C5b-9 deposition
on endothelial cells to detect evidence of complement activation
in patients with TMAs (94, 95). In vivo deposition of C5b-9 on
dermal microvessels in the transplant setting has also been shown
(96). In an effort to develop a rapid and reliable in vitro diagnos-
tic assay for CM-HUS, the modified Ham test has been suggested,
as described in Figure 3A (97). The latter can distinguish between
CM-HUS and thrombotic thrombocytopenic purpura (TTP), but
the assay is not yet available in clinical laboratories (97-99).

Complement inhibition. CM-HUS is an urgent life-threaten-
ing syndrome requiring prompt initiation of therapy (100). The
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diagnosis is suspected in a patient with TMA who is Shiga toxin-
negative with ADAMTS13 activity over 10%. Distinction between
TTP and CM-HUS is important, as plasma exchange does not
reliably arrest the complement-mediated organ damage occur-
ring in CM-HUS (101). Improvements in platelet count and lactate
dehydrogenase (LDH) are usually seen within days of eculizumab
administration (102, 103). Kidney recovery may take several weeks
to months (104). Eculizumab is administered intravenously every
7 days for the first 5 weeks and biweekly thereafter; however, the
optimal duration of therapy is unclear (103, 105, 106). While ear-
ly reports suggested that long-term/indefinite therapy is required,
more recent reports suggest that eculizumab may be safely discon-
tinued in many CM-HUS patients (107-109). Before eculizumab is
discontinued, the patient should be in complete remission (normal
platelet counts, LDH, and renal function) and potential comple-
ment-activating “triggers” should be controlled. In addition to the
risk of meningitis mentioned in association with PNH, eculizumab
hepatotoxicity has been reported in pediatric CM-HUS (110).

Glomerulopathies

Glomerulopathies consist of a wide range of diseases in the major-
ity of which complement plays a central role. C3 glomerulopathy
(C3G) is characterized by APC activation leading to C3 deposition
in the glomeruli (111). Recent studies have found complement-
related mutations in C3G, similar to those of CM-HUS. Inter-
estingly, mutations in C3G cause different protein changes and,
therefore, different phenotypes compared with CM-HUS muta-
tions (112). These discoveries, along with experimental models
of complement dysregulation (113), have prompted studies of
complement inhibitors in these patients. Indeed, eculizumab has
been administered in case reports and series of C3G transplant
recipients (114-116). However, since the principal defect is caused
by proximal complement activation, specific blockade is expect-
ed to show higher efficacy. Ongoing clinical trials are examining
the efficacy of specific blockade in C3G with narsoplimab, sut-
imlimab, danicopan, and avacopan (Figure 1), all of which block
complement activation more proximally. Apart from C3G, IgA
nephropathy, lupus nephritis, and membranous nephropathy are
also under study with complement inhibitors (117).

Obstetrics: HELLP syndrome
HELLP (hemolysis, elevated liver enzymes, and low platelets)
syndrome usually arises in the third trimester of pregnancy and
resolves shortly after delivery (118). Although its pathogenesis is
not fully clear, endothelial dysfunction, partly mediated by com-
plement, plays a central role. Fetal mortality approaches 30%
when HELLP syndrome occurs early in the third trimester; mater-
nal mortality may also approach 5% to 10%. Investigators have
hypothesized that CM-HUS and HELLP syndrome may share a
similar pathophysiology, because the clinical manifestations of
hypertension, renal insufficiency, thrombocytopenia, elevated
LDH, elevated aspartate aminotransterase, and even the pres-
ence of schistocytes are common to both disorders. Recent data
using next-generation sequencing and functional complement
assays in HELLP patients support this hypothesis (98, 99). Sim-
ilar to CM-HUS, rare germline variants (variant allele frequency
<1%) in genes regulating the APC (e.g., C3, CFH, CFB, MCP, etc.)
Volume 130 Number 5

jci.org May 2020

The Journal of Clinical Investigation

and/or activation of complement using the modified Ham test
are found in up to 50% of patients with HELLP syndrome (98,
99). These data suggest that, as with CM-HUS, a large subset of
HELLP syndrome is driven by an inability to regulate comple-
ment. The thrombocytopenia is consumptive, the hemolysis is
mechanical, and the elevated “liver function tests” (LDH, bili-
rubin, and aspartate aminotransferase) are actually markers of
intravascular hemolysis rather than intrinsic liver dysfunction.
Germline mutations in genes that regulate the APC may predis-
pose to HELLP syndrome. Complement levels normally rise after
the second trimester of pregnancy and may serve as a complement
amplifier, along with other factors (autoimmunity, infection, etc.)
that contribute to vascular damage (119, 120). Complement levels
decrease following delivery, possibly explaining why the disease
typically resolves postpartum. There are now several case reports
describing the use of eculizumab to treat HELLP syndrome, but
this is not an FDA-approved use of the drug (121).

Transplantation: transplant-associated
thrombotic microangiopathy
Transplant-associated TMA (TA-TMA) is a potentially life-threat-
ening complication of allogeneic hematopoietic cell transplantation
(HCT) (122). Although it manifests with the clinical triad of a TMA,
diagnosis is largely hindered by the high incidence of cytopenias
and organ dysfunction in HCT recipients. Current diagnostic crite-
ria have been criticized for their diagnostic sensitivity (123). Mov-
ing the field forward, a growing number of genetic and functional
data suggest increased complement activation in both the adult and
pediatric population of TA-TMA (124-126). Soluble C5b-9 levels
were also incorporated into recently proposed severity criteria of
TA-TMA aiming to facilitate early diagnosis and treatment (127).
Eculizumab treatment is increasingly used to treat both adult
and pediatric patients with TA-TMA (128-132). Despite high
response rates to eculizumab treatment that reach 93%, overall
survival remains low (~30%) in early reports from the adult popu-
lation (130, 131). However, a recent study of 64 pediatric TA-TMA
patients has shown an increased 1-year survival of 66% in eculi-
zumab-treated patients compared with 17% in a historic control
group (132). Several issues remain to be further investigated: tim-
ing of initiation, proper patient selection, dosing, and duration
of therapy in patients with transplants. Interestingly, a novel C5
inhibitor, coversin, was successfully used in a TA-TMA patient with
a C5 variant that caused resistance to eculizumab treatment (133).
Recently, a phase II single-arm, open-label study of an inhibitor of
the lectin pathway, the MASP-2 inhibitor OMS721/narsoplimab, in
19 TA-TMA patients also reported increased median overall sur-
vival in comparison with a historical control of conventional treat-
ment (347 vs. 21 days from TA-TMA diagnosis) (134). As a result, a
phase III clinical trial is ongoing (Table 2).

Rheumatology: antiphospholipid antibody
syndrome

Antiphospholipid antibody syndrome (APS) is an acquired throm-
bophilia characterized by thrombosis affecting the venous or arte-
rial vascular systems and/or obstetrical morbidity with the per-
sistent presence of antiphospholipid antibodies, including lupus
anticoagulant, anticardiolipin antibody, and anti-B -glycopro-
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tein-I (anti-B2GPI) (135). A severe form of APS characterized by
widespread thrombosis and multi-organ failure developing over
less than a week, termed catastrophic APS (CAPS), affects a subset
(~1%) of APS patients. CAPS often presents as a TMA and has a
fulminant course with more than 40% mortality despite the best
available therapy (136, 137).

Complement activation has been shown in murine models of
APS, suggesting a crucial role of complement in antiphospholipid
antibody-mediated thrombosis (138-141) and obstetric (142-144)
complications. Increased C5b-9 (145), Bb fragments, and C3a (146,
147) have been observed in APS sera (148). More recent data demon-
strate that complement activation in APS is triggered by anti-p2G-
PI antibodies (149). A positive modified Ham test, as described in
Figure 3A, was highly predictive for thrombotic events. Moreover,
more than 50% of patients with CAPS harbor rare germline variants
in complement-regulatory genes, similarly to CM-HUS and HELLP
syndrome patients. This may explain the more severe CAPS phe-
notype, as demonstrated in Figure 3B (149). In line with these data,
several reports have documented efficacy of eculizumab in refrac-
tory thrombotic APS (150) and CAPS (151-154). Finally, eculizumab
prevented recurrence of APS and enabled renal transplantation in
three APS patients (155). Thus, future studies of complement inhi-
bition are indicated for severe forms of APS and CAPS.

Neurology

Myasthenia gravis

The majority of myasthenia gravis (MG) patients express acetyl-
choline receptor antibodies (AChR-Abs) (156). These antibodies
bind Clq, activate the complement cascade, and ultimately lead to
MAC generation. Initial evidence of complement activation in MG
patients (157-160) has been confirmed in complement-deficient
mouse models, suggesting a crucial role of MAC-mediating sig-
nals in MG (161-165). Complement was successfully targeted with
passive and active experimental studies in MG (166). These data
led to the phase III randomized double-blind placebo-controlled
REGAIN trial in 125 patients with AChR-Ab-positive refracto-
ry generalized MG (167). Based on significant improvements in
activities of daily living, muscle strength, and health-related qual-
ity of life, eculizumab received regulatory approval for treatment
of these patients.

Neuromyelitis optica spectrum disorder

Neuromyelitis optica spectrum disorder (NMOSD) is a rare dis-
order of the central nervous system traditionally considered
an autoimmune inflammatory disease and treated mainly with
immunosuppressive agents such as rituximab (168). Antibodies
against aquaporin-4 (AQP4) are found in the majority of patients
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(169, 170) and have been shown to activate complement in vitro
and in vivo (171, 172). Complement-mediated death of neurons
near astrocytes was mitigated by complement inhibition (173). In
this context, upregulation of the complement regulator CD55 has
reduced NMOSD pathology (174).

A phase II study of eculizumab in 14 patients has shown the
potential of the drug to prevent relapses (175). These results have
been confirmed in the most recent randomized, double-blind,
time-to-event trial in 143 AQP4-positive patients (176). It should
be noted, however, that eculizumab did not improve measures of
disability progression, suggesting that long-term administration
needs to be evaluated in light of two additional clinical trials of
immunotherapeutic agents in patients with NMOSD (177).

Conclusion and future perspectives

Over the past few decades, our understanding of complement and
precision medicine has evolved. Terminal complement inhibition
is currently the mainstay of treatment for complement-mediated
disorders, or complementopathies, across multiple medical spe-
cialties. Potentially novel indications span various disciplines,
including hematology, nephrology, obstetrics, transplantation,
rheumatology, and neurology. Complement involvement has been
speculated in a wide range of entities that have not been described
in detail in this Review, such as age-related macular degeneration
(178), hyperhemolysis syndrome (21), neurodegenerative diseases
(62), periodontitis (179), and anti-neutrophil cytoplasmic antibody
(ANCA) vasculitis (180). Improvements in genetic and functional
assays coupled with numerous novel and highly specific comple-
ment inhibitors will only increase the personalized approach to
treating complementopathies.
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