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Introduction
The notion of precision or personalized medicine was introduced 
in 1999 by Francis Collins based on expected consequences of the 
Human Genome Project (1). Since then, numerous projects have 
tried to incorporate genetic and functional disease identities into 
diagnostic and therapeutic potentials across various disciplines 
(2). Despite unmet expectations especially in public health issues, 
precision medicine has expanded, along with a tremendous expan-
sion of complement therapeutics. Indeed, the renaissance of com-
plement therapeutics has led to the recognition of a wide range 
of complement-mediated disorders, also called “complementop-
athies” (3). This term has been proposed for disorders in which 
complement dysregulation drives disease pathogenesis, and com-
plement inhibition has the potential to abate the disease course (4).

Recognizing that this field is rapidly expanding, we aim to pro-
vide a state-of-the-art review comprising (a) current understand-
ing of complement biology for the clinician, (b) novel insights into 
complement with potential applicability to clinical practice, (c) 
complement in disease across various disciplines (hematology, 
nephrology, neurology, obstetrics, transplantation, and rheuma-
tology), and (d) our perspective on the future development of pre-
cision medicine for complementopathies.

Current understanding of complement biology 
for the clinician
More than 50 soluble and membrane-bound proteins form the com-
plement system, providing innate defense against microbes and 
mediating inflammatory responses (5, 6). The complement cascade 
is activated by the classical, alternative, and lectin pathways. Impor-
tantly, the alternative pathway of complement serves as an ampli-

fication loop for the lectin and classical pathways, accounting for 
roughly 80% of complement activation products (7).

The classical pathway is mainly activated by antibody- 
antigen complexes recognized via complement component C1q. 
Among antibody isotypes, IgM is the most effective in activating 
complement. Activation of complement with the four subclasses 
of IgGs varies as a function of steric hindrance by the Fab arms in 
the approach of C1q to the IgG CH2 sites (IgG3>IgG1>IgG2>IgG4) 
(8). Besides antibodies, C1q also binds directly to certain epitopes 
from microorganisms or apoptotic cells and to cell surface mol-
ecules, such as acute-phase proteins that bind to pathogens or 
affected cells and activate complement (9, 10). C1q subsequently 
cleaves C1r, which activates C1s protease. Then, C1s cleaves C4 
and C2, leading to the formation of classical pathway C3 conver-
tase (C4bC2a). C3 convertase cleaves C3, generating the anaphyl-
atoxin C5a and C5 convertase (C4bC2aC3b), which cleaves C5 
into C5a and C5b, which initiate the terminal pathway of comple-
ment. A schematic of proximal and terminal complement activa-
tion is shown in Figure 1.

In the terminal pathway of complement, C5b binds to C6, gen-
erating C5b-6, which in turn binds to C7, creating C5b-7. C5b-7 is 
able to insert into lipid layers of the membrane (11). Once there, 
C5b-7 binds C8 and C9, forming a complex that unfolds in the 
membrane and binds several C9 molecules, thereby forming the 
membrane attack complex (MAC).

Activation of the alternative pathway of complement
The alternative pathway of complement (APC) is summarized by 
Figure 2. The APC is continuously activated at low levels through 
slow spontaneous hydrolysis of C3, which forms C3(H2O). This pro-
cess is called “tickover.” Therefore, the APC can be activated on any 
surface that has the ability to amplify complement, including the 
surface of bacteria, apoptotic, and necrotic cells (12). The activated 
C3(H2O) binds factor B, generating C3(H2O)B. Factor B is subse-
quently cleaved by factor D, generating the fluid-phase APC C3 con-
vertase, or C3(H2O)Bb. C3 convertase then catalyzes the cleavage 
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microbes, such as viruses, protozoan parasites, fungi, and various 
bacteria (16, 17). Other pattern recognition molecules involved in 
lectin pathway activation are ficolins and collectin 11 (18). These 
molecules act through MBL-associated serine proteases (MASPs), 
which generate the C3 convertase (C4bC2a) in a process similar to 
that of the classical pathway.

Other mechanisms of complement activation have been pos-
tulated, including the interaction with the coagulation cascade 
(discussed below), and heme-induced complement activation (19). 
Indeed, a plethora of experimental studies have shown that heme 
interacts with classical and alternative complement pathways 
(20). This heme-induced complement activation may be relevant 
in diseases with intravascular hemolysis. Among them, paroxys-
mal nocturnal hemoglobinuria (PNH) and complement-mediated 
hemolytic uremic syndrome (CM-HUS) are well-known models of 
complement activation and will be further discussed below. In oth-
ers, such as sickle cell disease, the role of complement activation is 
currently being investigated (21). Excessive complement activation 
is physiologically prevented by complement-regulatory proteins. 
Membrane-bound or soluble complement regulators that are rele-
vant to complement-mediated diseases are summarized in Table 1.

of additional C3 molecules to generate C3a and C3b, which attach 
to cell surfaces (13). This initiates the amplification loop, where C3b 
pairs with factor B on cell surfaces and bound factor B is cleaved by 
factor D to generate a second (surface-phase) APC C3 convertase 
(C3bBb). Membrane-bound C3 convertase then cleaves additional 
C3 to generate more C3b deposits, closing the amplification loop. 
The binding and cleavage of an additional C3 molecule to C3 con-
vertase forms the APC C5 convertase (C3bBbC3b) that cleaves C5 
to C5a and C5b. C5b initiates the terminal complement pathway 
that forms the MAC, as described above. The process, from initial 
spontaneous C3 activation through amplification, is depicted in Fig-
ure 1. Both C3 and C5 APC convertases are stabilized by properdin 
(also known as factor P) (14), which also serves as a selective pattern 
recognition molecule for de novo C3 APC convertase assembly (12). 
Properdin is the only known positive regulator of complement. It 
increases the activity of C3 and C5 convertases, which amplify C3b 
deposition on cell surfaces (15).

Activation of the lectin pathway of complement
Lectin pathway activation is initiated by mannose-binding lectins 
(MBLs) that recognize carbohydrate structures on the surfaces of 

Figure 1. Targets of complement inhibitors in various stages of clinical development for complement-mediated disorders. Complement-targeting com-
pounds are shown in red and indicate the step of the complement pathway they target. From left to right: sutimlimab inhibits C1s of the classical pathway; 
narsoplimab inhibits mannose-binding protein-associated serine protease 2 (MASP-2) of the lectin pathway; pegcetacoplan (formerly APL-2) and AMY-101 
inhibit C3 and C3 convertase activity; IONIS-FB-LRx and LPN023 inhibit factor B; lampalizumab and danicopan inhibit factor D; mini-FH/AMY-201 inhibits 
alternative pathway C3 convertase; CLG561 inhibits properdin; MicroCept inhibits C3 and C5 convertases; eculizumab, ravulizumab, crovalimab, ABP959, 
tesidolumab, REGN3918, mubodina, coversin, RA101495, cemdisiran, and zimura inhibit C5; and avacopan inhibits C5a receptor; and IFX-1 inhibits C5a.
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immune cell (30). Accumulating data suggest that complement 
and platelets interact during the early cellular and molecular 
events that promote atherogenesis (31). Interestingly, signaling 
pathways between platelets and complement act on endothelial 
cells, affecting their pro-atherogenic features (32). These data sug-
gest the potential involvement of complement in a wide spectrum 
of diseases associated with atherogenesis.

Complement and thrombosis
Complement and coagulation were once considered entirely 
independent pathways; however, it is now clear there is close 
interaction. Many of the key enzymes in both pathways are ser-
ine proteases. Complement-driven diseases, such as PNH, are 
characterized by a high thrombosis rate that is abrogated by 
complement inhibition, to the extent that anticoagulation is no 
longer needed (33).

The underlying mechanisms of complement-mediated throm-
bosis are not fully clarified, but thrombosis is a prominent clinical 
feature of all complementopathies. There are multiple proposed 
mechanisms of complement and thrombosis interactions, as thor-
oughly reviewed by Hill et al. (34). Direct interactions between 
complement and coagulation are mediated by C5a (35) and coag-
ulation factors (i.e., thrombin, plasmin, and coagulation factors 
FXa and FXIa), which can activate complement (36–40). Throm-

Insights into complement potentially applicable 
to clinical practice

Immune function of complement
Complement was first recognized to modulate adaptive immunity 
in the 1970s (22). Since then, a number of studies have investigat-
ed molecular pathways of complement interaction with B and T 
cells (23). Complement modulates innate immune responses by 
sensing danger signals and interacting with Toll-like receptors 
(TLRs) (24). Novel pathways have linked complement-mediated 
signaling with the paracrine and autocrine activation of T cells, 
and complement proteins have also been implicated in shaping T 
cell fate by acting at the intracellular level, as extensively reviewed 
by Reis et al. (24). Another emerging feature of complement is the 
regulation of cell metabolism extending from adipocytes to liver 
and pancreas (25). Complement also modulates metabolic path-
ways in immune cells (26), suggesting that inflammation could 
be restrained by targeting of specific complement proteins. As a 
result, experimental studies have investigated complement in the 
immune modulation of diverse inflammatory diseases, including 
asthma, arthritis, and solid cancer (27–29).

In addition to cells traditionally considered part of the 
immune system, complement was also recently shown to inter-
act with platelets, which are currently characterized as an innate 

Figure 2. Mutations in complement regulators 
involved in complement-mediated diseases. 
Complement activation leads to C3 activation 
and C3 convertase formation on C3-opsonized 
surfaces, culminating in pronounced C3 fragment 
deposition on complement-targeted surfaces 
(proximal complement). In the presence of 
increased surface density of deposited C3b, the 
terminal complement is triggered, leading to 
membrane attack complex (MAC) formation on 
the surface of target cell. Complement pathway 
dysregulation results from loss-of-function 
mutations in regulatory factors (i.e., factor H 
[FH], factor I [FI], thrombomodulin [THBD], and 
vitronectin [VTN]) shown in red, gain-of-function 
mutations (i.e., C3 and factor B [FB]) shown in 
blue, and DGKE mutations in purple, indicating 
their unknown effect on complement cascade.
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Because of their absence from erythrocyte membranes, hemolysis 
in PNH is primarily due to APC activation. Before 1990, diagnosis 
of PNH was based on the Ham, or acidified serum, test that was 
described in the 1930s (48). This test is based on the susceptibility of 
PNH cells to acidified serum, which serves as an APC activator (48). 
Thus, incubation of PNH erythrocytes with acidified serum leads 
to hemolysis that is not observed in normal erythrocytes. Today, 
PNH is diagnosed by flow cytometry. Fluoresceinated monoclo-
nal antibodies against GPI-anchored proteins and/or fluorescein- 
labeled proaerolysin (FLAER) are used to detect the absence of GPI- 
anchored proteins from the surface of cells in peripheral blood (49, 
50). Without therapy, the median survival is roughly 15–20 years; 
the leading cause of death is thrombosis, highlighting the important 
link between complement and thrombosis (51, 52).

Complement inhibition. Complement inhibition is the treat-
ment of choice for PNH patients with severe hemolytic anemia 
and/or thrombosis. There are two FDA-approved drugs: eculi-
zumab (approved in 2007) and ravulizumab (approved in 2019). 
Both monoclonal antibodies bind C5 and sterically hinder cleav-
age of C5 by the C5 convertase. This blocks the generation of 
the proinflammatory C5a molecule and MAC formation (53, 54). 
Ravulizumab has the advantage of 4-fold longer half-life, but oth-
erwise the drugs are noninferior (55, 56). Recently, ravulizumab 
has shown sustained 1-year safety and efficacy (57), as well as 
decreased breakthrough hemolysis (58). Both drugs stop intravas-
cular hemolysis, eliminate or reduce the need for blood transfu-
sion, improve quality of life, and markedly attenuate the thrombo-
sis risk. Ravulizumab is currently the drug of choice given its long 
half-life and more convenient dosing.

Terminal complement inhibition at C5 (downstream of CD55) 
in PNH usually results in mild to moderate extravascular hemoly-
sis. This is because PNH red cells are also CD55 deficient, leading 
to unimpaired C3b opsonization and subsequent formation of C3 
fragments that result in extravascular hemolysis in the liver and 
spleen (59). Moreover, complement-amplifying conditions (e.g., 
pregnancy, surgery, infections) can lead to a high density of surface 
C3b molecules that cause steric hindrance and decrease binding of 
eculizumab/ravulizumab to C5, ultimately causing breakthrough 

bin was also recently shown to act as a potential C5a convertase in 
vitro, generating C5T and C5bT (41).

Indirect effects of complement on thrombosis have also been 
observed in hemolytic anemias (42). Recent evidence suggests 
that heme-induced thromboinflammation is significantly atten-
uated by C5 inhibition, with additional benefits observed when 
C5 inhibition is combined with an inhibitor of the TLR coreceptor 
CD14 (43). In addition, cholesterol crystals can induce coagulation 
activation via complement-mediated expression of tissue factor 
(44). This novel notion of thromboinflammation is expected to 
play a central role in a wide spectrum of disorders, ranging from 
thrombotic microangiopathies to autoimmune diseases (45).

Complement in disease
The inability to regulate complement drives the pathophysiology 
of a variety of diseases that cross multiple medical specialties. 
These disorders are often associated with specific mutations or 
autoantibodies that drive complement-mediated end-organ dam-
age. Increasingly, pharmacologic complement inhibition of these 
pathways mitigates end-organ damage, which lays the foundation 
for precision medicine in complementopathies. Specific com-
plement inhibitors at different sites of the complement cascade, 
similar to what exists in coagulation, will soon be widely available. 
Since these entities are diagnosed and treated by different medical 
specialties, this section of the Review will focus specifically on dis-
ease characteristics and diagnostic and therapeutic features that 
concern the complement cascade. Table 2 summarizes disorders 
in which complement inhibition has been shown to be beneficial.

Hematology

Paroxysmal nocturnal hemoglobinuria
Complement activation. Paroxysmal nocturnal hemoglobinuria 
(PNH) is a clonal hematopoietic stem cell disorder caused by 
somatic mutations in PIGA that lead to the absence of glycosylphos-
phatidylinositol-anchored (GPI-anchored) proteins on the surfaces 
of affected cells (33). Two of the missing GPI-anchored proteins 
(CD55 and CD59) are complement-regulatory proteins (46, 47). 

Table 1. Complement regulators relevant to complement-mediated disorders

Type Regulator Mechanism of regulation Disorder
Membrane bound CD55 Accelerates the decay of cell surface–bound C3 and C5 convertases PNH

CD59 Inhibits pore formation of MAC PNH
CD46 Accelerates decay of C3 convertases; inactivates C3b to iC3b CM-HUS; glomerulopathies
Thrombomodulin Regulates factor I–mediated C3b inactivation CM-HUS; glomerulopathies
Complement receptor 1 Accelerates decay of C3 and C5 convertases; cofactor for factor I CM-HUS; glomerulopathies; CAPS
Vitronectin Inhibits MAC formation CM-HUS

Soluble Factor H Disrupts the APC C3 convertase; cleaves C3b as a cofactor of factor I CM-HUS; glomerulopathies; HELLP
Factor H–related proteins Bind to C3b CM-HUS; glomerulopathies; HELLP; CAPS
Factor I Cleaves cell-bound or fluid-phase C3b and C4b CM-HUS; glomerulopathies; HELLP
Factor B Generates the APC C3 convertase CM-HUS; glomerulopathies
Factor D Cleaves factor B CM-HUS; glomerulopathies

APC, alternative pathway of complement; CAPS, catastrophic antiphospholipid antibody syndrome; CM-HUS, complement-mediated hemolytic 
uremic syndrome; HELLP, hemolysis, elevated liver enzymes, and low platelets (syndrome); MAC, membrane attack complex; PNH, paroxysmal 
nocturnal hemoglobinuria.
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warmer temperatures. Cold agglutinin disease (CAD) is classi-
fied as either primary or secondary. Primary CAD is a clonal B 
cell lymphoproliferative disorder that is also called primary cold 
agglutinin–associated lymphoproliferative disease; it is distinct 
from lymphoplasmacytic lymphoma (MYD88 L265P negative), 
marginal zone lymphoma, and other low-grade lymphoprolifera-
tive diseases (71). Secondary CAD is a syndrome associated with a 
variety of infectious and neoplastic disorders (aggressive lympho-
mas, Hodgkin’s lymphoma, carcinomas, etc.). Hemolysis is driv-
en by activation of the classical complement pathway, resulting 
in opsonization and predominantly extravascular hemolysis (72). 
Cold agglutinins with high thermal amplitude bind to erythrocytes 
in acral parts of the circulation and often have specificity for the 
I antigen on RBCs. The IgM cold agglutinin (IgM-CA) antibody 
activates the classical complement pathway. C1 esterase acti-
vates C4 and C2, ultimately generating the C3 convertase, which 
cleaves C3 to C3a and C3b. Upon return to warmer portions of the 
circulation (~37°C), the IgM-CA dissociates from the cell surface, 
but C3b remains bound to the RBC. The C3b-coated RBCs are 
then sequestered by macrophages of the reticuloendothelial sys-
tem, predominantly in the liver (extravascular hemolysis). C3b of 
the surviving RBCs is eventually cleaved, leaving a high number of 
circulating RBCs with C3d on the surface. Patients with CAD have 
increased early mortality and a high risk of thromboembolism.

Complement inhibition. Rituximab is often used as initial ther-
apy for CAD; it leads to remission (median duration 1 year) in 
roughly 50% of patients (73). Sutimlimab is a humanized mono-
clonal antibody that binds to C1s and inhibits classical comple-
ment activation (Figure 1). A recent phase Ib trial of sutimlimab in 
patients with CAD demonstrated that weekly intravenous dosing 
for 4 weeks followed by biweekly dosing thereafter rapidly aborted 
complement C1s–mediated hemolysis and significantly increased 
hemoglobin levels, precluding the need for RBC transfusions (74). 
All patients responded to sutimlimab within a few weeks, with a 
median rise in hemoglobin of almost 4 g/dL. Sutimlimab does not 
affect the production of cold agglutinins or their binding to RBC 
antigens; thus, CAD patients may still experience acrocyanosis.

intravascular hemolysis (60). The only major adverse effect of C5 
inhibition has been an expected increased risk of Neisseria menin-
gitidis infection (0.5% risk annually) (61). The predictable toxicity 
from C5 inhibition and lack of other major end-organ toxicity are a 
testament to this precision medicine–based approach.

Novel complement inhibitors are in development, as summa-
rized in Figure 1 (62–64). Among them, crovalimab is a subcutane-
ously administered monoclonal antibody that also targets C5 at a dif-
ferent epitope from eculizumab and ravulizumab. It is administered 
every 4 weeks and, in a phase I/II trial, was able to stop intravascular 
hemolysis in 10 treatment-naive PNH patients (65). Inhibition of tar-
gets upstream of both CD59 and CD55, such as C3, factor D, and fac-
tor B, is even more precise and can block intravascular and extravas-
cular hemolysis because it blocks C3 fragment accumulation on red 
blood cells (RBCs). In an open-label phase II trial of treatment-naive 
patients, an oral factor D inhibitor (danicopan) resulted in hemoglo-
bin improvement and elimination of intravascular hemolysis with-
out evidence of C3-mediated extravascular hemolysis (66). In a sep-
arate study of 12 eculizumab-treated, transfusion-dependent PNH 
patients, danicopan was able to improve hemoglobin and eliminate 
the need for blood transfusions (67). In vitro studies suggest that 
danicopan preserves classical and lectin pathway activity against 
invasive pathogens (68). In addition, increased meningococcal 
killing in vaccinated volunteers has been observed in the presence 
of danicopan in contrast to anti-C5 inhibitors (69). Pegcetacoplan 
is a 15–amino acid cyclic peptide conjugated to polyethylene glycol 
that binds to C3 and prevents C3 and C5 cleavage by their respec-
tive convertases. In a phase Ib, open-label clinical study involving 
6 transfusion-dependent, eculizumab-treated PNH patients, daily 
subcutaneous pegcetacoplan was well tolerated, improved hemoglo-
bin, and stopped the need for transfusions (70). Thus, the treatment 
paradigm for PNH is likely to change toward a precision medicine 
model as these novel complement inhibitors enter the clinic.

Cold agglutinin disease
Complement activation. Cold agglutinins are autoantibodies (typ-
ically IgM) that agglutinate RBCs at 4°C but may also act at 

Table 2. Disorders in which complement inhibition is beneficial

Disorder Mechanism of complement activation Complement pathway 
implicated

Proof of benefit from 
complement inhibition

Age-related macular degeneration Genetic variants of complement-regulatory proteins Alternative Phase III clinical trials
ANCA vasculitis C5a-mediated effects of complement-activating autoantibodies Alternative/classical Phase III clinical trial
Antiphospholipid antibody syndrome Genetic variants of complement-regulatory proteins Alternative/classical Case reports/series
Atypical hemolytic uremic syndrome Genetic variants of complement-regulatory proteins; autoantibodies Alternative Approved treatment
Cold agglutinin disease Complement-activating antibodies Classical Phase III clinical trials
Glomerulopathies Genetic variants of complement-regulatory proteins; autoantibodies Alternative/classical Phase II clinical trials
HELLP syndrome Genetic variants of complement-regulatory proteins Alternative Case reports
Myasthenia gravis Complement-activating antibodies Classical Approved treatment
Neuromyelitis optica Complement-activating antibodies Alternative/classical Approved treatment
Paroxysmal nocturnal hemoglobinuria GPI anchor deficiency Alternative Approved treatment
Periodontitis Local microbially induced complement activation Alternative Phase II clinical trial
Transplant-associated TMA Genetic variants of complement-regulatory proteins Alternative Phase III clinical trial

Disorders are listed alphabetically. ANCA, anti-neutrophil cytoplasmic antibody; GPI, glycosylphosphatidylinositol; HELLP, hemolysis, elevated liver 
enzymes, and low platelets; TMA, thrombotic microangiopathy.
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More recently, results from the phase III trial of sutimlimab 
have demonstrated efficacy in primary endpoints (a composite of 
hemoglobin increase ≥ 2 g/dL or hemoglobin ≥ 12 g/dL at treat-
ment assessment [average from weeks 23, 25, and 26] and transfu-
sion avoidance from week 5 to week 26) and secondary endpoints 
(change from baseline in hemolytic markers and quality of life) 
(75). Thus, targeting of C1s with sutimlimab, a more precise target 
than CD20, will likely become standard therapy for CAD.

Nephrology

Atypical or complement-mediated hemolytic uremic syndrome
Complement activation. Atypical hemolytic uremic syndrome 
(aHUS) presents as a thrombotic microangiopathy (TMA) with 
the clinical triad of microangiopathic hemolytic anemia, throm-
bocytopenia, and organ damage (76) with preserved function 
of the disintegrin and metalloproteinase ADAMTS13. Among 
TMAs, aHUS has long served as an archetypal disease model of 
complement dysregulation. Recently, two published consen-
sus documents have changed the terminology of TMAs from a 
model based on underlying disease to a pathophysiology-driven 
model (77, 78), introducing the term complement-mediated HUS 

(CM-HUS). The prevalent “two-hit” hypoth-
esis for CM-HUS pathogenesis is that genetic 
or acquired (e.g., anti–complement factor H 
autoantibodies) defects in complement regu-
lation shape a predisposing phenotype toward 
excessive complement activation. This com-
plement phenotype is then coupled to a second 
hit that propagates complement amplification 
(79, 80). Complement-amplifying conditions 
are often infections, autoimmunity, surgery, 
pregnancy, or cancer.

CM-HUS–associated mutations cause 
either loss of function of complement-regu-
latory proteins, including complement factor 
H (CFH), complement factor I (CFI), throm-
bomodulin (THBD), and CD46/membrane 
cofactor protein (MCP), or gain of function 
of complement-activating proteins, includ-
ing complement factor B (CFB) and C3 (81). 
Although THBD may also act as a complement 
regulator (82), further studies are needed to 
confirm the roles of coagulation pathway pro-
teins (83). A recent study also revealed muta-
tions in VTN, which encodes the terminal 
complement inhibitor vitronectin, in CM-HUS 
patients (84). The only mutations in this dis-
ease that are not associated with complement 
dysregulation are found in diacylglycerol 
kinase-ε (DGKE) (85, 86). Figure 2 summa-
rizes mutations in these complement-related 
proteins. These germline variants in genes that 
regulate the APC are present in about 50% of 
patients with CM-HUS (87, 88). Factor H auto-
antibodies may also be found in up to 10% of 
CM-HUS (89). The majority of these patients 

lack CFHR1 and CFHR3, owing to homozygous deletion of the 
genomic region that expresses them (90). Sequencing results do 
not affect early treatment decisions given the acute presentation, 
the time it takes to get results, and the uncertainty regarding the 
relevance of some germline variants (91).

Traditional biomarkers used in clinical complement labo-
ratories, such as hemolytic assays of classical and alternative 
pathway activity (CH-50 and AP-50, respectively) and ELISA 
of C3 concentration or APC activity (Wieslab), are not reliable 
for CM-HUS diagnosis (92). Soluble C5b-9 is not diagnostic for 
CM-HUS because values have a substantial overlap with other 
TMAs (93). Translational studies have also used C5b-9 deposition 
on endothelial cells to detect evidence of complement activation 
in patients with TMAs (94, 95). In vivo deposition of C5b-9 on 
dermal microvessels in the transplant setting has also been shown 
(96). In an effort to develop a rapid and reliable in vitro diagnos-
tic assay for CM-HUS, the modified Ham test has been suggested, 
as described in Figure 3A (97). The latter can distinguish between 
CM-HUS and thrombotic thrombocytopenic purpura (TTP), but 
the assay is not yet available in clinical laboratories (97–99).

Complement inhibition. CM-HUS is an urgent life-threaten-
ing syndrome requiring prompt initiation of therapy (100). The 

Figure 3. Complementopathies in the clinic. (A) Model of the modified Ham (mHam) test. PIGAnull 
(PNH-like) TF1 cells do not express CD55 and CD59 and are therefore susceptible to complement- 
mediated killing. Cells are incubated with patient and control sera, then with a WST-1 cell prolifer-
ation dye reagent (Roche). Nonviable cells do not release dye because of complement-mediated 
killing, resulting in differences in measured absorbance. The percentage of live cells is calculated 
as the ratio of sample absorbance relative to its heat-inactivated control, multiplied by 100. The 
percentage of nonviable cells is a measure of complement activation. (B) Proposed model for 
APS and CAPS. Recent studies suggest that aPLs induce complement activation in patients with 
complement-amplifying trigger(s), such as infection, surgery, or autoimmune disease, and cause 
thrombosis in APS. Patients who also have a pathogenic loss-of-function mutation in a comple-
ment-inhibitory factor (e.g., CFH, CFI, CD46, or THBD) or a gain-of-function mutation of a com-
plement-activating factor (e.g., CFB, C3) are likely to be predisposed to uncontrolled complement 
activation. In the setting of a complement-amplifying trigger, aPL-induced complement activation 
could lead to disseminated thrombosis and ischemic multiorgan failure in CAPS. PIGA, phospha-
tidylinositol N-acetylglucosaminyltransferase subunit A; PNH, paroxysmal nocturnal hemoglo-
binuria; APS, antiphospholipid syndrome; CAPS, catastrophic antiphospholipid syndrome; aPL, 
antiphospholipid antibody.
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diagnosis is suspected in a patient with TMA who is Shiga toxin– 
negative with ADAMTS13 activity over 10%. Distinction between 
TTP and CM-HUS is important, as plasma exchange does not 
reliably arrest the complement-mediated organ damage occur-
ring in CM-HUS (101). Improvements in platelet count and lactate 
dehydrogenase (LDH) are usually seen within days of eculizumab 
administration (102, 103). Kidney recovery may take several weeks 
to months (104). Eculizumab is administered intravenously every 
7 days for the first 5 weeks and biweekly thereafter; however, the 
optimal duration of therapy is unclear (103, 105, 106). While ear-
ly reports suggested that long-term/indefinite therapy is required, 
more recent reports suggest that eculizumab may be safely discon-
tinued in many CM-HUS patients (107–109). Before eculizumab is 
discontinued, the patient should be in complete remission (normal 
platelet counts, LDH, and renal function) and potential comple-
ment-activating “triggers” should be controlled. In addition to the 
risk of meningitis mentioned in association with PNH, eculizumab 
hepatotoxicity has been reported in pediatric CM-HUS (110).

Glomerulopathies
Glomerulopathies consist of a wide range of diseases in the major-
ity of which complement plays a central role. C3 glomerulopathy 
(C3G) is characterized by APC activation leading to C3 deposition 
in the glomeruli (111). Recent studies have found complement- 
related mutations in C3G, similar to those of CM-HUS. Inter-
estingly, mutations in C3G cause different protein changes and, 
therefore, different phenotypes compared with CM-HUS muta-
tions (112). These discoveries, along with experimental models 
of complement dysregulation (113), have prompted studies of 
complement inhibitors in these patients. Indeed, eculizumab has 
been administered in case reports and series of C3G transplant 
recipients (114–116). However, since the principal defect is caused 
by proximal complement activation, specific blockade is expect-
ed to show higher efficacy. Ongoing clinical trials are examining 
the efficacy of specific blockade in C3G with narsoplimab, sut-
imlimab, danicopan, and avacopan (Figure 1), all of which block 
complement activation more proximally. Apart from C3G, IgA 
nephropathy, lupus nephritis, and membranous nephropathy are 
also under study with complement inhibitors (117).

Obstetrics: HELLP syndrome
HELLP (hemolysis, elevated liver enzymes, and low platelets) 
syndrome usually arises in the third trimester of pregnancy and 
resolves shortly after delivery (118). Although its pathogenesis is 
not fully clear, endothelial dysfunction, partly mediated by com-
plement, plays a central role. Fetal mortality approaches 30% 
when HELLP syndrome occurs early in the third trimester; mater-
nal mortality may also approach 5% to 10%. Investigators have 
hypothesized that CM-HUS and HELLP syndrome may share a 
similar pathophysiology, because the clinical manifestations of 
hypertension, renal insufficiency, thrombocytopenia, elevated 
LDH, elevated aspartate aminotransterase, and even the pres-
ence of schistocytes are common to both disorders. Recent data 
using next-generation sequencing and functional complement 
assays in HELLP patients support this hypothesis (98, 99). Sim-
ilar to CM-HUS, rare germline variants (variant allele frequency 
<1%) in genes regulating the APC (e.g., C3, CFH, CFB, MCP, etc.) 

and/or activation of complement using the modified Ham test 
are found in up to 50% of patients with HELLP syndrome (98, 
99). These data suggest that, as with CM-HUS, a large subset of 
HELLP syndrome is driven by an inability to regulate comple-
ment. The thrombocytopenia is consumptive, the hemolysis is 
mechanical, and the elevated “liver function tests” (LDH, bili-
rubin, and aspartate aminotransferase) are actually markers of 
intravascular hemolysis rather than intrinsic liver dysfunction. 
Germline mutations in genes that regulate the APC may predis-
pose to HELLP syndrome. Complement levels normally rise after 
the second trimester of pregnancy and may serve as a complement 
amplifier, along with other factors (autoimmunity, infection, etc.) 
that contribute to vascular damage (119, 120). Complement levels 
decrease following delivery, possibly explaining why the disease 
typically resolves postpartum. There are now several case reports 
describing the use of eculizumab to treat HELLP syndrome, but 
this is not an FDA-approved use of the drug (121).

Transplantation: transplant-associated 
thrombotic microangiopathy
Transplant-associated TMA (TA-TMA) is a potentially life-threat-
ening complication of allogeneic hematopoietic cell transplantation 
(HCT) (122). Although it manifests with the clinical triad of a TMA, 
diagnosis is largely hindered by the high incidence of cytopenias 
and organ dysfunction in HCT recipients. Current diagnostic crite-
ria have been criticized for their diagnostic sensitivity (123). Mov-
ing the field forward, a growing number of genetic and functional 
data suggest increased complement activation in both the adult and 
pediatric population of TA-TMA (124–126). Soluble C5b-9 levels 
were also incorporated into recently proposed severity criteria of 
TA-TMA aiming to facilitate early diagnosis and treatment (127).

Eculizumab treatment is increasingly used to treat both adult 
and pediatric patients with TA-TMA (128–132). Despite high 
response rates to eculizumab treatment that reach 93%, overall 
survival remains low (~30%) in early reports from the adult popu-
lation (130, 131). However, a recent study of 64 pediatric TA-TMA 
patients has shown an increased 1-year survival of 66% in eculi-
zumab-treated patients compared with 17% in a historic control 
group (132). Several issues remain to be further investigated: tim-
ing of initiation, proper patient selection, dosing, and duration 
of therapy in patients with transplants. Interestingly, a novel C5 
inhibitor, coversin, was successfully used in a TA-TMA patient with 
a C5 variant that caused resistance to eculizumab treatment (133). 
Recently, a phase II single-arm, open-label study of an inhibitor of 
the lectin pathway, the MASP-2 inhibitor OMS721/narsoplimab, in 
19 TA-TMA patients also reported increased median overall sur-
vival in comparison with a historical control of conventional treat-
ment (347 vs. 21 days from TA-TMA diagnosis) (134). As a result, a 
phase III clinical trial is ongoing (Table 2).

Rheumatology: antiphospholipid antibody 
syndrome
Antiphospholipid antibody syndrome (APS) is an acquired throm-
bophilia characterized by thrombosis affecting the venous or arte-
rial vascular systems and/or obstetrical morbidity with the per-
sistent presence of antiphospholipid antibodies, including lupus 
anticoagulant, anticardiolipin antibody, and anti–β2-glycopro-
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(169, 170) and have been shown to activate complement in vitro 
and in vivo (171, 172). Complement-mediated death of neurons 
near astrocytes was mitigated by complement inhibition (173). In 
this context, upregulation of the complement regulator CD55 has 
reduced NMOSD pathology (174).

A phase II study of eculizumab in 14 patients has shown the 
potential of the drug to prevent relapses (175). These results have 
been confirmed in the most recent randomized, double-blind, 
time-to-event trial in 143 AQP4-positive patients (176). It should 
be noted, however, that eculizumab did not improve measures of 
disability progression, suggesting that long-term administration 
needs to be evaluated in light of two additional clinical trials of 
immunotherapeutic agents in patients with NMOSD (177).

Conclusion and future perspectives
Over the past few decades, our understanding of complement and 
precision medicine has evolved. Terminal complement inhibition 
is currently the mainstay of treatment for complement-mediated 
disorders, or complementopathies, across multiple medical spe-
cialties. Potentially novel indications span various disciplines, 
including hematology, nephrology, obstetrics, transplantation, 
rheumatology, and neurology. Complement involvement has been 
speculated in a wide range of entities that have not been described 
in detail in this Review, such as age-related macular degeneration 
(178), hyperhemolysis syndrome (21), neurodegenerative diseases 
(62), periodontitis (179), and anti-neutrophil cytoplasmic antibody 
(ANCA) vasculitis (180). Improvements in genetic and functional 
assays coupled with numerous novel and highly specific comple-
ment inhibitors will only increase the personalized approach to 
treating complementopathies.
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tein-I (anti-β2GPI) (135). A severe form of APS characterized by 
widespread thrombosis and multi-organ failure developing over 
less than a week, termed catastrophic APS (CAPS), affects a subset 
(~1%) of APS patients. CAPS often presents as a TMA and has a 
fulminant course with more than 40% mortality despite the best 
available therapy (136, 137).

Complement activation has been shown in murine models of 
APS, suggesting a crucial role of complement in antiphospholipid 
antibody–mediated thrombosis (138–141) and obstetric (142–144) 
complications. Increased C5b-9 (145), Bb fragments, and C3a (146, 
147) have been observed in APS sera (148). More recent data demon-
strate that complement activation in APS is triggered by anti-β2G-
PI antibodies (149). A positive modified Ham test, as described in 
Figure 3A, was highly predictive for thrombotic events. Moreover, 
more than 50% of patients with CAPS harbor rare germline variants 
in complement-regulatory genes, similarly to CM-HUS and HELLP 
syndrome patients. This may explain the more severe CAPS phe-
notype, as demonstrated in Figure 3B (149). In line with these data, 
several reports have documented efficacy of eculizumab in refrac-
tory thrombotic APS (150) and CAPS (151–154). Finally, eculizumab 
prevented recurrence of APS and enabled renal transplantation in 
three APS patients (155). Thus, future studies of complement inhi-
bition are indicated for severe forms of APS and CAPS.

Neurology

Myasthenia gravis
The majority of myasthenia gravis (MG) patients express acetyl-
choline receptor antibodies (AChR-Abs) (156). These antibodies 
bind C1q, activate the complement cascade, and ultimately lead to 
MAC generation. Initial evidence of complement activation in MG 
patients (157–160) has been confirmed in complement-deficient 
mouse models, suggesting a crucial role of MAC-mediating sig-
nals in MG (161–165). Complement was successfully targeted with 
passive and active experimental studies in MG (166). These data 
led to the phase III randomized double-blind placebo-controlled 
REGAIN trial in 125 patients with AChR-Ab–positive refracto-
ry generalized MG (167). Based on significant improvements in 
activities of daily living, muscle strength, and health-related qual-
ity of life, eculizumab received regulatory approval for treatment 
of these patients.

Neuromyelitis optica spectrum disorder
Neuromyelitis optica spectrum disorder (NMOSD) is a rare dis-
order of the central nervous system traditionally considered 
an autoimmune inflammatory disease and treated mainly with 
immunosuppressive agents such as rituximab (168). Antibodies 
against aquaporin-4 (AQP4) are found in the majority of patients 
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