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parasites will be essential for malaria elimination. Development of these interventions has been hindered by the lack of P.
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Method: Healthy, malaria-naive adults were enrolled in two studies to assess the safety and infectivity and transmissibility
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to initiate infection, and were treated with artemether-lumefantrine (Study 1) or chloroquine (Study 2). Primary endpoints
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feeding assays, and sporozoite viability was assessed using in vitro cultured hepatocytes.

Results: Parasitaemia and gametocytemia developed in all participants and was cleared by antimalarial treatment.
Adverse events were mostly mild or moderate and none were serious. Participants were infectious to Anopheles

mosquitoes at peak gametocytemia 69% (11/16). Mosquito infection rates reached 97% following membrane feeding with
gametocyte-enriched blood, and sporozoites developed into liver-stage schizonts in culture.

Conclusion: We have demonstrated the safe, reproducible, and efficient transmission of P. vivax gametocytes from
humans to mosquitoes, and have established an experimental model that will accelerate the development of [...]
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Abstract

Background: Interventions that interrupt Plasmodium vivax transmission or eliminate dormant P.
vivax liver-stage parasites will be essential for malaria elimination. Development of these
interventions has been hindered by the lack of P. vivax in vitro culture and could be accelerated by a

safe and reproducible clinical model in malaria-naive individuals.

Method: Healthy, malaria-naive adults were enrolled in two studies to assess the safety and
infectivity and transmissibility of a new P. vivax isolate. Participants (Study 1; n=2, Study 2; n=24)
were inoculated with P. vivax-infected red blood cells to initiate infection, and were treated with
artemether-lumefantrine (Study 1) or chloroquine (Study 2). Primary endpoints were safety and
infectivity of the new isolate. In Study 2, transmission to mosquitoes was also evaluated using

mosquito feeding assays, and sporozoite viability was assessed using in vitro cultured hepatocytes.

Results: Parasitaemia and gametocytemia developed in all participants and was cleared by
antimalarial treatment. Adverse events were mostly mild or moderate and none were serious.
Participants were infectious to Anopheles mosquitoes at peak gametocytemia 69% (11/16). Mosquito
infection rates reached 97% following membrane feeding with gametocyte-enriched blood, and

sporozoites developed into liver-stage schizonts in culture.

Conclusion: We have demonstrated the safe, reproducible, and efficient transmission of P. vivax
gametocytes from humans to mosquitoes, and have established an experimental model that will

accelerate the development of interventions targeting multiple stages of the P. vivax life cycle.
Trial registration: ACTRN12614000930684 and ACTRN12616000174482.

Funding: (Australian) NHMRC Program Grant: 1132975 (Study 1). Bill & Melinda Gates

Foundation (OPP1111147) (Study 2).
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Introduction

Plasmodium vivax is the most globally widespread human malaria parasite, and the predominant
cause of malaria outside of Africa (1). Although a major cause of morbidity, P. vivax infection has
long been regarded as benign compared to P. falciparum. However, it has recently become widely
recognised as a cause of severe, life-threatening, and fatal malaria infection (2, 3). As a consequence,
there is renewed interest in developing P. vivax specific control and elimination strategies (4). P.
vivax is considered more difficult to control than P. falciparum due to the parasite’s unique biological
features that increase its potential for transmission (5). Unlike P. falciparum, the transmissible stages
of P. vivax (the gametocytes) appear early during blood-stage infection before the onset of symptoms,
which increases the likelihood of transmission before treatment. P. vivax produces hypnozoites which
are dormant liver-stage parasite that cause relapses months to years after initial infection — reported
to account for up to 80% of all P. vivax infections (6) — thus providing repeated opportunities for
onward transmission. In addition, P. vivax can be transmitted by a broad range of Anopheles vectors,
many with exophilic and zoophilic tendencies, thus reducing the efficacy of conventional vector
control measures (7). Therefore, as well as treating asexual parasites to control clinical illness, P.
vivax control strategies must also target hypnozoites and block transmission to have a significant

impact on control and elimination (8).

The current recommended treatment for P. vivax is chloroquine or artemisinin-based combination
therapy to clear asexual parasitaemia, administered with the 8-aminoquinioline, primaquine for 14
days to clear liver-stage hypnozoites (9). A single dose of tafenoquine recently demonstrated
equivalent efficacy against hypnozoites with the potential to substantially improve treatment
compliance. However, wide scale deployment of these drugs to achieve meaningful public health
impact is complicated by the need to screen for glucose-6-phosphate dehydrogenase deficiency, and

safer alternatives are needed (10).

A P. vivax transmission-blocking vaccine (TBV) could interrupt transmission from primary

infections, relapses, and also asymptomatic infections that remain undiagnosed and transmissible for a
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prolonged period. A TBV would reduce morbidity and mortality by preventing both new clinical
infections and hypnozoite formation (11, 12). The inability to continuously culture P. vivax parasites
in vitro, and the difficulties in using animal models (8), has hampered development of interventions
specifically targeting P. vivax hypnozoites and gametocytes. The production of gametocytes for
evaluation of TBVs and sporozoites for liver-stage hypnozoite assays is limited to endemic settings
where natural gametocyte carriers are available. Thus, a safe and reproducible in vivo model of
human to mosquito P. vivax transmission in malaria-naive volunteers would accelerate development
and early-clinical evaluation of transmission-blocking interventions. Moreover, sporozoites generated
from mosquitoes fed on gametocytes collected from unvaccinated volunteers during these studies

could be used to evaluate interventions that target hypnozoites.

P. vivax experimental human infection studies, termed controlled human malaria infection (CHMI) or
volunteer infection studies (VIS), have been established where malaria infections are initiated either
by sporozoite inoculation or by the induced blood-stage malaria (IBSM) model (13). To date, none of
these studies have demonstrated efficient P. vivax transmission from humans to mosquitoes. The
IBSM model uses cryopreserved and characterised P. vivax-infected red blood cells (RBCs) to initiate
infection. There have been only two previous P. vivax IBSM studies (both conducted at our centre),
where a total of 8 adults were infected with a P. vivax isolate from the Solomon Islands; however,
efficient transmission to mosquito was not achieved (14, 15). These studies were the first
experimental infection of humans with blood-stage P. vivax using the modern IBSM model
(deliberate infection with P. vivax was practiced between the 1920s and 1970s when malariotherapy
was used for syphilis treatment (16), as well as in experimental studies with US prisoners (17)). Here,
we evaluate the safety, tolerability, and infectivity of a new P. vivax isolate bank from India and
describe a clinical model for evaluating the efficacy of blood-stage schizonticides and transmission-
blocking interventions that can be exploited to facilitate the evaluation of P. vivax liver-stage

interventions.
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Results

Twenty-six malaria-naive volunteers were enrolled in two clinical trials: Study 1 (n=2) undertaken
from October 8, 2014 to January 8, 2015 and Study 2 (n=24) undertaken from February 22, 2016 to

May 21, 2017 (Figure 1 and 2). Baseline characteristics of participants are presented in Table 1.

All participants were inoculated with an estimated 564 viable P. vivax parasites and the experimental
infection was generally well tolerated. In Study 1, 14 adverse events (AES) were reported: 12
attributed to malaria (headache, fever, myalgia, arthralgia, presyncope, rigors), one deemed possibly
related to artemether-lumefantrine (somnolence), and one not related to malaria or artemether-
lumefantrine (headache 49 days after treatment) (Table 2). Most AEs resolved within 24 h of
treatment with paracetamol, except two intermittent headaches that resolved in 4 days and 8 days, and
right knee pain that resolved in 4 days. All AEs were mild (n=13/14; 92.9%) or moderate (n=1/14;
7.1%) in severity. In Study 2, 355 AEs were reported (Table 2). A total of 296 (83.4%) were related to
malaria, of these, 8 (2.3%) were concurrently deemed possibly related to chloroquine. Eleven (3.1%)
AEs were related to direct skin feeding (DFA) (reaction at site of mosquito bite); the remaining AEs
were attributed to other causes. Most AEs were mild (250/355; 70.4%) or moderate (98/355; 27.6%)
in severity. Four severe AEs occurred and were all attributed to malaria: reduced neutrophil count
(0.65 x10°%L), chills, elevated alanine aminotransferase (peak 6.9 xULN), and arthralgia. No serious

AESs were reported in either trial.

All 26 participants developed blood-stage parasitaemia. In Study 1, parasites were first detected by
18S quantitative PCR (18S gPCR) on Day 5 in both participants. Parasitaemia peaked at 21,836 and
8,949 parasites/mL on the day of treatment (Day 8), and was completely cleared following treatment
with artemether-lumefantrine (Figure 3A). In Study 2, parasites were first detected by 18S gPCR in
21/24 participants on Day 4, and in the remaining 3 participants on Day 5. The course of parasite
development did not differ between cohorts (Figure 3D+F) and parasitaemia was cleared in all

participants in a median of 3 days after initiation of chloroquine treatment, range = 1.5-7.0 days.
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Gametocytes were first detected (above 10 gametocytes/mL) on Day 6 in Study 1 (Figure 3A) and
between Day 4 and 7 in Study 2, which was an average of 1-5 days (range = 0-3 days) after first
detection of asexual parasites (Figure 3D-F). Using the transcript number estimates per gametocyte
published by Karl et al., (18) to convert pvs25 transcripts/mL to gametocytes/mL, the peak
gametocyte levels were 5.5% (median) of the peak asexual parasite levels and gametocytemia
correlated with asexual parasitemia (p<0.0001) (Figure 3C). The course of gametocytemia followed
the asexual parasitaemia, but in Study 2 after chloroquine treatment, in contrast to immediate

clearance of asexual parasites, clearance of gametocytes was delayed a further 24 h.

In Study 2 cohort 1, median gametocytemia was 136 gametocytes/mL at the time of treatment/last
mosquito feeding assay, meaning only 0.14-0.68 gametocytes would be imbibed in a 1-5uL mosquito
blood-meal, making transmission extremely unlikely. As a consequence, following review of the
safety data and approval from the Safety Monitoring Committee the recommendation was made to
delay treatment until Day 10 in cohorts 2 and 3. This resulted in significantly higher median
gametocytemia at the time of treatment/last mosquito feeding assay (2,351 gametocytes/mL;

p<0.0001) compared to participants in cohort 1 (Figure 3B).

The optimal times for mosquito feeding were Day 9 and 10, when 69% (11/16) of participants were
infectious to mosquitoes (Table 3 and Table S6). Participants were not infectious on Day 6 and 7
(0/8), and only one participant was infectious on Day 8 (1/8). The rate of mosquito infection was
highest on Day 10 (Figure 4A; median on Day 10 = 5.2%; IQR 2.8-8.9). Direct skin feeding resulted
in higher mosquito infection rates (median = 3.3%; IQR 2.9-6.1) than direct membrane feeding with
whole blood (median = 1.8%; IQR 1.2-2.8; p = 0.04), and membrane feeding with serum replacement
(median = 8.6%; IQR 2.8-13.9) also resulted in significantly higher mosquito infection rates than
membrane feeding with whole blood (p = 0.02) (Figure 4B and Table S6). Successful mosquito
transmission was associated with gametocyte density, with gametocytemia being significantly higher
in the infectious samples (median = 1,993 gametocytes/mL) compared to the non-infectious samples

(median = 136 gametocytes/mL; p<0.0001) (Figure 4C).
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To increase mosquito infection rates in this model, we enriched gametocytes over a percoll gradient
either ~10 or ~40 fold to increase the density of gametocytes offered to mosquitoes in the membrane
feeding assays (19). Very high levels of mosquito infection ranging from 26% (Day 9) to 92% (Day
10) were achieved following ~10 fold enrichment (Table 4). When gametocytes were enriched ~40
fold, the mosquito infection rate was 97%, with a mean of 7 oocysts (range 1-16) per midgut.
Salivary gland sporozoites were detected 15 to 17 days after the feeding assay, with an average of
7,635 sporozoites per mosquito following ~40 fold enrichment (Table 4). To assess viability, these
sporozoites were collected from the mosquitoes and incubated with HC-04 hepatocyte cells in culture.
Following 7 days of incubation, liver-stage schizonts were observed by staining the cells with U1S4

monoclonal antibody (Figure 4D).
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Discussion

We have demonstrated for the first time, the safe, reproducible and efficient transmission of
gametocytes during experimental P. vivax malaria infection in humans, thereby establishing a new
clinical model for evaluating P. vivax transmission-blocking interventions. Moreover, we have
demonstrated the potential to exploit this model to produce viable clonal sporozoites capable of
hepatocyte infection that could be used to evaluate interventions targeting P. vivax liver-stage

parasites.

The new P. vivax HMP013 inoculum was safe and well tolerated. The isolate was generated from a
donor with blood group O (RhD positive), overcoming the need to match study volunteers’ blood
group to that of the inoculum. The number and severity of AEs were in line with safety outcomes
from published malaria IBSM trials, two of which used P. vivax (13). The severity of the single case
of elevated alanine aminotransferase is similar to that reported in other P. vivax studies (15). A
comprehensive analysis of clinically significant transaminase elevations in P. vivax IBSM studies will

be reported separately.

Gametocytemia was detected in all participants and appeared in circulation early during blood-stage
infection — only 1 to 2 days after the first appearance of asexual parasites — consistent with reports
of a shorter gametocyte maturation time for P. vivax compared to P. falciparum (14, 15). The majority
of participants (11/16; 68-8%) were infectious to laboratory reared An stephensi mosquitoes on Day 9
and 10 after infection. This represents the first report of efficient P. vivax gametocyte transmission
during experimental malaria infection. Transmission from humans to mosquitoes was previously
attempted during a sporozoite induced P. vivax experimental malaria infection study but was
unsuccessful despite detection of the pvs25 gametocyte marker (20, 21). In our previous P. vivax
IBSM study (15) the peak gametocytemia was 43 gametocytes/mL compared to 47,393
gametocytes/mL in this study (Supplementary p 19). Difficulty was experienced during the previous
study with verification of mosquito infection by microscopy. Review of the photomicrographs by a

number of expert oocyst microscopists from different laboratories indicated a lack of consensus about
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which, if any, were true oocysts and which were artefact. This ambiguity about the identification of
mosquito infection led us to develop and validate the gPCR assay used here for high-throughput,
sensitive, and accurate evaluation of midgut infection (22). It was also followed by a study detailing
the difficulty with oocyst identification by microscopy (23). Moreover, similar structures identified
later in the same QIMR laboratory were confirmed PCR negative. Although we are unable to verify
by PCR the result of the previous study with the Solomon Island isolate, we believe based on the lack
of consensus about the identification of oocysts together with the very low gametocytemia during that
study that it is likely the mosquito infection rate reported was an overestimate. The study presented
here thus demonstrates higher levels of gametocytemia, reliable transmission to mosquitoes, and
increased assay validity. The mosquito infection rates we observed in this current study (1-18%) are
comparable to those reported from asymptomatic natural gametocyte carriers who had a mean
gametocyte density of 1,323 gametocytes/mL and an average mosquito infection rate of 4.2% (21).
We also observed increasing mosquito infection rates with increasing gametocytemia, consistent with
data from natural infections (21, 24). Transmission was low (on Day 8) or did not occur (on Day 6
and 7) before Day 9, likely due to the low gametocyte densities at the time of feeding. Gametocytemia
was so low (less than 397 gametocytes/mL) that the chance of gametocytes being taken up ina 1-5
ML blood meal was extremely unlikely. Membrane feeds performed with gametocytes that had been
enriched over a percoll gradient resulted in very high levels of transmission, further demonstrating the

observed relationship between gametocyte density and transmission success.

Our model provides a new platform to fully evaluate factors governing efficient transmission, and in
accordance with previous P. vivax studies, mosquito infection rates were higher via the natural route
of infection compared to feeding mosquitoes on whole blood via a membrane (25, 26). This is
potentially due to conditions during membrane feeding being suboptimal for efficient transmission, or
because gametocytes may localise to subdermal capillaries for more efficient uptake. Consistent with
previous reports (19, 26), we observed higher mosquito infection rates from membrane feeding with

serum replacement than from direct membrane feeding on whole blood. This suggests a component of

10
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the venous blood sample not present in vivo during skin feeding, such as anticoagulant, may inhibit

transmission (19, 26, 27).

Mosquito infection rates were very high after membrane feeding with enriched gametocytes, which
further supports the association between gametocyte density and transmission. Midgut oocyst
infections developed into salivary gland sporozoites, and these sporozoites were able to infect and
develop in human hepatocytes in vitro. This demonstrates the potential application of this model to

facilitate the study of P. vivax liver-stages.

A limitation of this study is the small sample size; further studies are needed to determine the true
variability in P. vivax infection characteristics between study participants. An additional limitation is
that the IBSM model does not mimic natural infection as it bypasses the liver-stage of infection.
However, this offers a safety advantage because it eliminates the risk of hypnozoite formation during
liver-stage infections and the potential for relapse. IBSM offers other logistical and safety advantages
over P. vivax sporozoite induced VIS including i) the ability to readily carry out IBSM studies in non-
endemic countries, ii) prior knowledge of P. vivax genotype and drug sensitivity, iii) ability to carry
out multiple studies with the same strain and dose, and iv) simplified trial design and conduct because

all participants develop blood-stage parasitaemia simultaneously.

In conclusion, we have demonstrated the safe, reproducible, efficient transmission of P. vivax
gametocytes from healthy non-immune participants to mosquitoes during experimental human
malaria infection. This experimental model can be used for early-clinical evaluation of drug and
vaccine candidates, and could provide a source of sporozoites for the evaluation of P. vivax liver-
stages. This model will further our understanding of the biology of all stages of P. vivax infection and

provide critical information for malaria control and elimination agendas.
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Methods

Study design and participants

Two single-centre open-label clinical trials were undertaken at Q-Pharm Pty Ltd in Queensland,
Australia: a phase 1 first-in-human pilot safety and infectivity study (Study 1), and a phase 1b human
to mosquito transmission study (Study 2). Healthy, malaria-naive males and (non-pregnant, non-
lactating) females aged between 18 and 55 years were eligible to participate. Study 1 was conducted
with two participants inoculated 24 h apart. Study 2 was undertaken as three cohorts of eight
participants. Due to recruitment limitations, cohort 2 was performed as cohort 2a (n=6) and cohort 2b

(n=2), conducted separately (Figure 1+2).

Procedures

The P. vivax HMPO013 isolate was collected in 2014 from a traveller (blood group O, RhD positive)
returning to Australia from India who presented with malaria-related symptoms. Informed consent
was obtained (under a protocol approved by the QIMR Berghofer and Royal Brisbane Women’s
Hospital human research ethics committees), and 200 mL of blood was collected. The patient tested
negative for blood-borne pathogens using a Red Cross donation protocol and the RBCs were
cryopreserved as described previously (14). The cryopreserved bank tested negative for adventitious

agents and was subject to whole genome sequencing (28).

Each inoculum was prepared by aseptically thawing and washing a vial of cryopreserved RBCs and
diluting to 2 mL with injectable saline. The number of viable parasites per inoculum was
retrospectively determined to be 564 parasites (95% CI: 342-930) by quantitative PCR targeting the
18S rRNA gene (18S gPCR) (Supplementary pp 13-15). All participants were inoculated
intravenously on Day 0 and monitored daily for AEs and malaria. From Day 4, parasitaemia was
measured by 18S qPCR (Supplementary p 13) (14) twice-daily until participants were admitted to the
clinic for treatment (Supplementary Table S1 and S2). Gametocyte development was measured by

gRT-PCR for pvs25 mRNA (Supplementary pp 13-14) from Day 4 (14). Curative antimalarial
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treatment was administered on Day 8 (Study 1 and Study 2 cohort 1) or Day 10 (Study 2 cohorts 2
and 3, except Participant 205 who was treated on Day 9). Participants in Study 1 received oral
artemether-lumefantrine, and participants in Study 2 received oral chloroquine (Supplementary Table

S4). All participants were confirmed parasite negative at the end of study (Figure 1+2).

For Study 2, infectivity of gametocytes was evaluated using mosquito feeding assays between Day 6
and 8 (cohort 1) or on Day 9 and 10 (cohorts 2 and 3). All feeding assays were performed before drug
treatment was initiated. Gametocytes were fed to Anopheles stephensi mosquitoes via direct skin
feeding assays (DFAs; 2 per participant), direct membrane feeding assays with whole venous blood in
lithium heparin anticoagulant (DMFAs; 2-3 per participant), or membrane feeding assays with serum
replacement (MFA-SR) (19). Exploratory membrane feeding assays were performed to investigate
mosquito infection rates when fed on gametocytes enriched from participants’ blood over a percoll
gradient (Supplementary p 17). We determined transmission to mosquitoes by measuring midgut
oocyst infections using the 18S gPCR assay (14, 22). Microscopy was used to visually confirm
oocysts in a small random selection of midguts prior to gPCR (Figure S3A+B). Salivary gland
sporozoite infections were assessed using microscopy 15 to 17 days after mosquito feeding (Figure
S3C). Sporozoite viability was determined by adding salivary gland sporozoites to HC-04 cells in

culture in liver-stage invasion assays (Supplementary p 18).

Outcomes

Primary endpoints were the safety (both studies) and infectivity (Study 1) of the P. vivax isolate in
healthy, malaria-naive adults. Safety endpoint measures were the frequency and severity of AEs, and
results of clinical laboratory tests, physical examinations, vital sign assessments, and
electrocardiographs. Infectivity endpoint measures were parasitaemia and gametocytemia growth
profiles determined by 18S gPCR and pvs25 gRT-PCR. A secondary endpoint in Study 2 was
transmissibility of P. vivax gametocytes from humans to mosquitoes. Successful transmission was
defined as at least one oocyst-positive mosquito per feeding assay, measured by 18S qPCR.

Additional primary and secondary objectives were to characterise the pharmacokinetic-

13
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pharmacodynamic relationship between chloroquine concentration and clearance of blood-stage

parasites. These will be reported separately.

Statistics

Both trials were designed to assess the in vivo safety of the P. vivax isolate in the IBSM model. The
first-in-human pilot study (Study 1) required only 2 participants. Study 2 was designed to assess the
parasite-clearing activity of chloroquine. Normative data on log parasite clearance rate was used in
sample size estimation from 18 IBSM studies involving 102 individuals with mean decay rate of
0.063 log parasites per hour and SD of 0.019. It was determined that a sample size of 20 participants
has 80% power to identify a difference of 20% in mean decay rate compared to a reference standard
as significant at 5% two-sided significance based on a one-sample t-test. Statistical analysis was
performed using GraphPad Prism version 8.2.1 (infectivity endpoints), and R version 3.3.3 (inoculum
size and calibration of 18S qPCR). The D’ Agostino—Pearson normality test was used to determine if
continuous data were normally distributed. When comparing two groups of nonparametric data the
Mann-Whitney test was used. More than two groups of nonparametric data were compared by
Kruskal-Wallis test with Dunn’s multiple comparison test. P value <0.05 was considered statistically

significant.

Study approval

Both studies were approved by the QIMR Berghofer Human Research Ethics Committee. Study 2 was
also approved by the Australian Defence Human Research Ethics Committee. All participants met the
eligibility criteria (Supplementary pp 3-8) and gave written informed consent before inclusion in the
study. The trials were registered with the Australian New Zealand Clinical Trials Registry

(ACTRN12614000930684 and ACTRN12616000174482).
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Figure 1: Study design schematic

Malaria-naive volunteers were inoculated with P. vivax-infected RBCs (pRBCs) on day 0 (D0). Asexual
parasitaemia and gametocytemia were evaluated from Day 4 and continued until the end of study. Participants in
Study 1 started artemether-lumefantrine treatment on Day 8 (n=2). Participants in Study 2 started chloroquine
treatment on Day 8 (n=8), Day 9 (n=1), or 10 (n=15). For Study 2, mosquito feeding assays were performed
between Day 6 and Day 10 by direct feeding (allowing mosquitoes to feed on participants by live bite), or by
membrane feeding on venous blood.

D: Day relative to inoculation (Day 0); pRBC: P. vivax parasite infected RBCs
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Study 1: Phase 1 first-in-human
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Figure 2: Study profile

All participants were inoculated with P. vivax on Day 0.
D=day relative to inoculation; pi=post inoculation
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Study 2: Phase 1b
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Figure 3: Parasitaemia and gametocytemia

6 7 8 9

Day post inoculation

10 11 12 13 14 15 16 17 4

5 6

7 8 9 10 11 12 13 14 15 16 17

Participants (n=26) were experimentally infected with P. vivax on Day 0. Parasitaemia was measured by 18S
gPCR and gametocytemia measured by pvs25 gRT-PCR for Study 1 (n=2) (A), and Study 2 (n=24) (D-F). Grey
lines = parasitaemia, red lines = gametocytemia. Thin lines show individual participant data and thick lines
show the geometric mean. Initiation of treatment is indicated by the vertical lines. Treatment was initiated on
Day 8 for Study 1 (n=2) and Study 2 cohort 1 (n=8), or Day 10 for Study 2 cohorts 2 and 3 (n=15). Participant
205 (cohort 2; black lines) was treated on Day 9 (vertical solid line). (B) Gametocytemia at time of treatment for
Study 2 (n=23) (compared by Mann-Whitney test). (C) Spearman correlation of peak asexual parasitaemia and
peak gametocytemia (n=24). Participant 205 represented in grey.
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Figure 4: Infectivity to mosquitoes

Successful transmission was defined as at least one oocyst-positive mosquito determined by 18S qPCR.
Mosquito infection rate is reported as prevalence of infection (percentage of mosquitoes infected per feeding
assay). (A) Prevalence of mosquito infection in all feeding assays in Study 2 at each time point (n=113). (B)
Prevalence of mosquito infection in successful feeding assays, by feeding assay type (n=37). Groups compared
by Kruskal-Wallis test with Dunn’s multiple comparison test. (C) The gametocytemia for participants samples
that were infectious compared to samples that were non-infectious (n=54). Groups compared by Mann-Whitney
test. Box plots indicate the median and whiskers show the minimum and maximum. (D) Representative image
from of a P. vivax liver-stage schizont stained with UIS4 and Hoechst33342 following incubation of sporozoites
with HC-04 culture for 7 days (Left panel - white channel (Hoechst33342), middle panel - red channel (Alexa
fluor 488-conjugated UIS4 antibody), right panel — merge). Image taken at 40x magnification. Scale bar = 20
Um. Sporozoites were obtained by feeding mosquitoes on enriched gametocytes collected on day 10 from
participants in cohort 3 (Supplementary pp 18).

DFA = direct skin feeding assay, DMFA = direct membrane feeding assay with whole blood, MFA-SR =
membrane feeding assay with serum replacement.
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Study 1 Study 2
(n=2) (n=24)
Age (years) 20.0(1.4) 24.8 (6.1)
Sex (male) 2 (100%0) 13 (54.2%)
Ethnicity n (%) White 1 (50.0%) 21 (87.5%)
Asian 0 1 (4.2%)
Asian-European 1 (50.0%) 0
Indigenous 0 1 (4.2%)
Aboriginal
Latino 0 1 (4.2%)
Height (cm) 179.0 (4.0) 175.8 (9.8)
Body weight (kg) 74.2 (5.7) 73.3(10.8)
Body mass index (kg/m?) 23.3(2.7) 23.7 (2.7)

Table 1: Baseline characteristics of participants

Data are in n (%) or mean (SD)
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Study 1 Study 2
(n=2) Cohfrt 1 Coht_)rt 2 Coht_)rt 3 Total (n=24)
n (%) or n (=2) (=2 (=) n (%) or n
n (%) orn n (%) orn n (%) orn

Number of participants with adverse events
Participants with AEs 2 (100%) 8 (100%) 8 (100%) 8 (100%) 24 (100%)
Participants with malaria related AEs 10 7 (87.5%) 8 (100%) 8 (100%) 23 (95.8%)
Participants with study drug® related AEs 1 3 (37.5%) 2 (25.0%) 1 (12.5%) 6 (25.0%)
Participants with DFA related AEs NA 1(12.5%) 4 (50.0%) 3 (37.5%) 8 (33.3%)
Number of adverse events
Total number of AEs 14 45 157 153 355
Number of mild AEs 13 36 101 113 250
Number of moderate AEs 1 9 53 36 98
Number of severe AEs 0 0 1 3 4
Number of malaria related AEs 12 37 140 119 296
Number of study drug® related AEs 1 4 3 1 8
Number of DFA AEs NA 1 7 3 11

Table 2: Frequency of adverse events by cohort in Study 1 and Study 2

AE severity was recorded in accordance with the Common Terminology Criteria for Adverse Events (CTCAE,
version 4, published 28 May 2009). AEs from cohorts 2a and 2b have been combined for reporting in this table.
AE=adverse event; DFA=direct feeding assay; NA=not applicable. ®artemether-lumefantrine (Study 1) or
chloroquine (Study 2)
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No. participants infectious to mosquitoes (n/N and %)

Cohort
Day*® 1 2a 2b 3 Total
6 0/8 (0%) - - - 0/8 (0%)
7 0/8 (0%) - - - 0/8 (0%)
8 1/8 (12.5%) - - - 1/8 (12.5%)
9 - 3/6 (50.0%) 1/2 (50.0%) 217 (28.6%) 6/15 (40.0%)
10 - 2/5 (40.0%) 1/2 (50.0%) 5/8 (62.5%) 8/15 (53.3%)

Table 3: Infectivity of participants to mosquitoes in Study 2
% Day relative to inoculation (Day 0). Full individual participant infectivity data by assay are displayed in table

S6.
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% oocyst

% sporozoite

infected ooclv,l,(te:/?n?gr;te d No. infected Sporozoites/
Day® Percoll mosquitoes st uito oocysts/infected mosquitoes infected
y enrichment (number (nur?1ber mosquito (number mosquito
positive/number assessed) range positive/number mean
assessed) assessed)
Cohort 2a
10 ~10 fold 92.4% 4 1-10 93.3% 4429
(110/119) (n=27) (28/30)
Cohort 2b
10 ~10 fold 71.1% 2 1-4 NC 1462
(79/1112) (n=19)
Cohort 3
9 ~10 fold 26.2% NC NC NC NC
(16/61)
10 ~10 fold 87.6% 2 1-4 50.0% 1767
(92/105) (n=22) (3/6)
10 ~40 fold 97.3% 7 1-16 100% 7635
(109/112) (n=30) (6/6)

Table 4: Infectivity of percoll enriched samples to mosquitoes and development of sporozoites
Membrane feeding assays were performed with gametocytes enriched over a percoll gradient from blood pooled
from all participants in a cohort, at the time point specified. Mosquito infection rate is reported as prevalence of
infection (% of mosquitoes infected per feeding assay). NC: not counted. * Day relative to inoculation (Day 0).
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