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Figure S1. Early motor impairment induced by intrathecal infusion of NMO-IgG

without exogenous complement is partially reversible.

(Upper) Timeline of experimental design. Rotarod tests show time-dependent motor
impairment (measured as fall latency) resulting from 5 days’ infusion of NMO-IgG, and
motor function recovery upon cessation of IgG infusion. Data represent mean + SEM, n
=4 in NMO-IgG and n = 3 in Control-IgG groups, Two-way ANOVA (NMO-IgG vs.
control-IgG) and 2-tailed student’s t-test (day 5 vs. day 20 in NMO-IgG group).** P <
0.001.
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Figure S2. NMO-IgG infusion induces minor loss of myelin basic protein
immunoreactivity without evidence of axonal damage, complement-mediated cell

lysis or apoptosis.

(A) Representative spinal L4 cross sections show immunoreactivities of axoplasm
(NF200, green) and myelin (MBP, red) on day 5 of IgG infusion (control or NMO), n =4

mice (4 sections/mouse) in each group. Scale bar, 5 um. (B) Bar graph shows relative



percentage of axon (NF200+) covered by MBP, which is significantly reduced in NMO-
IgG recipients compared with control-IgG recipients, n = 4 mice (4 sections/mouse). (C)
Representative spinal L4 cross sections show lack of the cytolytic membrane attack
complex (C5b-9 immunoreactivity) in mice infused with either control-IgG (left) or
NMO-IgG (middle); mechanically-injured mouse spinal cord (right) served as positive
control for C5b-9 immunostaining, n =4 mice (4 sections/mouse) in each group. Scale
bar, 20 um. (D) Representative spinal L4 cross sections lack cleaved Caspase 3
immunoreactivity (apoptosis marker) in mice infused with either control-IgG (left) or
NMO-IgG (middle), n =4 mice (4 sections/mouse) for each group. Scale bar, 20 um;
Jurkat cells treated with 40 mg/ml etoposide, 6 hours (right), served as positive control
for Caspase 3 immunostaining, Scale bar, 10 um. Data represent mean + SEM. 2-tailed
student’s t-test (B). *** P <0.001.
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Figure S3. Microglial activation in NMO-IgG recipient mice is AQP4-dependent.

Lysosomal CD68 (red, lower) in Ibal+ microglia (green, upper) was upregulated in L4
spinal cord of wild-type (Agp4**) mice, but not in AQP4-null mice, on day 5 of NMO-
IgG infusion. Wild-type recipients of control-IgG had low CD68 is expression, n =5

mice (4 sections/mouse). Scale bar, 20 um.
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Figure S4. Mouse monoclonal AQP4-IgG induces AQP4 loss.

Representative spinal L4 cross sections show immunoreactivities of astrocytic AQP4
(green) and endothelial CD31 (red) on day 5 of mouse control-IgG infusion (upper) or
monoclonal AQP4-IgG (lower). Scale bar, 20 pm. Bar graph shows quantitatively that
relative length of AQP4-coverage of parenchymal blood vessels (CD31+) is significantly
less in mouse AQP4-IgG recipient mice than in control-IgG recipients. n = 5 mice (4

sections/mouse). Data represent mean + SEM, 2-tailed student’s t-test. *** P < 0.001.
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Figure S5. Astrocyte activation by mouse monoclonal AQP4-IgG leads to microglial

activation and loss of neuronal NeulN.

Representative spinal L4 cross sections on day 5 of intrathecal IgG infusion (mouse
control-IgG [left] or mouse monoclonal AQP4-IgG [right]) show (A) GFAP
immunoreactivity; insets are higher magnifications of boxed areas in ventral horn. Bar

graphs show that astrocyte relative numbers (left) and soma volumes (right) are both



significantly greater in AQP4-IgG recipient mice than in control-IgG recipients, n =5
mice (4 sections/mouse). Scale bar, 200 um. (B) Ibal immunoreactivity. Bar graphs show
that microglia relative numbers (left) and soma volumes (right) are both significantly
greater in AQP4-IgG recipient mice than in control-IgG recipients, n =5 mice (4
sections/mouse). Scale bar, 200 pm. (C) NeuN immunoreactivity. Bar graph shows that
NeuN?* cells are significantly fewer in AQP4-IgG recipient mice than in control-IgG
recipients, n = 4 mice (4 sections/mouse). Scale bar, 200 um. Data represent mean +
SEM,, 2-tailed student’s t-test (A-C). **P<0.01, *** P <0.001.
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Figure S6. Time course of microglia depletion and replenishment after NMO-IgG

infusion.

(A) (upper) Tamoxifen and diphtheria toxin (DT) were both injected i.p. starting,
respectively, 1 month and 48 hours before continuous intrathecal IgG infusion began;
mice were killed daily thereafter to enumerate L4 spinal cord microglia. (lower)
Microglial numbers (Ibal*) following DT administration and NMO-IgG infusion, n =4
in each group. (B) Representative serial images of Iba* cells in L4 spinal cord cross
sections, before and after diphtheria toxin administration, n =4 mice (4 sections/mouse).

Scale bar, 200 um. Data represent mean + SEM, one-way ANOVA (A). *** P <0.001, ** P
<0.01.
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Figure S7. NMO-IgG induces astrocyte-microglia interactions.
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(A) Interaction of Cx3cr1¢#* microglia (green) and GFAP* astrocytes (red) is inferred

from enlargement and overlapping of both cell types and their processes in dual

immunostained L4 spinal cord of NMO-IgG-recipient mice compared with control-IgG

recipients. Overlapping events quantified by Image] software, n =5 mice (4

sections/mouse). Scale bar, 20 um. (B) Representative images and bar graph

quantification show interaction between Cx3cr1¢#* microglia and Aldh1l1* (red)



astrocytes in NMO-IgG and control-IgG recipients, n = 5 mice (4 sections/mouse). Scale
bar, 20 um. (C) Astrocyte-microglia interaction was further confirmed by dual staining
of CD11b* microglia (green) and GFAP* astrocytes (red), n =5 mice (4 sections/mouse).
Scale bar, 20 um. (D) Mouse monoclonal AQP4-IgG, but not control-IgG, induced
microglia-astrocyte interaction. Arrow heads indicate apparent overlaps of microglia

and astrocytes, n = 5 mice (4 sections/mouse). Scale bar, 20 um. Data represent mean *
SEM, 2-tailed student’s t-test (A-D). *** P < 0.001.
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Figure S8. Genetic ablation of microglia did not prevent NMO-IgG-induced
upregulation of astrocytic C3.

Dual staining reveals complement C3 (green) and GFAP (red) immunoreactivities in
astrocytes of L4 spinal cord of mice at day 5 of NMO-IgG infusion, with and without
microglia ablation. Arrow heads indicate co-localization of C3 and GFAP
immunostaining. Scale bar, 20 um. Bar graph quantifies C3* astrocytes in both ablation
and non-ablation groups after NMO-IgG infusion, n = 5 mice (4 sections/mouse). Data

represent mean + SEM, 2-tailed student’s t-test.



4004
. @ C3” Control-IgG
cé ® C37 NMO-IgG
8 300+
(O]
L
u‘_E 2001
L
>
g
Q 1001
©
-
C Ll L] L Ll L L]
0 1 2 3 4 5

Days after IgG

C
Control-IgG NMO-IgG
D lba1 Cel/GFAP cell Interactions
Foy 22 (3
&) 78% 87%
Control-IgG NMO-IgG

Figure S9. Signaling by early complement components is critical for initial NMO-

IgG-induced motor impairment and progression of pathology.

(A) Spinal cord tissue of C3-null mice lacks C3 immunoreactivity (green) by

comparison with wild-type mice, n =4 mice (4 sections/mouse). Scale bar, 20 um. (B)



Intrathecally-infused NMO-IgG did not significantly impair Rotarod performance of
C3-null mice, n =4 mice per group. (C) By comparison with control-IgG infusion,
microglia (Ibal* cells) in L4 spinal cord of C3-null mice show no significant activation
after NMO-IgG infusion, despite evidence of astrocyte activation (enlarged GFAP*
cells), n = 4 mice (4 sections/mouse). Scale bar, 20 um. (D) Microglia-astrocyte
interaction events were quantified by Image] at day 5 of IgG infusion, n = 4 mice (4

sections/mouse). Data represent mean + SEM, Two-way ANOVA (B).
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Figure S10. AQP4 is lost in both C3-null and C3aR-null mice after NMO-IgG

infusion.

Representative images show astrocytic AQP4 (green) and endothelial CD31 (red)
immunoreactivities after control-IgG (upper) or NMO-IgG (lower) in L4 spinal cord of
mice lacking C3 (A) or C3a receptor (B), n =4 mice in each group (4 sections/mouse).
Scale bar, 20 um. Bar graphs quantify the coverage of intraspinal blood vessels by
AQP4, n =4 mice (4 sections/mouse). Data represent mean + SEM, 2-tailed student’s t-
test (A-B). ***P < 0.001.
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