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Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in
impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to
vesicular stomatitis virus (VSV) and HSV-1in fibroblasts, and to HSV-1in cortical but not trigeminal neurons. The underlying
molecular mechanism is thought to involve impaired IFN-a/f induction by the TLR3 recognition of dsRNA viral intermediates
or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive
IFN-P protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. TIr3-/-
mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-f} secretion
and ISG mRNA in induced pluripotent stem cell-derived cortical neurons. Consistently, TLR3-deficient human fibroblasts and
cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism
by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human
CNS prevents infection by HSV-1in vivo, is therefore based on the control of early viral infection by basal IFN-§ immunity.

Introduction dren with herpes simplex virus 1 (HSV-1) encephalitis (HSE) led

TLR3 on endosomes recognizes double-stranded RNA (dsRNA)
intermediates or by-products generated during viral infection.
TLR3 signaling leads to the activation of IFN regulatory factor 3
(IRF3), NF-«kB, and ATF/c-jun, promoting the induction of antivi-
ral IFNs and downstream IFN-stimulated genes (ISGs) (1-4). The
discovery of inborn errors of human TLR3 and its pathway in chil-
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to the suggestion that TLR3 serves as a key sensor for HSV-1 rep-
lication in the CNS (5-7). Childhood HSE is a rare, sporadic, and
life-threatening complication of primary infection with HSV-1 in
which the virus replicates in the CNS. HSV-1 infection is ubiqui-
tous in the general population. The virus resides in the trigeminal
(TG) ganglion, where it remains latent, but can later reactivate to
cause benign herpes labialis or other rare complications, includ-
ing HSE (8). The pathogenesis of HSE remained unexplained until
our description of the first genetic etiologies for this disease (9,
10). Germline HSE-causing mutations have since been reported
in 7 genes of the TLR3 pathway (TLR3, UNC93B1, TRIF, TRAF3,
TBK1, IRF3, NEMO) and 2 genes of the IFN-a/p receptor path-
way (IFNARI, STATI) (9-17). UNC-93B is a membrane-bound
molecule that regulates the signaling of endosomal TLR3, TLR7,
TLRS, and TLR9 by binding to their transmembrane domains and
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maintaining TLR3 expression (18-21). TRIF is the sole adaptor
of TLR3, whereas TRAF3, TBK1, IRF3, and NEMO are key mol-
ecules required for the TLR3-TRIF-dependent induction of anti-
viral IFNs (7). Candidate mutations in other genes of the pathway
have also been reported (22). Mutations of TLR3 pathway genes
have been shown to impair the TLR3-dependent induction of anti-
viral IFNs, whereas IFNARI and STATI mutations impair cellular
responses to type I IFNs. Collectively, these findings suggest that
HSE can result from the impaired production of IFN-o/p and/or
IFN-A in response to TLR3 stimulation by HSV-1in the CNS.

This hypothesis was initially supported by experiments con-
ducted in dermal fibroblasts infected with HSV-1 and another
neurotropic virus, vesicular stomatitis virus (VSV), an ssRNA virus
typically innocuous in humans, chosen for these studies because it
is highly cytopathic and induces IFN more effectively than HSV-1
in these cells (23). Fibroblasts with TLR3 signaling deficiencies
display impaired responses to the TLR3 agonist polyinosinic-
polycytidylic acid (poly(I:C)), a synthetic analog that mimics dsR-
NA by-products and intermediates of viral replication. Following
infection with HSV-1 or VSV, TLR3 pathway-deficient fibroblasts
produce less IFN-B and -A than control cells, and display higher
rates of viral replication and virus-induced cell death (9-11, 13-16,
24). Moreover, the viral phenotype of fibroblasts from patients
with mutations of TLR3 pathway genes is rescued by pretreat-
ment with IFN-a or -B, but not IFN-A (9-11, 13-16, 24). The viral
phenotype of fibroblasts from patients not responding to IFN-o/B
and -A due to STAT1 deficiency is not rescued by any type of IFN
(10). We have also shown that cortical neurons and oligodendro-
cytes derived from TLR3-deficient induced pluripotent stem cells
(iPSCs) display impaired IFN responses to poly(I:C) and HSV-1,
and do not control HSV-1, with this viral phenotype being rescued
by pretreatment with IFN-a or -f but not IFN-A (25). Collectively,
these findings suggest that the viral (HSV-1 and VSV) and IFN-B
phenotypes of TLR3-deficient fibroblasts observed in vitro are a
surrogate for that of iPSC-derived cortical neurons in vitro and
predisposition to HSE in vivo.

Unlike iPSC-derived cortical neurons, iPSC-derived periph-
eral TG neurons from healthy donors control HSV-1 as poorly as
poly(I:C)-unresponsive TLR3-deficient TG neurons, in terms of
viral growth (26). Pretreatment with IFN-a or -B, but not IFN-A,
rescues susceptibility to viral infections in both types of TG neu-
rons, whereas pretreatment with poly(I:C) rescues only control
TG neurons, in which IFNs and ISGs are induced in response to
TLR3-dependent poly(I:C) stimulation. These data indicate that
TG neurons are vulnerable to HSV-1 in the absence of preemp-
tive stimulation via TLR3 or IFN-a,/p receptors, whereas control
cortical neurons display TLR3-dependent constitutive resistance
that is sufficiently strong to block incoming HSV-1 in the absence
of prior antiviral signals. This experimental observation in vitro
is consistent with HSV-1 infecting TG neurons and establishing
latency in these cells, but not in cortical neurons in vivo in most
individuals (27). Overall, these findings suggest a cellular model
of HSE with a TLR3-dependent IFN-mediated phenotype in fibro-
blasts and iPSC-derived cortical but not TG neurons. However,
the molecular basis of these 2 cellular phenotypes in vitro and of
HSE in vivo remained unexplained. Indeed, although both HSV-1
and VSV produce dsRNAs (28, 29), HSV-1 recognition depends
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largely on the cGAS DNA sensor in mouse fibroblasts and myeloid
cells (30), whereas VSV recognition in mouse fibroblasts is depen-
dent on RIG-I (31). It therefore remained unclear whether TLR3
actually recognizes dsRNA intermediates or by-products gener-
ated during the infection of fibroblasts and cortical neurons with
HSV-1and VSV, or whether it controls the IFN-mediated immunity
of these cells against these viruses by other mechanisms. As a
first step toward addressing this question, we performed a com-
prehensive analysis of the connection between IFN induction and
VSVinfection in human fibroblasts. We then investigated whether
our findings also applied to HSV-1 infection in iPSC-derived
cortical and TG neurons.

Results

RIG-I-dependent overproduction of IFN- and -/ in response to VSV-
MS5IR in TLR3-deficient fibroblasts. In human fibroblasts, high lev-
els of mRNA for IFN-B and IFN-A (including all 3 types of IFN-},
IFNLI1,IFNL2,and IFNL3), but not other subtypes of antiviral IFNs,
can be induced by extracellular poly(I:C) stimulation, which acti-
vates TLR3 in endosomes (Supplemental Figure 1; supplemental
material available online with this article; https://doi.org/10.1172/
JCI134529DS1), or intracellular poly(I:C) stimulation, which acti-
vates RIG-Iand MAD5 in the cytosol (Supplemental Figure 1) (28).
We hypothesized that, if the higher levels of viral growth and cell
death observed in TLR3-deficient cells were due to an impairment
of virus-induced IFN production, then a potent IFN-inducing
stimulus would rescue viral susceptibility. We made use of a natu-
ral mutant of VSV, VSV-M51R, which induces IFN very strongly in
most of the cells tested, much more so than VSV-WT (32, 33). We
first assessed the production of IFN-B and -\ following infection
with VSV-WT and -M51R at various MOIs for 24 hours, in simi-
an virus 40 (SV-40) T antigen-transformed fibroblasts (SV-40
fibroblasts) from a healthy control, a patient with HSE with auto-
somal recessive (AR) UNC-93B deficiency (UNC-93B7), and a
patient with HSE with AR TLR3 deficiency (TLR37"). Surprisingly,
UNC-93B7 and TLR3”" cells produced about 30 times more
IFN-B than healthy control cells after 24 hours of infection with
VSV-M51R at a MOI of 0.01 (Figure 1A). Similar results were
obtained for IFN-)A (as measured by ELISA, which recognizes all
IFN-A1/2/3 in a nonspecific manner, Supplemental Figure 2, A
and B). NEMO™ fibroblasts displayed no activation of the tran-
scription factors IRF3 and NF-kB in response to viral infection
(11, 32), and were thus included as a negative control (Figure 1A).
Consistently, IFNB and IFNL1 mRNA levels were higher in UNC-
93B7-and TLR37" cells than in healthy control cells 24 hours after
infection with VSV-M51R or -WT (Figure 1B, Supplemental Figure
2C), although no IFN- or IFN-\ was detected by ELISA in UNC-
93B7~ and TLR37" cells following VSV-WT infection (Figure 1A,
Supplemental Figure 2A). In UNC-93B7- and TLR3”" fibroblasts,
the response to TLR3 stimulation with extracellularly added
poly(I:C) was completely abolished, whereas the responses to
transfection with poly(I:C) (a nonspecific agonist of RIG-I and
MDAS) and 7sk-as (a specific agonist of RIG-I) were intact (Figure
1A, Supplemental Figure 3, A-C) (9, 10). IFN induction in response
to VSV may be RIG-I dependent, as suggested by previous stud-
ies on mouse embryonic fibroblasts (MEFs) (28, 31, 33). Indeed,
following the short-hairpin RNA-mediated (shRNA-mediated)
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Figure 1. Paradoxical IFN response
to VSV-M51R infection in fibroblasts
with TLR3 signaling deficiencies.

(A) IFN-B production in SV-40-trans-
formed dermal fibroblasts (SV-40
fibroblasts) left nonstimulated (NS),
treated with poly(l:C), or infected with
VSV-WT (WT) or VSV-M51R mutant
at various MOIs (0.01, 0.1, 1) for 24
hours, as measured by ELISA. Clis a
healthy control. (B) IFN-f mRNA
levels in fibroblasts left NS or
infected for 24 hours with VSV-WT

or -M51R at a MOI of 1. B-glucuro-
nidase mRNA levels were used for
normalization. The error bars indicate
SD of biological triplicates from 3
independent experiments. P values
were obtained for 1-way ANOVA and
subsequent Tukey’s multiple compar-
ison tests. (C) dsRNA from VSV-WT-
and VSV-M51R-infected fibroblasts,
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knockdown of RIG-I or its downstream signaling molecule MAVS
(34-37), the production of IFN-f in response to VSV-M51R infec-
tion, or to transfected poly(I:C) and 7sk-as, was much weaker
in RIG-I or MAVS-knockdown UNC-93B”- cells than in those
transduced with a control scrambled RNA, indicating the essen-
tial role of RIG-I in sensing VSV-M51R (Supplemental Figure 3, A
and B). Thus, VSV-M51R can induce IFN-B or IFN-A via RIG-I in
UNC-93B7~ and TLR37" fibroblasts, and, paradoxically, UNC-
93B7~and TLR3”" cells respond to VSV-M51R by producing mark-
edly larger amounts of IFN-f and -A than control cells.

The hyper-IFN response to VSV-MS5IR in TLR3-deficient fibro-
blasts is triggered by enhanced viral replication. We then investigated
whether RIG-1 was hyperactive in UNC-93B~ fibroblasts, which
would account for IFN overinduction as a means of compensating
for the lack of TLR3 signaling. We overcame the problem of the
confounding effect of a larger viral stimulus in UNC-93B”" cells
by transfecting the fibroblasts with total cellular RNA isolated
from VSV-WT- or VSV-M51R-infected Vero cells (VRNA). IFN-f
production levels were almost identical between UNC-93B” and
healthy control cells stimulated by transfection with vRNA (Sup-
plemental Figure 3C). As no viral proteins antagonistic to IFN
were produced, VSV-WT and VSV-M51R RNA induced IFN-f to
similar levels (Supplemental Figure 3C). This result suggests that
the RIG-I pathway is equally active in the cells of patients with
UNC-93B deficiency and healthy controls. Moreover, when we
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coinfected fibroblasts with both VSV-WT and VSV-M51R, the high
levels of IFN-f production induced by the M51R virus were com-
pletely abolished by coinfection with VSV-WT (Supplemental Fig-
ure 3D) (38). This suggests that the inability to block mRNA export
from the nucleus, and thus, to abolish IFN production by VSV-WT,
is responsible for this phenomenon rather than the stimulation,
by VSV-M51R, of an additional signaling pathway different from
that stimulated by the WT virus (39). However, consistent with
the high levels of virus-triggered IFN-B and IFN-A production in
UNC-93B7~ and TLR37 fibroblasts, we detected substantially
more dsRNA in the cells of patients with UNC-93B and NEMO
deficiency than in control fibroblasts (Figure 1C), 8 hours after
VSV-WT or -M51R infection, by Western blotting with anti-
dsRNA antibody (28). The high levels of dsRNA are also con-
sistent with the previously known rapid VSV-WT replication in
UNC-93B7 and TLR3” fibroblasts (9, 10, 13), which was con-
firmed by determining VSV glycoprotein (VSV-G) mRNA levels
by quantitative real-time PCR (RT-qPCR) (Supplemental Figure
3E). Interestingly, the induction of IFNB mRNA by VSV-WT was
detectable only at late time points (not at the 6 hour time point)
(Supplemental Figure 3F), suggesting that viral replication is
required for IFN induction. Indeed, this enhanced production
of IFN in UNC-93B”~ and TLR3”" cells required an actively rep-
licating virus, as the ultraviolet irradiation of VSV-WT and -M51R
blocked their stimulatory effect (Supplemental Figure 3G). Thus,
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Figure 2. Unrestricted virus growth and cytotoxicity in fibroblasts with TLR3 signaling deficiencies.
VSV-WT (A) and VSV-MS51R (B) single-cycle replication curves for fibroblasts from healthy controls (C1 and
C2) and patients with UNC-93B or TLR3 deficiency at a MOI of 1 over 24 hours. Control fibroblasts (C1-C4)
and TLR3-, UNC93B~/-, NEMO/~, STAT1”-, and STAT2"/- fibroblasts were infected with VSV-WT (C) and
VSV-M51R (D) at a MOI of 0.01 for 16 hours. Viral VSV-G RNA levels were then determined by RT-qPCR and
normalized against C1. Cell mortality following infection with VSV-WT (E) and VSV-M51R (F) at a MOI of 1
for C1, UNC-93B/~, and NEMO™- fibroblasts, as measured by the release of lactate dehydrogenase (LDH)
at the times indicated, in hours postinfection (hpi). Values are expressed relative to those for uninfected
cells. Triplicate measurements from 3 independent experiments (A-B, E-F) or representative results from
3 independent experiments (C-D) are shown. The error bars indicate SD of biological triplicates. P values
were obtained through log transformation followed by 1-way ANOVA and subsequent Tukey's multiple
comparison tests (A-B) or likelihood ratio tests (C-D), by comparing each patient’s fibroblasts with con-
trol fibroblasts, and the respective P value is indicated. *P < 0.05, **P < 0.01, ***P < 0.001.

the potent IFN production observed after VSV-M51R infection in
cells with TLR3 pathway deficiencies was due to the presence of
large amounts of dsSRNA upon infection, rather than hyperactive
RIG-Isignaling.

Uncontrolled VSV-M5IR replication and virus-induced cell death
in TLR3-deficient fibroblasts despite high levels of virus-induced IFN
production. We then investigated the second cellular phenotype
related to inborn errors of TLR3 immunity — viral susceptibility —
in TLR3”- and UNC-93B™ fibroblasts. We measured VSV growth

Hours after infection

B; Supplemental Figure 2, A-C). Thus,
although the production of larger amounts
of immunostimulatory viral replication
intermediates in TLR3 pathway-deficient
fibroblasts, such as dsRNA (Figure 1C),
led to enhanced IFN production by the
patients’ cells upon infection with VSV-
M51R, this enhanced IFN production was
not sufficient to protect these cells against
viral replication, which reached very high
levels before IFN production was induced
by the virus.

General antiviral defect in fibroblasts
with deficiencies of the TLR3 and IFN sig-
naling pathways. We then assessed the
susceptibility of UNC-93B7" and TLR37" fibroblasts to other virus-
es, which may or may not rely on TLR3 for virus-triggered IFN
induction, by evaluating viral replication and virus-induced cell
death. We found that another ssRNA virus, human parainfluenza
virus 3 (hPIV3), like VSV, replicated faster and to higher titers in
UNC-93B7" and TLR37 cells than in control cells (Figure 3A).
As a result, viral cytotoxicity was also higher in UNC-93B7 and
TLR37 fibroblasts (Figure 3B). IFN-B production was similar in
control and TLR3- or UNC-93B-deficient fibroblasts infected with
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IFN pathway-deficient cells than in
control cells (Figure 3E; and Supple-
mental Figure 4C), 16 hours after
infection, whereas IFNB and IFNL
mRNA induction was detected 24
hours after infection (Supplemental
Figure 4, D and E). Overall, these
data indicate that fibroblasts with
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Figure 3. High susceptibility to different viruses in TLR3 signaling-deficient cells. (A) hPIV3 single-cycle
replication curves in fibroblasts from healthy controls (C1and C2) and patients with UNC-93B or TLR3 deficiency
over 24 hours. (B) Viability of fibroblasts 48 hours after infection with hPIV3 at the indicated MOIs. (C) IFN-B
production, measured by ELISA, after 24 or 48 hours of infection with hPIV3in C1, C2, UNC-93B-, and TLR3/~
fibroblasts. Control fibroblasts (C1-C4) and TLR3-, UNC93B~/-, NEMO~/-, STAT1"-, and STAT2/- fibroblasts were
infected with EMCV (D) or HSV-1-GFP (E) at a MOI of 0.01 for 16 hours. Viral RNA levels were then quantified by
RT-gPCR, with normalization against the values for C1. Triplicate measurements from 3 independent experi-
ments (A-C) or representative results from 3 independent experiments (D-E) are shown. The error bars indicate
SD of biological triplicates. P values were obtained through log transformation followed by 1-way ANOVA and
subsequent Tukey's multiple comparison tests (A) or likelihood ratio tests, by comparing each patient’s fibro-
blasts with control fibroblasts (D, E), and the respective P values are indicated. *P < 0.05, **P < 0.01***P < 0.001.

hPIV3 (Figure 3C), probably reflecting intact IFN induction via
TLR3-independent pathways. We subsequently challenged fibro-
blasts with encephalomyocarditis virus (EMCV), another RNA
virus that has been shown to induce IFN production in an
MDAS5-dependent manner in MEFs (31, 42), and that, like hPIV3,
induces normal levels of IFN production in TLR3-deficient human
fibroblasts (10, 13). EMCV also replicated to high levels in cells
with TLR3 pathway deficiencies (TLR3, UNC93B1, NEMO) or IFN
pathway deficiencies (STAT1, STAT2) (Figure 3D). Finally, consis-
tent with our previous reports of enhanced HSV-1 replication in
TLR3 pathway-deficient fibroblasts (9, 10), we detected higher
levels of HSV-1 viral ICP27 RNA in TLR3 pathway-deficient or
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P X

deficiencies of the TLR3 and IFN
signaling pathways are highly sus-
ceptible to infection with at least
3 RNA viruses (VSV, hPIV3, and

1 10
MOI - hPIV3

EMCYV) and one DNA virus (HSV-1),
despite a high level of IFN produc-
tion induced by VSV-M51R and the
normal induction of IFN produc-
tion by hPIV3 and EMCV in TLR3
pathway-deficient cells. This is par-
adoxical, as poor IFN production by
these cells upon infection with VSV-
WT and HSV-1 had been thought to
underlie the cellular vulnerability
to both viruses.

Low basal levels of IFN and
ISG expression in fibroblasts with
TLR3-IFN signaling deficiencies.
Our previous and current data
show that the prior treatment (but
not treatment at the time of infec-
tion) of TLR3 signaling-deficient
fibroblasts with recombinant IFN-
a2b or -B, but not IFN-}, protects
them against VSV-WT and -M51R,
or HSV-1 replication and virus-
induced cell death (Supplemental
Figure 5A) (10). In this study, we
also found that TLR3 signaling-
deficient cells sustained very high

XX

levels of virus replication before
the induction of IFN production
in response to viral infection (Fig-
ure 3E; and Supplemental Figure
4, C-E). We therefore hypothe-
sized that viral replication might
be limited in control cells by
basal levels of IFNs constitutively expressed in a TLR3-de-
pendent manner. We tested this hypothesis, first by assessing
basal levels of IFN production in unstimulated SV-40 fibro-
blasts. Control fibroblasts secreted higher basal levels of IFN-f
than TLR37- or UNC-93B”" fibroblasts (Supplemental Figure
5B). We further determined basal mRNA levels for IFNB, IFNL1
(IL29), and downstream ISGs, including CXCLIO0 and IFI44L, in
unstimulated fibroblasts. Control cells contained larger amounts
of mRNA for these genes than SV-40 fibroblasts from patients
with TLR3, UNC93B, or NEMO deficiency (Figure 4, A-D) whose
TLR3 response signaling was impaired (9, 11, 13). Fibroblasts
from previously reported patients with IRAK4 or MYD88 defi-
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Figure 4. Impact of TLR3 signaling deficiencies on basal IFN-related gene expression. mRNA levels of IFNB
(A), IFNL1 (B), CXCL10 (C), and IFI44L (D) (relative to GAPDH) in unstimulated fibroblasts from healthy controls
(C1-C4) and individuals deficient for TLR3-IFN signaling, as quantified by RT-gPCR with normalization against
(1. Representative data from 3 independent experiments are shown. The error bars indicate SDs of triplicate
measurements. (E) Gene expression profile of the ISGs differentially expressed in patients with STAT1 (blue
bar) and TLR3 (orange bar) deficiencies, relative to mean expression levels in controls, as assessed by RNA-
Seq. The heatmap shows the log fold-change in ISG expression, with red indicating upregulation and green
downregulation. P values were obtained for likelihood ratio tests by comparing each patient’s fibroblasts with
control fibroblasts (A-D), and the respective P values are indicated. **P < 0.01, ***P < 0.001.
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ciencies, in which responses to all
TLRs except TLR3 were impaired,
displayed normal levels of IFNs and
ISGs mRNA (Supplemental Figure
5C). Basal levels of mRNA for IFNB,
IFNL1, CXCL10, and IFI44L were
also lower in SV-40 fibroblasts from
patients with STAT1 and STAT?2 defi-
ciency whose IFN response signaling
is impaired than in control cells (Fig-
ure 4,A-D) (40, 41). The immortaliza-
tion of fibroblasts with SV-40 T anti-
gen has been reported to affect IFN
immunity (43). We then analyzed the
transcriptomes of control, TLR3/,
and STAT17/- primary fibroblasts by
RNA sequencing (RNA-Seq) to rule
out the possibility that the apparent-
ly TLR3-IFN signaling-related basal
levels of IFN and ISG were an SV-40
fibroblast-specific phenomenon. We
found that mRNA for 716 fibroblastic
ISGs, but not IFNs, was detectable in
control primary fibroblasts in basal
conditions. mRNA levels were sig-
nificantly lower in both TLR3” and
STAT1/- primary fibroblasts than in
control cells for 43 of the 225 differ-
entially expressed ISGs, whereas 13
ISGs were upregulated in these cells
relative to control cells (Figure 4E,
Supplemental Figure 5D, Supplemen-
tal Table 1). An analysis, with DAVID
software (44), of the 43 ISGs with low
basal expression levels further con-
firmed the significant downregula-
tion of type I IFN signaling pathway
genes and antiviral immune genes in
TLR37 and STAT1/" primary fibro-
blasts (Supplemental Table 2). Thus,
TLR3 and IFN signaling deficiencies
have a profound impact on basal
IFN-B production and ISG expression
in SV-40-transformed and primary
fibroblasts in the absence of exoge-
nous stimulation, demonstrating the
role of TLR3 in maintaining constitu-
tive antiviral gene expression.

Low basal levels of IFN produc-
tion underlie the enhanced viral growth
in  TLR3-deficient fibroblasts. We
assessed the importance of basal lev-
els of IFN production in control cells,
by neutralizing the IFNs and assess-
ing the impact of this intervention on
VSV replication. We cultured UNC-
93B7-, STAT1/, and control SV-40

J Clin Invest. 2021;131(1):e134529 https://doi.org/10.1172/)CI134529
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Figure 5. Constitutive IFN-f production in fibroblasts is TLR3 dependent. Replication of VSV-WT (A) and VSV-M51R (B) in fibroblasts from a healthy
control (C1) or patients with UNC-93B or STAT1 deficiency, cultured in the presence or absence of neutralizing antibodies against IFN-q, -B, and - (IFN Nab).
(C) CXCL10 mRNA levels in unstimulated fibroblasts after treatment with IFN NAb for 24 hours. (D) IFN-B and IFN-A1 (IL-29) mRNA levels in TLR3/ fibro-
blasts transfected with WT TLR3, measured by RT-gPCR and normalized against GUS expression. Replication of VSV-WT (E) and VSV-M51R (F) in TLR3/-
fibroblasts stably transfected with empty vector (+EV) or WT TLR3 (+TLR3). Replication of VSV-WT (G) and VSV-M51R (H) in UNC-93B/ fibroblasts stably
transfected with empty vector or WT UNC-93B (+UNC-93B). Representative results are shown for 3 (A, B, E-H) or 2 (C-D) independent experiments. The error
bars indicate SDs of biological triplicates (C, D) or the SEM of biological triplicates (A, B, E-H). P values were obtained through log transformation followed by
1-way ANOVA and subsequent Tukey's multiple comparison tests, and the respective P values are indicated. **P < 0.01, ***P < 0.001, ****P < 0.0001.

fibroblasts in the presence or absence of neutralizing polyclonal
antibodies (NAbs) raised against IFN-q, - and -, for 72 hours. We
measured VSV-WT and VSV-M51R growth kinetics over 24 hours.
Viral titers were similarin UNC-93B7-and STAT17~ fibroblasts with

J Clin Invest. 2021;131(1):e134529 https://doi.org/10.1172/JC1134529

and without NAbs. By contrast, the growth of VSV in control fibro-
blasts was greater at 8 and 24 hours after infection in the presence
of anti-IFN NAbs than in their absence (Figure 5, A and B), sug-
gesting a substantial contribution of basal IFN production, which
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A Figure 6. TLR3-dependent constitutive IFN-f production
ok VSV M51R restricts VSV growth. (A) TLR3/~ (left panel) and UNC93B~/~
3z ok 3 *k (right panel) fibroblasts were subjected to pretreatment with
? 14 3 10 ** conditioned medium from unstimulated cell cultures (as
:,: haad P <_( 100 e oy indicated in parentheses) for 18 hours and infected with VSV-
é 0.1+ é 104 M51R for 24 hours. VSV-G mRNA levels were then assessed
c e 102 "~ by RT-gPCR, with normalization against GAPDH. (B) Similar
0.01 s -3 o
0>> ~ g 10_4‘ to A, except that HSV-1 GFP was used to infect cells and ICP27
% 0.0014 E 18_5: P mRNA levels were measured by RT-gPCR. (C) TLR3/- (left
° 0.0001 4 T [ 105 panel) and UNC93B~/- (right panel) fibroblasts were treated
6 o 107 . with conditioned medium, as indicated in parentheses, for
=0.00001 ++———— 7 S 10— 24 hours and CXCL10 expression was then quantified by
Q NN N AN N (D D AN N R N (N (D 3 . indi iologi inli
2 Qib\ éb\ \/\O\\/\O(b NG 2 <28)\ r&\\/@\\,\c’% G ?T qPBCB |jThe efrjrortbars |n.d|cate SES olf blologlcalt;trlyllczt]ss
PO P50 rom 3 independent experiments. P values were obtained for

%\/\oéo«&«& <25\/\0$O =5 likelihood ratio tests, by comparing each patient’s fibroblasts

Q7N oD AN éoeo treated with conditioned medium from control or patient
&\3* Oé 9‘5 fibroblasts, and the respective P values are indicated. **P <

\)éo 0.01, ***P < 0.001, ****P < 0.0001.

B
kkkk HSV-1 GFP levels similar to those in a healthy control following the
rkkk kit expression of WT TLR3 (Figure 5D). In TLR37" cells com-
%; 10+ § 10+ iy plemented with WT TLR3, replication rates for VSV-WT
Ri’ 1es % N ﬁ 1o o and VSV-M51R were lower than those in nontransfected
% Z - % zZ - TLR37" cells or in TLR3”" cells transfected with an empty
:Iné 0.1 - - T 014 & vector (Figure 5, E and F). A similar rescue was observed
22 0014 b 3 22 001- i o inthe growth curve of VSV-WT and VSV-M5IR in WT
I% ' I% ’ UNC-93B-expressing UNC-93B"~ fibroblasts (Figure 5,
£0.001 ——+1+—1— £ 0.001 +—F— — G and H). Collectively, these experiments demonstrate
fb/\’\g’\@’\\@@ P Q;\/\Q;\/\@’\\\Q‘b\ »> P that alack of TLR3 signaling results in a deficiency of cell-
é\?é)fb%gg’\ Q?’\ 6&09%“§ & intrinsic, constitutive antiviral IFN responses in fibro-

/\/ /\/ . . . .

Q:b\/@e N\ q({)b \/@io%og blasts, leading to early viral replication that may over-
&\\',Qib & qq‘,b R whelm the activity of RIG-I-dependent IFN production,
< \2)%0' which is induced later in response to viral replication.

Basal IFN-p production by control cells restricts viral
c growth. In human fibroblasts, IFNB was the only interfer-
~ — on gene strongly expressed in basal conditions, and only
% i % akadalal IFNB,IFNLI1,IFNL2, and IFNL2 displayed a strong induc-
— *kkk — . . . .
< 100 ‘ < 10 R tion of expression upon activation of the TLR3 or MAVS
1

é é B pathway (Supplemental Figure 1). However, these cells
E 10+ - E = did not express the receptor for type III IFNs (Supplemen-

o . . .
2 bt :Izj 14 % = tal Figure 6A). We hypothesized that the basal production
g 113 B g of small amounts of IFN-B by healthy control cells can
o e rescue the TLR3-deficient cell phenotype. We evaluated
8 0N +——T—T— 8 0.1+ , the effects of basal IFN, by stimulating patients’ SV-40
X D NN B X NN N B fibroblasts with conditioned medium from healthy con-

O & O O XL L XK . . .
QB P Q& X R trol unstimulated cell cultures. This medium effec-
Q@’\ \é NGIRNG r§;\ \@é eQ,’q eQg tively decreased the growth of VSV-M5IR (Figure 6A)
X N . .

N\ e éQ'Q‘ QQJ SO and HSV-1 (Figure 6B, Supplemental Figure 6B) at 24
< 0\)%0' hours in TLR37" and UNC-93B7" cells from patients,

was below the limit of detection for ELISA, in limiting viral growth.
Consistent with this interpretation, basal ISG CXCLI0 mRNA
levels were strongly decreased by NAD treatment (Figure 5C). We
then rescued TLR3 signaling in TLR37~ SV-40 fibroblasts by ecto-
pically expressing WT TLR3 to demonstrate the requirement of
TLR3 signaling for this constitutive antiviral response limiting viral
replication. Basal levels of IFNB and IL29 mRNA were restored to

:

to levels below those in cells treated with medium

from TLR37- and UNC-93B7~ fibroblasts, with virus

titers close to those measured in control cells. More-
over, mRNA levels for ISGs, including CXCL10, MxA, and RIG-I,
were upregulated in the patients’ fibroblasts by stimulation with
conditioned medium from healthy controls, but not with condi-
tioned medium from TLR37~ and UNC-93B~" fibroblasts (Figure
6C, Supplemental Figure 6C). Fibroblasts are unable to respond
to IFN-A, probably because they lack IFNLR expression (Supple-
mental Figure 6A) (45). However, the pretreatment of TLR3 sig-

J Clin Invest. 2021;131(1):e134529 https://doi.org/10.1172/)CI134529
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naling-deficient fibroblasts with either IFN-B or IFN-a2b can res-
cue resistance to viral infection, consistent with the relatively high
levels of IFNAR expression (Supplemental Figure 6A). We found
that IFN-B NAbs abolished both the protection against VSV-M51R
growth and ISG induction conferred by the conditioned culture
medium from control fibroblasts (Supplemental Figure 6, D and
E), demonstrating that IFN-f is the protective cytokine in this con-
text. STAT17 fibroblasts failed to upregulate ISGs when treated
with conditioned medium from healthy controls (Supplemental
Figure 6E), suggesting that the IFN signaling pathway is essential
for the maintenance of basal ISG expression by basal IFN levels.
Thus, TLR3-dependent, constitutive IFN-B production governs
intrinsic antiviral immunity in human fibroblasts.

TLR3 also controls constitutive antiviral IFN immunity in mouse
fibroblasts. We investigated whether TLR3-dependent constitu-
tive IFN responses also governed cell-intrinsic constitutive antivi-
ral immunity in MEFs. In mice, spontaneous IFN-a/f production
in vivo in the absence of viral infection primes and enhances the
immune response (46-48). We performed RNA-Seq on WT pri-
mary MEFs and Tlr37- MEFs to determine whether TLR3 plays
a critical role in controlling cell-intrinsic basal IFN and antiviral
immunity in mouse cells. Basal mRNA levels were significantly

J Clin Invest. 2021;131(1):e134529 https://doi.org/10.1172/JC1134529
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Figure 7. TLR3 ablation decreas-
es ISG expression and increases
vulnerability to viruses in
MEFs. (A) Gene expression
profile of all differentially
expressed ISGs in TIr37/~ MEFs
relative to mean levels in WT
mice, as assessed by RNA-
Seq. The heatmap shows the
log fold-changes of ISG gene
expression, with red indicating
upregulation and green down-
regulation. (B) ISG expression
was assessed in unstimulated
WT and TIr3”- MEFs, by RT-gP-
CR with normalization against
RPL19. WT and Tlr3-/- MEFs
were infected with VSV-WT (C)
and VSV-M51R (D) for 24 hours.
Viral RNA levels were then
quantified by RT-gPCR, with
normalization against RPL1S.
The error bars indicate SDs of
technical triplicates.
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lower in Tlr37/- MEFs than in Tlr3 WT MEFs for 38 of the 42 ISGs
differentially expressed in WT and Tlr37/- MEFs, whereas 4 ISGs
were more strongly expressed in these cells than in Tlr3 WT
MEFs (Figure 7A, Supplemental Figure 7A, Supplemental Table
3). Seven of the 38 ISGs downregulated in Tlr37/- MEFs were also
downregulated in TLR3-deficient human fibroblasts, but differ-
ent ISGs were upregulated in mouse and human TLR3-deficient
fibroblasts (Supplemental Figure 7B, Supplemental Table 4). As
in human fibroblasts, an analysis of the 38 ISGs downregulated
in Tlr37- MEFs with DAVID software (44) confirmed a significant
downregulation of type I IFN signaling pathway genes and anti-
viral immune genes (Supplemental Table 5). We confirmed these
findings by measuring basal levels of expression for several ISGs
by RT-qPCR. Consistent with the human data, Tlr37- MEFs had
lower levels of mRNA for various ISGs, including Ifit1, Ifit2, and
Ifit3 (Figure 7B). Finally, we assessed the viral susceptibility of
MEFs by measuring viral RNA levels after infection with VSV-WT
and -M51R. Tir37/- MEFs were more susceptible to both VSV-WT
and -M51R than Tlr3 WT MEFs, as high levels of VSV RNA were
detected in Tlr37- MEFs as early as 5 hours after infection (Figure
7, C and Dj; Supplemental Figure 7, C and D). These data suggest
that TLR3 signaling controls constitutive antiviral IFN immunity
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Figure 8. TLR3 controls basal IFN-§ and
antiviral immunity in cortical neurons.
HPSC-derived cortical neurons from 2

,\10_ . 9 . control lines (hESC control, iPSC control),
5 _EI 94 _'PSC TLR3-KO 5 E 84 '_PSC TLR3-KO x  aCRISPR/Cas9-mediated TLR3 knockout
£ 3 8- 7 IPSCTLR3™ ]* : =%, 7 —— iPSCTLR3™ ]:}: (TLR3-KO) line, and a TLR3- patient line
59 74 T g 6 were infected with VSV-WT (A), VSV-M51R
< F 64 > E 54 (B), or HSV-1 (C) for the indicated times.
‘Q 8§ 5 5, = 4 Viral replication was assessed in 50% TCID,
= 44 > L 3 assays. (D) IFN-p levels were measured
3 : : | 2 : | in the culture supernatants of hPSC-de-
1 6 24 1 6 24 rived cortical neurons, by Simoa digital
Hours after infection Hours after infection ELISA'. ® Gen.e expression pr.oflle (?f the
ISGs differentially expressed in patients
c D with TLR3 (orange bar) and STAT1 (blue
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in TLR3-KO iPSC-derived cortical neurons,
relative to parental control iPSC-derived cor-
tical neurons. The heatmap shows the log
fold-change in ISG expression, as assessed
from 2 technical duplicates of the RNA-Seq,
with red indicating upregulation and green
downregulation. The error bars indicate the
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in both mouse and human fibroblasts, which use this mechanism
to restrict infection with various viruses.

Impaired basal IFN-f and intrinsic antiviral immunity in
TLR3-deficient iPSC-derived cortical but not TG neurons. We pre-
viously showed that TLR3 deficiency impairs cell-autonomous
defense against HSV-1 infection in iPSC-derived cortical neurons
and oligodendrocytes, but not astrocytes, neural stem cells, and
TG neurons (25, 26). As with fibroblasts, prior treatment (but not
treatment at the time of infection) of TLR3 pathway-deficient
iPSC-derived cortical neurons and oligodendrocytes with recom-

T SEM (A-C) or SDs (D) of biological triplicates

,5\/ from 3 independent experiments. P values
&\?‘ were obtained with (A-C) or without (D) log
%O transformation followed by 1-way ANOVA

and subsequent Tukey’s multiple compari-
son tests, by comparing TLR3”- or TLR3-KO
cortical neurons with controls, and the
respective P values are indicated. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001.

logFC
4 [ TLR3-KO
2
0

-2
4

binant IFN-a2b or -, but not IFN-A, protected them against HSV-1
replication (25, 26). We investigated whether our findings for fibro-
blasts also applied to cortical and TG neurons. We derived cortical
and TG neurons from one healthy control iPSC line, one healthy
hESC line, an iPSC line from a patient with AR complete TLR3
deficiency (26), and an isogenic TLR3-KO iPSC line that we gener-
ated by CRISPR/Cas9-mediated gene editing (Supplemental Fig-
ure 8, A and B) (49). As in SV-40 fibroblasts, virus-induced IFNB
and IFNLI induction occurred late, 16 and 24 hours after HSV-1
infection (Supplemental Figure 8, C and D). When cortical neurons
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were infected with VSV-WT, VSV-M51R, and HSV-1, higher levels
of viral replication were observed as early as 6 hours after infec-
tion in TLR3-deficient cells, confirming that TLR3 is essential for
the control of HSV-1 in these cells, and showing that this receptor
is also essential for control of the 2 types of VSV tested (Figure 8,
A-C). By contrast, the replication of the 3 viruses was not higher
in TG neurons lacking TLR3 than in the other cells (Supplemen-
tal Figure 8, E-G). TLR3 protein levels were undetectable in both
patient-specific and isogenic TLR3-deficient iPSC-derived cortical
neurons, as shown by Western blotting (Supplemental Figure 8A).
We also assessed basal IFN-f protein secretion by cortical neurons
in the Simoa assay (50). We showed that basal levels of IFN-f pro-
duction were low in TLR3-deficient cells (Figure 8D). We further
analyzed the transcriptomes of control iPSC-derived cortical neu-
rons, comparing them with those of TLR3-deficient patient and
isogenic TLR3-KO iPSC-derived cortical neurons. Consistent with
our results for fibroblasts, TLR3-deficient cortical neurons had
low levels of ISG mRNAs (Figure 8, E and F; and Supplemental
Figure 9, A and B). The IFN mRNAs themselves were not detected
by RNA-Seq. In total, we detected the expression of 734 ISGs in
control cortical neurons in basal conditions. The mRNA levels
for these genes were significantly lower in both TLR3-deficient
patient and TLR3-KO cortical neurons than in control cells, for 243
of 265 and 283 of 311 differentially expressed ISGs, respectively,
whereas 22 and 28 ISGs were upregulated in these cells relative to
control cells (Supplemental Figure 9, C and D; and Supplemental
Table 6). As many as 196 of the downregulated ISGs and 9 of the
upregulated ISGs were common to TLR3-KO and TLR3-deficient
patient neurons. An analysis with DAVID software (44) of the 196
ISGs with low basal levels of expression confirmed the significant
downregulation of the genes controlled by the IFN-o/B-respon-
sive pathway, and of antiviral genes in both TLR3-KO and TLR3-
deficient cortical neurons (Supplemental Table 7). Collectively,
these findings strongly suggest that TLR3 also controls constitu-
tive levels of IFN-B, and thus, cell-intrinsic antiviral immunity, in
human hPSC-derived cortical neurons. This process is crucial for
infection control, at least for VSV and HSV-1 in vitro and, by infer-
ence, probably HSV-1in vivo.

Discussion

We describe an unexpected role of TLR3 signaling in antiviral
immunity: as a rheostat controlling constitutive low-level pro-
duction of IFN-B, which is crucial for limiting viral replication at
early stages in the viral infection of dermal fibroblasts and cortical
neurons. IFN-B was previously thought to be the fibroblastic IFN
because it was discovered in these cells, in which no other type I
IFNs were detectable (51). In most other cells, it is the first IFN
to be induced after viral infection, triggering the amplification
of other IFNs via IRF7 (52). We discovered that the restriction of
VSV growth in human fibroblasts was heavily dependent on the
TLR3-dependent basal IFN-B production of these cells, rather
than their recognition of VSV and the subsequent RIG-I-depen-
dent induction of IFN-B. Basal IFN-B production is impaired in
TLR37- and UNC-93B~~ fibroblasts, and these cells are therefore
overwhelmed by VSV-WT and even M5IR replication within as
little as 6 hours after infection, before the RIG-I-dependent induc-
tion of IFN-B production in response to viral infection. This situa-
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tion contrasts with that in healthy control fibroblasts, in which VSV
replication and cell death are limited by basal IFN-p levels, which
are higher not only than those in UNC-93B~~and TLR37" cells, but
also than those in NEMO7-, STAT17/, and STAT27" cells. In human
fibroblasts lacking TLR3 signaling (e.g., UNC-93B7, TLR37,
NEMO7), the impairment of constitutive low-level TLR3-depen-
dent IFN-f production may reduce the responsiveness and intrin-
sic defenses of uninfected cells against viral infection, by reducing
the basal level of expression of specific ISGs. In cells lacking IFN
signaling responses (e.g., STAT1/-, STAT27"), impaired responses
to IFN-B result in lower levels of basal expression for ISGs, includ-
ing TLR3 and STATI. As a more general consequence, fibroblasts
lacking TLR3 and IFN signaling are highly susceptible to infection
with the 3 RNA viruses (VSV, hPIV3; EMCV) and the DNA virus
(HSV-1) tested, regardless of the levels of IFN-B induction by these
viruses. Similarly, TLR3-deficient iPSC-derived cortical neurons
are highly susceptible to infection with VSV and HSV-1. Collec-
tively, our data indicate that inborn errors of the TLR3 pathway
impair basal and protective IFN-B antiviral immunity in human
fibroblasts and cortical neurons.

We have shown that this TLR3 rheostat also operates in mouse
fibroblasts. Previous studies have shown that T/r37~ mice are no
more susceptible than their WT littermates to VSV, lymphocytic
choriomeningitis virus, or reovirus (53), and that they are even
more resistant to Punta Toro virus (54), influenza virus (55), and
vaccinia virus (56). Mouse fibroblasts may not have been infected
in the course of such experiments, or their contribution to host
defense may be compensated by other cells. However, mouse
TLR3is required for antiviral immunity to mouse cytomegalovirus
(57), respiratory syncytial virus (58), coxsackievirus group B sero-
type 3 (CVB3) (59), and coxsackievirus B4 (CVB4) viruses (60).
The contribution of fibroblasts in these models is unknown. Other
cell types in mice may also control basal IFN-B immunity through
TLR3. Interestingly, the DNA sensor cGAS controls basal levels
of IFNs and ISGs in mouse bone marrow-derived macrophages
(61). It is therefore possible that TLR3 and cGAS control basal
ISG levels in different cell types. In certain cell types, both may
be required for basal antiviral immunity. Mouse cGAS is essential
for defense against various infections, including HSV-1 infection
(30). The genetic ablation of cGAS revealed that this protein was
required for antiviral responses to both DNA viruses and RNA
viruses in vivo (61). Future studies with single and double knock-
outs of TLR3 and ¢GAS in mice and humans may delineate the
respective contributions of TLR3 and cGAS, as viral sensors versus
rheostats of IFN immunity in host defense. Virus-induced IFN-o,/
and IFN-A production could be protective against viral infection in
vivo, probably following the earliest stage of viral infection. The
study of MDA5 and RIG-I in this context is also warranted by the
identification of patients with MDAS deficiency displaying selec-
tive vulnerable to respiratory viruses (62, 63). The identification of
patients with cGAS, STING, or RIG-I deficiency could provide new
insight into this aspect.

The natural TLR3 stimuli controlling basal IFN-B produc-
tion in fibroblasts and cortical neurons remain unknown. In the
absence of exogenous stimulation, endogenous ligands such as
mRNAs or debris from necrotic cells can trigger TLR3 signaling in
human dendritic cells (64) and murine macrophages (65), respec-
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tively. Self-noncoding RNAs generated during cell damage and
the microtubule regulator stathmin have been identified as endog-
enous agonists of TLR3 in human keratinocytes and in human
astrocytes and microglia cells, respectively (66, 67). One or more
of these known cell-endogenous agonists may activate TLR3 in
fibroblasts, cortical neurons, and other cells, thereby contributing
to basal IFN and ISG production. However, it remains possible
that TLR3 can sustain basal activation in the absence of stimula-
tion with any ligand. In any event, our study clearly demonstrates
that TLR3 is essential for the maintenance of constitutive IFN-f
immunity in human fibroblasts and cortical neurons, and this
observation also applies to mouse fibroblasts. It may also operate
in other CNS-resident cells, such as oligodendrocytes, in which
the control of HSV-1 is also dependent on TLR3, contrasting with
the situation in astrocytes, neural stem cells, and TG neurons (25,
26). Constitutive TLR3 activity in the brain may also be important
in the prevention of other neurological conditions via mechanisms
that may or may not be related to IFN-mediated immunity (68,
69). While we cannot yet discern the respective roles of constitu-
tive and virus-induced cell-intrinsic IFN immunity in the course
of natural infection with HSV-1 in TLR3-deficient individuals,
our findings provide a plausible molecular and cellular basis for
HSE in patients with inborn errors of TLR3 immunity. They also
suggest that IFN-a/f, rather than IFN-A, are critical for protective
immunity to HSV-1in the CNS.

Our findings also suggest that TLR3-dependent cell-intrinsic
constitutive IFN immunity may be a critical first line of defense
against HSV-1 and perhaps other viruses in certain tissues, and its
disruption may result in tissue-specific severe viral infections in
various organs. Patients with TLR3 deficiency may also be more
susceptible to diseases other than HSE. This was confirmed by our
recent identification of 3 unrelated patients with TLR3 mutations
and severe influenza pneumonia (70), a finding that is consistent
with TLR3 being a major IFN-p- and IFN-A-inducing receptor in
human and mouse pulmonary epithelium cells (PECs), in which
large amounts of IFN-A may be produced with potent antiviral
activity (70,71). Furthermore, a deleterious TLR3 mutation has also
been found in a patient with varicella zoster virus ophthalmic neu-
ritis (72). Overall, our findings indicate that TLR3 controls baseline
tone of IFN-B and IFN-) in dermal fibroblasts and of IFN-f in corti-
cal neurons (both cell types respond to IFN-f but not IFN-A). They
also suggest that TLR3 may control baseline levels of IFN-B and/
or IFN-A in PECs (which respond to both IFN-B and IFN-A). The
genetic dissection of various viral diseases, including coronavirus
disease 2019 (COVID-19) (73-75), may help to delineate the roles
of human TLR3 and other IFN-inducing sensors in host defense.
It also seems likely that deficiencies of other type I IFN respon-
siveness circuit genes (e.g., IRF7, IRF9, STAT1, STAT2, IFNARI,
IFNAR2) render patients prone to a broad spectrum of viral diseas-
es, other than the previously reported phenotypes including severe
influenza pneumonia (IRF7, IRF9), HSE (IFNARI, STATI), and
severe adverse reactions to live attenuated viral vaccines (IRF9,
STATI, STAT2, IFNARI, IFNAR?2) (12, 17, 40, 76-79), partly due to
the low basal levels of IFN-B, IFN-A, and ISG in tissue-specific cells.
Our findings highlight the importance of host cell-intrinsic and
constitutive, as opposed to pathogen-induced, IFN and ISG immu-
nity in antiviral defenses, particularly during early stages of viral
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infection (80-82). Our findings also suggest that TLR3 may govern
the first line of broad antiviral responses in some cell types, such
as fibroblasts, cortical neurons, and perhaps PECs, or even more
broadly in certain tissues or organs, such as the CNS and lungs in
particular, as opposed to governing immunity to specific viruses,
such as HSV-1, in various cells, tissues, and organs.

Methods

Cells and viruses. Primary fibroblasts were isolated from skin biopsy
specimens from patients with AR UNC-93B, AR STAT1, XR NEMO,
and AR TLR3 deficiencies and healthy controls, as previously
described (9, 11, 13, 41). The fibroblasts were immortalized by trans-
fection with the SV-40 large T antigen and maintained in DMEM sup-
plemented with 10% FBS.

Cells stably expressing shRNAs against RIG-I and MAVS were
generated by transduction with shRNA-expressing retroviral particles
(Santa Cruz Biotechnology). Stably transfected cell lines were gener-
ated by transfecting TLR37~ or UNC-93B”" fibroblasts with TLR3 or
UNC-93B WT or empty vector, with Lipofectamine 2000 (Invitro-
gen). Transfectants were selected in DMEM containing 5 ug/mL blas-
ticidin (Invitrogen).

VSV, Indiana strain, WT, and M51R mutant (harboring a substi-
tution of an arginine residue in place of the methionine in position 51
of the matrix (M) protein) were provided by Pierre Lebon and have
been described elsewhere (10, 39, 83-85). MEFs were generated from
14-day-old WT and TIr3~/~ embryos (86), and maintained in DMEM
supplemented with 10% FBS.

Cell culture of iPSCs and hESCs (together referred to as hPSCs), and
neuronal induction and differentiation. Control MRC5 and TLR37
patient-specific iPSC lines were reprogrammed with a nonintegrating
Sendai viral vector, as previously described (26). All hPSC lines were
used at passage 20-50, and were maintained on vitronectin with
Essential 8 medium (Fisher Scientific), with twice-weekly passaging
with EDTA (87). The HPSC lines used here were as follows: TLR37
patient-specific iPSCs, control iPSCs MRCS5, isogenic MRC5 TLR3 KO
iPSCs, and a control hESC line H9 (WA-09) (26). All cell lines were
karyotyped to ensure genomic integrity and weekly tests for myco-
plasma were performed. TG neuron and cortical neuron differentia-
tion was performed as previously described (26).

Cell stimulation. SV-40 fibroblasts were plated at a density of 10°
cells per well in a 24-well plate and were incubated overnight. Poly-
inosinic-polycytidylic acid (poly(I:C); Amersham) was added to the
culture medium at a concentration of 25 pg/mlL, transfected with the
RIG-I agonist, 7sk-as at a concentration of 0.45 ng, or with 25 pg of
poly(I:C), with Lipofectamine 2000 (Invitrogen), or infection with
VSV at the indicated MOIs, and the culture medium was harvested
after 24 hours of stimulation. Cytokine concentrations in culture
medium were determined by ELISA.

Measurement of cytokine production. IFN-B production was
assessed in an enzyme-linked immunosorbent assay (ELISA; TFB
Fujirebio). For IFN-A determinations, culture supernatants were
incubated for 2 hours in plates coated with 1 pg/mL monoclonal
anti-human IL29 antibody (R&D Systems). A biotinylated mono-
clonal secondary antibody directed against human IL-29 (R&D Sys-
tems) and streptavidin peroxidase were added, together with TMB
(3,3',5,5'-tetramethylbenzidine). The signal at 450 nm was then read
with a plate fluorescence reader.
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Immunoblotting. Cells were lysed in NP40 lysis buffer (280 mM
NaCl, 50 mM Tris pH 8, 0.2 mM EDTA, 2 mM EGTA, 10% glycer-
ol, 0.5% NP40) supplemented with 1 mM DTT, 5 mM Na,VO,, and
Complete protease inhibitor cocktail (Roche). The protein lysate
was subjected to SDS-PAGE and the bands obtained were trans-
ferred to a PVDF membrane, which was probed with unconjugated
rabbit anti-RIG-I (Cell Signaling, catalog 3743), goat anti-MAVS
(Santa Cruz Biotechnology, catalog sc-365333), TLR3 (R&D Sys-
tems, catalog 1487) and HRP-conjugated secondary antibodies. A
B-tubulin antibody (MilliporeSigma, catalog T4026) and a GAPDH
(Santa Cruz Biotechnology, catalog sc-365062) antibody were used
as loading controls.

For the detection of dsRNA in VSV-infected cells, SV-40 fibro-
blasts were infected as described above, with VSV at a MOI of 10 for
8 hours. RNA was isolated with TRIzol reagent (Invitrogen), accord-
ing to the manufacturer’s protocol. We subjected 30 pg total RNA to
electrophoresis in a 1.5% agarose/TBE gel, and the bands were then
transferred to a nylon membrane (Hybond N+, GE Healthcare). The
RNA was fixed by ultraviolet irradiation, probed with the anti-dsRNA
antibody K1, and the blot was developed for enhanced chemilumines-
cence (Pico ECL, Pierce).

Viral assays. SV-40-transformed fibroblasts were plated at a
density of 10° cells per well in 24-well plates. For one-step growth
curves, the cells were incubated with VSV-WT and -M51R, hPIV3,
EMCYV, or HSV-1 at the indicated MOI for 30 minutes or 1 hour,
washed twice in PBS, and then transferred to fresh DMEM. Virus
samples were collected at the indicated times and the viral titer was
determined by 50% tissue culture infective dose (TCID, ) assays
on Vero E6 cells (for VSV and hPIV3), according to the Reed and
Muench calculation (13), or by qPCR methods for EMCV (88), deter-
minations of ICP27 mRNA levels for HSV-1, and determinations of
VSV-G mRNA levels for VSV.

For coinfection experiments, cells were infected with VSV-WT at
a MOI of 3 and with VSV-M51R at a MOI of 1 in DMEM supplement-
ed with 10% FBS for 24 hours. VSV-WT and -M51R were inactivated
by exposure to ultraviolet light for 10 minutes at a distance of 15 cm.
Cytokine production was measured in the culture medium by ELISA.

For IFN neutralization experiments, cells were cultured in the
presence of neutralizing polyclonal antibodies against IFN-a and -B
(PBL), replaced daily for 3 days. They were then infected with VSV-WT
or -M51R at a MOI of 3, as described above. Samples were harvested at
the times indicated and titered on Vero cells.

Cytotoxicity assays. Cells were plated at a density of 2 x 10* cells
per well in 96-well plates, in DMEM with or without IFNa2b (10°
IU/mL, Schering-Plough) treatment for 18 hours. The medium was
replaced with medium containing VSV at the indicated MOIs. Mor-
tality was assessed 24 hours after infection, with the LDH Cytoxicity
Detection Kit"™s (Roche). The death of cells is expressed relative to
that of uninfected cells. For hPIV3 infection, fibroblasts were plated
as above and infected at the indicated MOIs. Viability was assessed
in a resazurin-based viability assay (MilliporeSigma). The viability of
infected cells is expressed relative to that of uninfected cells.

Determination of mRNA levels by RT-qPCR. Total RNA was extracted
from cells with TRIzol (Invitrogen) or the RNeasy kit (QIAGEN). Sam-
ples were treated with DNase at 37°C for 1 hour and cleaned by passage
through an RNeasy column (QIAGEN). Reverse transcriptase-PCR was
performed with random hexamers (Applied Biosystems). RT-qPCR
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was performed with Applied Biosystems TugMan assays, using the
B-glucuronidase (GUS) housekeeping gene for normalization, or in
SYBR Green assays with the GAPDH (human) or RPL19 (mouse)
housekeeping gene for normalization. Results are expressed according
to the AACt method, as described by the manufacturer.

RNA sequencing and analysis. Total RNA was extracted from
human primary fibroblasts, C57BL/6 mouse primary fibroblasts,
or hPSC-derived cortical neurons. RNA samples were treated with
DNase (Ambion) to remove residual genomic DNA. RNA-Seq libraries
were prepared with the Illumina RiboZero TruSeq Stranded Total RNA
Library Prep Kit (Illumina) and sequenced on the Illumina NextSeq
platform in the 150 nt with paired-end configuration. We sequenced
3 (human samples) or 2 (mouse samples) technical replicates for each
sample. The raw sequencing data is available under National Center
for Biotechnology Information Sequence Read Archive (NCBI-SRA)
accession number SRP2886438.

The RNA-Seq FASTQ raw data were inspected with multiQC
v1.6 to ensure that they were of high quality (89). The sequencing
reads of human and mouse samples were mapped onto the UCSC
human reference genome GRCh37/hg19 and the UCSC mouse refer-
ence genome GRCm38/mm10, respectively (90), with STAR aligner
v2.6 (91). The quality of each mapped alignment in BAM files was
evaluated with RSeQC (92). Reads were quantified to determine the
number of gene-level read counts forming the read alignment, with
featureCounts v1.6.0 and GENCODE GRCh37.p13 human gene anno-
tation V19 and GENCODE GRCm38.p6 mouse gene annotation M19,
respectively (93, 94). The gene-level read counts were normalized and
log,-transformed by DESeq2 to obtain the gene expression value for all
genes and all samples (95).

We extracted expression data for 905 ISGs based on our previous
IFN-stimulated microarray data analysis (13). Differential ISG expres-
sion was analyzed by applying TMM normalization and gene-wise
generalized linear model regression in edgeR (96). The ISGs displaying
significant differential expression were selected on the basis of a FDR
< 0.05. We used ComplexHeatmap (97) to plot a heatmap of the fold-
change in gene expression. Gene set enrichment analysis was performed
with Ingenuity Pathway Analysis (IPA) (98) and DAVID (44) software.

Conditioned medium experiments. Conditioned culture medium was
harvested from healthy control, TLR3"", or UNC-93B~-unstimulated cell
cultures after 2 days of culture. Cell debris was removed by centrifuga-
tion. Healthy control, TLR37-, UNC-93B7, or STAT1" fibroblasts were
then cultured in fresh DMEM. The conditioned culture supplemented
with 100 U neutralizing antibodies against IFN- or -o or normal sheep
serum (isotype control) was added to the culture medium of the cells,
and was maintained in the medium for 18 hours. RNA was isolated for
RT-qPCR, and VSV growth was measured at the time points indicated.

Gene editing. Gene-editing experiments were performed as previ-
ously described (99). Briefly, guide RNA (gRNA) sequences were gen-
erated with the CRISPR design tool (http://crispr.mit.edu/). GTCATC-
GAATCAAATTAAAG was selected as the guide sequence. Forward
and reverse oligonucleotides for each gRNA were then inserted into
the MLM3636 vector (Addgene, 43860). We electroporated 2 million
hPSCs with 20 pg of Cas9-GFP plasmid and 5 pg gRNA plasmid mixed
in electroporation buffer (BTX, catalog 45-0805). Green cells were
sorted by FACS 48 hours after electroporation. About 50,000 cells
with a moderate GFP fluorescence intensity were cultured, plated at
clonal density in 96-well plates, and amplified. Genomic DNA was

= [


https://www.jci.org
https://doi.org/10.1172/JCI134529
http://crispr.mit.edu/

RESEARCH ARTICLE

then extracted from each clone and Sanger sequencing for TLR3 was
performed. Forward: 5-CAACACTCCACCTCACTATC-3'; reverse:
5'-CATTGAAGAGAAATGTTCCCAGAC-3'. The TLR3-KO line used
in this study carries a homozygous insertion that leads to a frameshift
at amino acid position 210 and a premature stop codon 17 amino acids
later (c. 628A>AA; p. K210fs17%).

Simoa assay. IFN- protein levels were quantified in a digital ELI-
SA (Simoa, Quanterix) developed with the Quanterix Homebrew Kit,
as previously described (50).

Statistics. Data are expressed as the mean of at least 3 biologi-
cal replicates * SD unless otherwise indicated, or are representative
of 3 independent experiments. For most data, linear mixed models
were used for log-transformed relative values, to account for repeat-
ed measurements. The difference between cases and controls was
assessed with a likelihood ratio test. Analysis was performed with the
nlme package of R software. Where indicated, 1-way ANOVA tests or
log-transformations followed by 1-way ANOVA tests were used for sta-
tistical analysis. Data were analyzed in PRISM7. *P < 0.05, **P < 0.01,
**P<0.001, ****P < 0.0001.

Study approval. All experiments were conducted in accordance
with local regulations and with the approval of the institutional review
boards of The Rockefeller University and Institut National de la Santé
et de la Recherche Médicale (INSERM).

Author contributions

DG, MJC, OH and JC performed the experiments. DG, M]JC,
PZ, and JC analyzed the data. VB, MH, XM, YI, AC, VSS, BB,
LL, GC, JM, EA, EJ, DC, IM, LA, SH, GAS, LN, DD, LS helped
design the study and performed some of the experiments. MSD
provided MEF cells. JLC and SYZ supervised the study. DG,
M]JC, JLC and SYZ wrote the manuscript. All authors contribut-
ed and edited the manuscript.

The Journal of Clinical Investigation

Acknowledgments

We thank the patients and their families for their participation.
We thank the members of both branches of the St. Giles Labo-
ratory of Human Genetics of Infectious Diseases, in particular
Tatiana Kochetkov, for expertise and assistance with cell culture,
Dusan Bogunovic for invaluable discussions and advice, and
Dominick Papandrea, Cécile Patissier, and Yelena Nemirovskaya
for administrative assistance. We thank Pierre Lebon (Laboratory
of Virology, Paris University, Assistance Publique-Hopitaux de
Paris, Cochin Hospital) for providing us with VSV and technical
advice. This work was funded in part by the National Center for
Advancing Translational Sciences, NIH Clinical and Translation-
al Science Award program (UL1TR001866), NIH (ROINS072381,
RO1AI088364, and R21AI151663), the French National Research
Agency (ANR) under the “Investments for the future” program
(ANR-10-IAHU-01), Integrative Biology of Emerging Infectious
Diseases Laboratoire d’Excellence (ANR-10-LABX-62-IBEID),
and grants ANR-14-CE14-0008-01 and ANR-18-CE15-0020-02,
The Rockefeller University, Institut National de la Santé et de
la Recherche Médicale (INSERM), Paris Descartes University,
and the St. Giles Foundation. DG is supported by the Charles H.
Revson Senior Fellowship in Biomedical Sciences and the Nation-
al Natural Science Foundation of China (grant 31970855). IM is
supported by KU Leuven C1 grant C16/18/007 and Fonds Weten-
schappelijk Onderzoek Vlaanderen grant GOC8517N.

Address correspondence to: Daxing Gao, University of Science
and Technology of China, Huangshan Road 443, Hefei, Anhui
230027, China. Phone: 86.551.63602833; Email: daxing@ustc.
edu.cn. Or to: Shen-Ying Zhang, The Rockefeller University, 1230
York Avenue, New York, NY 10065, USA. Phone: 212.327.7333;
Email: shzh289@rockefeller.edu.

1. Alexopoulou L, Holt AC, Medzhitov R, Flavell

with herpes simplex encephalitis. Science.

IFNARI deficiency [published ahead of print

2.

3.

4

5

RA. Recognition of double-stranded RNA and
activation of NF-kappaB by Toll-like receptor 3.
Nature.2001;413(6857):732-738.

Beutler BA. TLRs and innate immunity. Blood.
2009;113(7):1399-1407.

Kawai T, Akira S. The role of pattern-recognition
receptors in innate immunity: update on Toll-like
receptors. Nat Immunol. 2010;11(5):373-384.

. Stetson DB, Medzhitov R. Type Iinterferons in

host defense. Immunity. 2006;25(3):373-381.

. De Tiege X, Rozenberg F, Héron B. The spectrum

of herpes simplex encephalitis in children.

2007;317(5844):1522-1527.

11. Audry M, et al. NEMO is a key component of

NF-kB- and IRF-3-dependent TLR3-mediated
immunity to herpes simplex virus. ] Allergy Clin
Immunol. 2011;128(3):610-7.el.

12. Dupuis S, et al. Impaired response to interfer-

on-alpha/beta and lethal viral disease in human

STAT1 deficiency. Nat Genet. 2003;33(3):388-391.
13. GuoYY, et al. Herpes simplex virus encephalitis in

a patient with complete TLR3 deficiency: TLR3is
otherwise redundant in protective immunity.
JExp Med.2011;208(10):2083-2098.

18.

19.

September 22, 2020]. ] Clin Invest. https://doi.
org/10.1172/JCI139980.

Brinkmann MM, Spooner E, Hoebe K, Beutler B,
Ploegh HL, Kim YM. The interaction between
the ER membrane protein UNC93B and TLR3,
7,and 9 is crucial for TLR signaling. J Cell Biol.
2007;177(2):265-275.

Kim Y-M, Brinkmann MM, Paquet M-E, Ploegh
HL. UNC93B1 delivers nucleotide-sensing
toll-like receptors to endolysosomes. Nature.
2008;452(7184):234-238.

20. Tabeta K, et al. The Unc93b1 mutation 3d dis-

Eur ] Paediatr Neurol. 2008;12(2):72-81.
6. Sancho-Shimizu V, et al. Genetic susceptibility
to herpes simplex virus 1 encephalitis in mice

14. Herman M, et al. Heterozygous TBK1 mutations rupts exogenous antigen presentation and
impair TLR3 immunity and underlie herpes
simplex encephalitis of childhood. J Exp Med.
2012;209(9):1567-1582. 2
15. Pérez de Diego R, et al. Human TRAF3 adap-
tor molecule deficiency leads to impaired

Toll-like receptor 3 response and susceptibil-

signaling via Toll-like receptors 3,7 and 9.
Nat Immunol. 2006;7(2):156-164.

. Pelka K, et al. The chaperone UNC93B1 regu-
lates Toll-like receptor stability independently
of endosomal TLR transport. [mmunity.
2018;48(5):911-922.¢7.

ity to herpes simplex encephalitis. Immunity. 22. Mprk N, et al. Mutations in the TLR3 signaling
2010;33(3):400-411.

16. Sancho-Shimizu V, et al. Herpes simplex enceph- herpes simplex encephalitis. Genes Immun.

alitis in children with autosomal recessive 2015;16(8):552-566.
and dominant TRIF deficiency. ] Clin Invest. 23. Rieder M, Conzelmann KK. Rhabdovirus evasion
2011;121(12):4889-4902. of the interferon system. J Interferon Cytokine Res.

17. Bastard P, et al. Herpes simplex encephalitis in 2009;29(9):499-509.

a patient with a distinctive form of inherited 24. Lim HK, et al. TLR3 deficiency in herpes simplex

—-

and humans. Curr Opin Allergy Clin Immunol.
2007;7(6):495-505.

7. Zhang SY, et al. TLR3 immunity to infection

in mice and humans. Curr Opin Immunol.
2013;25(1):19-33.

8. Grinde B. Herpesviruses: latency and reactivation pathway and beyond in adult patients with
- viral strategies and host response. ] Oral Micro-
biol. [Published online Oct 25, 2013].

9. Casrouge A, et al. Herpes simplex virus enceph-
alitis in human UNC-93B deficiency. Science.
2006;314(5797):308-312.

10. Zhang S-Y, et al. TLR3 deficiency in patients

__JCI ¥

J Clin Invest. 2021;131(1):e134529 https://doi.org/10.1172/)CI134529


https://www.jci.org
https://doi.org/10.1172/JCI134529
mailto://daxing@ustc.edu.cn
mailto://daxing@ustc.edu.cn
mailto://shzh289@rockefeller.edu
https://doi.org/10.1038/35099560
https://doi.org/10.1038/35099560
https://doi.org/10.1038/35099560
https://doi.org/10.1038/35099560
https://doi.org/10.1182/blood-2008-07-019307
https://doi.org/10.1182/blood-2008-07-019307
https://doi.org/10.1038/ni.1863
https://doi.org/10.1038/ni.1863
https://doi.org/10.1038/ni.1863
https://doi.org/10.1016/j.immuni.2006.08.007
https://doi.org/10.1016/j.immuni.2006.08.007
https://doi.org/10.1016/j.ejpn.2007.07.007
https://doi.org/10.1016/j.ejpn.2007.07.007
https://doi.org/10.1016/j.ejpn.2007.07.007
https://doi.org/10.1097/ACI.0b013e3282f151d2
https://doi.org/10.1097/ACI.0b013e3282f151d2
https://doi.org/10.1097/ACI.0b013e3282f151d2
https://doi.org/10.1097/ACI.0b013e3282f151d2
https://doi.org/10.1016/j.coi.2012.11.001
https://doi.org/10.1016/j.coi.2012.11.001
https://doi.org/10.1016/j.coi.2012.11.001
https://doi.org/10.1126/science.1128346
https://doi.org/10.1126/science.1128346
https://doi.org/10.1126/science.1128346
https://doi.org/10.1126/science.1139522
https://doi.org/10.1126/science.1139522
https://doi.org/10.1126/science.1139522
https://doi.org/10.1016/j.jaci.2011.04.059
https://doi.org/10.1016/j.jaci.2011.04.059
https://doi.org/10.1016/j.jaci.2011.04.059
https://doi.org/10.1016/j.jaci.2011.04.059
https://doi.org/10.1038/ng1097
https://doi.org/10.1038/ng1097
https://doi.org/10.1038/ng1097
https://doi.org/10.1084/jem.20101568
https://doi.org/10.1084/jem.20101568
https://doi.org/10.1084/jem.20101568
https://doi.org/10.1084/jem.20101568
https://doi.org/10.1084/jem.20111316
https://doi.org/10.1084/jem.20111316
https://doi.org/10.1084/jem.20111316
https://doi.org/10.1084/jem.20111316
https://doi.org/10.1016/j.immuni.2010.08.014
https://doi.org/10.1016/j.immuni.2010.08.014
https://doi.org/10.1016/j.immuni.2010.08.014
https://doi.org/10.1016/j.immuni.2010.08.014
https://doi.org/10.1016/j.immuni.2010.08.014
https://doi.org/10.1172/JCI59259
https://doi.org/10.1172/JCI59259
https://doi.org/10.1172/JCI59259
https://doi.org/10.1172/JCI59259
https://doi.org/10.1172/JCI139980
https://doi.org/10.1083/jcb.200612056
https://doi.org/10.1083/jcb.200612056
https://doi.org/10.1083/jcb.200612056
https://doi.org/10.1083/jcb.200612056
https://doi.org/10.1083/jcb.200612056
https://doi.org/10.1038/nature06726
https://doi.org/10.1038/nature06726
https://doi.org/10.1038/nature06726
https://doi.org/10.1038/nature06726
https://doi.org/10.1038/ni1297
https://doi.org/10.1038/ni1297
https://doi.org/10.1038/ni1297
https://doi.org/10.1038/ni1297
https://doi.org/10.1016/j.immuni.2018.04.011
https://doi.org/10.1016/j.immuni.2018.04.011
https://doi.org/10.1016/j.immuni.2018.04.011
https://doi.org/10.1016/j.immuni.2018.04.011
https://doi.org/10.1038/gene.2015.46
https://doi.org/10.1038/gene.2015.46
https://doi.org/10.1038/gene.2015.46
https://doi.org/10.1038/gene.2015.46
https://doi.org/10.1089/jir.2009.0068
https://doi.org/10.1089/jir.2009.0068
https://doi.org/10.1089/jir.2009.0068
https://doi.org/10.1212/WNL.0000000000000999

The Journal of Clinical Investigation RESEARCH ARTICLE

encephalitis: high allelic heterogeneity and recur-
rence risk. Neurology. 2014;83(21):1888-1897.
. Lafaille FG, et al. Impaired intrinsic immunity to

42. Gitlin L, et al. Essential role of mda-5 in type I
IFN responses to polyriboinosinic:polyribocyti-

required for survival following coxsackievirus B4
infection. PLoS One. 2009;4(1):e4127.

2 61. Schoggins JW, et al. Pan-viral specificity

ol

dylic acid and encephalomyocarditis

HSV-1in human iPSC-derived TLR3-deficient
CNS cells. Nature. 2012;491(7426):769-773.

26. Zimmer B, et al. Human iPSC-derived trigemi-

nal neurons lack constitutive TLR3-dependent
immunity that protects cortical neurons from
HSV-1infection. Proc Natl Acad Sci US A.
2018;115(37):E8775-E8782.

. Roizman B, Whitley R]. An inquiry into the
molecular basis of HSV latency and reactivation.
Annu Rev Microbiol. 2013;67:355-374.

. Kato H, et al. Length-dependent recognition
of double-stranded ribonucleic acids by ret-
inoic acid-inducible gene-I and melanoma
differentiation-associated gene 5. ] Exp Med.

picornavirus. Proc Natl Acad Sci US A.
2006;103(22):8459-8464.

. Rathi AV, Cantalupo PG, Sarkar SN, Pipas

JM. Induction of interferon-stimulated genes
by Simian virus 40 T antigens. Virology.
2010;406(2):202-211.

. Huang da W, Sherman BT, Lempicki RA. System-

atic and integrative analysis of large gene lists
using DAVID bioinformatics resources.
Nat Protoc. 2009;4(1):44-57.

. Lasfar A, et al. Characterization of the mouse

IFN-lambda ligand-receptor system: IFN-lamb-
das exhibit antitumor activity against B16 mela-
noma. Cancer Res. 2006;66(8):4468-4477.

of IFN-induced genes reveals new roles
for cGAS in innate immunity. Nature.
2014;505(7485):691-695.

62. Lamborn IT, et al. Recurrent rhinovirus infec-

tions in a child with inherited MDAS5 deficiency.
JExp Med. 2017;214(7):1949-1972.

63. Asgari S, et al. Severe viral respiratory infec-

tions in children with IFIHI loss-of-func-
tion mutations. Proc Natl Acad Sci U S A.
2017;114(31):8342-8347.

64. Kariko K, Ni H, Capodici J, Lamphier M,

Weissman D. mRNA is an endogenous
ligand for Toll-like receptor 3. J Biol Chem.
2004;279(13):12542-12550.

2008;205(7):1601-1610. 46.Hida S, etal. CD8(+) T cell-mediated skin disease
29. Weber F, Wagner V, Rasmussen SB, Hartmann R,

Paludan SR. Double-stranded RNA is produced

by positive-strand RNA viruses and DNA viruses

65. Cavassani KA, et al. TLR3 is an endogenous sen-
in mice lacking IRF-2, the transcriptional attenu-
ator of interferon-alpha/beta signaling.
Immunity. 2000;13(5):643-655.
Sato M, et al. Distinct and essential roles of tran-
scription factors IRF-3 and IRF-7 in response
to viruses for IFN-alpha/beta gene induction.
Immunity. 2000;13(4):539-548.
viral defense and immune adjuvant effects. 48. Takaoka A, et al. Cross talk between interferon-
Science. 2013;341(6152):1390-1394.
31. Kato H, et al. Differential roles of MDAS5 and nents in caveolar membrane domains. Science.
RIG-I helicases in the recognition of RNA 2000;288(5475):2357-2360.
viruses. Nature. 2006;441(7089):101-105. 49. Cong L, et al. Multiplex genome engineering
32.Smahi A, et al. Genomic rearrangement in NEMO

sor of tissue necrosis during acute inflammatory
events. ] Exp Med. 2008;205(11):2609-2621.

66. Bernard JJ, et al. Ultraviolet radiation damages
self noncoding RNA and is detected by TLR3.
Nat Med. 2012;18(8):1286-1290.

67. Amor S, et al. The microtubule regulator stathmin

~

but not in detectable amounts by negative-strand 4
RNA viruses. ] Virol. 2006;80(10):5059-5064.

30. Li XD, Wu ], Gao D, Wang H, Sun L, Chen ZJ.

Pivotal roles of cGAS-cGAMP signaling in anti- is an endogenous protein agonist for TLR3.
JImmunol. 2018;184(12):6929-6937.

68. Okun E, et al. Toll-like receptor 3 inhibits
memory retention and constrains adult hippo-
campal neurogenesis. Proc Natl Acad SciU S A.
20105;107(35):15625-15630.

69. Lee-Kirsch MA. The type I interferonopathies.
Annu Rev Med. 2017;68:297-315.

70. Lim HK, et al. Severe influenza pneumonitis in
children with inherited TLR3 deficiency. ] Exp

and cellular sources in disease. ] Exp Med. Med. 2019;216(9):2038-2056.

2017;214(5):1547-1555. 71. Galani IE, et al. Interferon-A mediates non-

gamma and -alpha/beta signaling compo-

using CRISPR/Cas systems. Science.
impairs NF-kappaB activation and is a cause 2013;339(6121):819-823.
of incontinentia pigmenti. The International 50. Rodero MP, et al. Detection of interferon
Incontinentia Pigmenti (IP) Consortium. Nature.
2000;405(6785):466-472.

33. Kato H, et al. Cell type-specific involvement

alpha protein reveals differential levels

of RIG-Tin antiviral response. Immunity. 51. Stewart WE. The Interferon System. Springer redundant front-line antiviral protection against
2005;23(1):19-28. Vienna; 1979. influenza virus infection without compromising
34. Kawai T, et al. IPS-1, an adaptor triggering RIG-I- 52. Sato M, et al. Positive feedback regulation of type host fitness. Immunity. 2017;46(5):875-890.e6.

and Mda5-mediated type I interferon induction.
Nat Immunol. 2005;6(10):981-988.

35. Meylan E, et al. Cardif'is an adaptor protein in the 5
RIG-I antiviral pathway and is targeted by hepati- play a biological role in virus infections? Virology.
tis C virus. Nature. 2005;437(7062):1167-1172. 2004;322(2):231-238.

36. Seth RB, Sun L, Ea CK, Chen Z]J. Identification 54. Gowen BB, et al. TLR3 deletion limits mortality
and characterization of MAVS, a mitochondrial

1IFN genes by the IFN-inducible transcription
factor IRF-7. FEBS Lett. 1998;441(1):106-110.
. Edelmann KH, et al. Does Toll-like receptor 3

72. Sironi M, et al. TLR3 mutations in adult patients
with herpes simplex virus and varicella-zoster virus
encephalitis. J Infect Dis. 2017;215(9):1430-1434.

73. Casanova JL, Su HC, COVID human genetic
effort. a global effort to define the human genetics
of protective immunity to SARS-CoV-2 infection.
Cell.2020;181(6):1194-1199.

74. Zhang Q, et al. Inborn errors of type I IFN immu-

w

and disease severity due to Phlebovirus infec-

antiviral signaling protein that activates NF- tion. J Immunol. 2006;177(9):6301-6307.

kappaB and IRF 3. Cell. 2005;122(5):669-682. 55. Goffic RL, et al. Detrimental contribution of

37. XuLG, Wang YY, Han KJ, Li LY, Zhai Z, Shu

HB. VISA is an adapter protein required for
virus-triggered IFN-beta signaling. Mol Cell.
2005;19(6):727-740.

38. Marcus PI, Sekellick MJ. Interferon induction

by viruses. XIII. Detection and assay of inter-
feron induction-suppressing particles. Virology.
1985;142(2):411-415.

39. von Kobbe C, et al. Vesicular stomatitis virus

matrix protein inhibits host cell gene expression

N

the Toll-like receptor (TLR)3 to influenza A
virus-induced acute pneumonia. PLoS Pathog.
2006;2(6):€53.

. Hutchens M, et al. TLR3 increases disease mor-

bidity and mortality from vaccinia infection.
JImmunol. 2008;180(1):483-491.

Tabeta K, et al. Toll-like receptors 9 and 3 as
essential components of innate immune defense
against mouse cytomegalovirus infection. Proc
Natl Acad Sci U S A.2004;101(10):3516-3521.

nity in patients with life-threatening COVID-19.
Science. 2020;370(6515):eabd4570.

75. Bastard P, et al. Autoantibodies against type I

IFNs in patients with life-threatening COVID-19.
Science. 2020;370(6515):eabd4585.

76. Hernandez N, et al. Life-threatening influenza

pneumonitis in a child with inherited IRF9 defi-
ciency. ] Exp Med. 2018;215(10):2567-2585.

77. Ciancanelli MJ, et al. Infectious disease.

Life-threatening influenza and impaired inter-
feron amplification in human IRF7 deficiency.

by targeting the nucleoporin Nup98. Mol Cell. 58. Rudd BD, et al. Deletion of TLR3 alters the
2000;6(5):1243-1252.

Science. 2015;348(6233):448-453.

78. Duncan CJ, et al. Human IFNAR2 deficiency:
lessons for antiviral immunity. Sci Transl Med.
2015;7(307):307ral54.

79. Hernandez N, et al. Inherited IFNAR1 deficiency
in otherwise healthy patients with adverse reac-

pulmonary immune environment and mucus

40. Moens L, et al. A novel kindred with inherited production during respiratory syncytial virus
STAT?2 deficiency and severe viral illness. J Allergy infection. J Immunol. 2006;176(3):1937-1942.
Clin Immunol. 2017;139(6):1995-1997.e9. 59. Negishi H, et al. A critical link between Toll-like

41. Chapgier A, et al. Human complete Stat-1 receptor 3 and type Il interferon signaling path-
deficiency is associated with defective type I ways in antiviral innate immunity. Proc Natl Acad

SciUSA.2008;105(51):20446-20451.

some low virulence viruses in vivo. J Immunol. 60. Richer M]J, Lavallée DJ, Shanina I, Horwitz MS.

2006;176(8):5078-5083.

tion to measles and yellow fever live vaccines.
JExp Med.2019;216(9):2057-2070.

80. Liu BC, Sarhan J, Poltorak A. Host-intrinsic inter-
feron status in infection and immunity. Trends

= [

and IT IFN responses in vitro but immunity to

Toll-like receptor 3 signaling on macrophages is

J Clin Invest. 2021;131(1):e134529 https://doi.org/10.1172/JC1134529


https://www.jci.org
https://doi.org/10.1172/JCI134529
https://doi.org/10.1212/WNL.0000000000000999
https://doi.org/10.1212/WNL.0000000000000999
https://doi.org/10.1038/nature11583
https://doi.org/10.1038/nature11583
https://doi.org/10.1038/nature11583
https://doi.org/10.1073/pnas.1809853115
https://doi.org/10.1073/pnas.1809853115
https://doi.org/10.1073/pnas.1809853115
https://doi.org/10.1073/pnas.1809853115
https://doi.org/10.1073/pnas.1809853115
https://doi.org/10.1146/annurev-micro-092412-155654
https://doi.org/10.1146/annurev-micro-092412-155654
https://doi.org/10.1146/annurev-micro-092412-155654
https://doi.org/10.1084/jem.20080091
https://doi.org/10.1084/jem.20080091
https://doi.org/10.1084/jem.20080091
https://doi.org/10.1084/jem.20080091
https://doi.org/10.1084/jem.20080091
https://doi.org/10.1128/JVI.80.10.5059-5064.2006
https://doi.org/10.1128/JVI.80.10.5059-5064.2006
https://doi.org/10.1128/JVI.80.10.5059-5064.2006
https://doi.org/10.1128/JVI.80.10.5059-5064.2006
https://doi.org/10.1128/JVI.80.10.5059-5064.2006
https://doi.org/10.1126/science.1244040
https://doi.org/10.1126/science.1244040
https://doi.org/10.1126/science.1244040
https://doi.org/10.1126/science.1244040
https://doi.org/10.1038/nature04734
https://doi.org/10.1038/nature04734
https://doi.org/10.1038/nature04734
https://doi.org/10.1038/35013114
https://doi.org/10.1038/35013114
https://doi.org/10.1038/35013114
https://doi.org/10.1038/35013114
https://doi.org/10.1038/35013114
https://doi.org/10.1016/j.immuni.2005.04.010
https://doi.org/10.1016/j.immuni.2005.04.010
https://doi.org/10.1016/j.immuni.2005.04.010
https://doi.org/10.1038/ni1243
https://doi.org/10.1038/ni1243
https://doi.org/10.1038/ni1243
https://doi.org/10.1038/nature04193
https://doi.org/10.1038/nature04193
https://doi.org/10.1038/nature04193
https://doi.org/10.1016/j.cell.2005.08.012
https://doi.org/10.1016/j.cell.2005.08.012
https://doi.org/10.1016/j.cell.2005.08.012
https://doi.org/10.1016/j.cell.2005.08.012
https://doi.org/10.1016/j.molcel.2005.08.014
https://doi.org/10.1016/j.molcel.2005.08.014
https://doi.org/10.1016/j.molcel.2005.08.014
https://doi.org/10.1016/j.molcel.2005.08.014
https://doi.org/10.1016/0042-6822(85)90349-6
https://doi.org/10.1016/0042-6822(85)90349-6
https://doi.org/10.1016/0042-6822(85)90349-6
https://doi.org/10.1016/0042-6822(85)90349-6
https://doi.org/10.1016/S1097-2765(00)00120-9
https://doi.org/10.1016/S1097-2765(00)00120-9
https://doi.org/10.1016/S1097-2765(00)00120-9
https://doi.org/10.1016/S1097-2765(00)00120-9
https://doi.org/10.1016/j.jaci.2016.10.033
https://doi.org/10.1016/j.jaci.2016.10.033
https://doi.org/10.1016/j.jaci.2016.10.033
https://doi.org/10.4049/jimmunol.176.8.5078
https://doi.org/10.4049/jimmunol.176.8.5078
https://doi.org/10.4049/jimmunol.176.8.5078
https://doi.org/10.4049/jimmunol.176.8.5078
https://doi.org/10.4049/jimmunol.176.8.5078
https://doi.org/10.1073/pnas.0603082103
https://doi.org/10.1073/pnas.0603082103
https://doi.org/10.1073/pnas.0603082103
https://doi.org/10.1073/pnas.0603082103
https://doi.org/10.1073/pnas.0603082103
https://doi.org/10.1016/j.virol.2010.07.018
https://doi.org/10.1016/j.virol.2010.07.018
https://doi.org/10.1016/j.virol.2010.07.018
https://doi.org/10.1016/j.virol.2010.07.018
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1158/0008-5472.CAN-05-3653
https://doi.org/10.1158/0008-5472.CAN-05-3653
https://doi.org/10.1158/0008-5472.CAN-05-3653
https://doi.org/10.1158/0008-5472.CAN-05-3653
https://doi.org/10.1016/S1074-7613(00)00064-9
https://doi.org/10.1016/S1074-7613(00)00064-9
https://doi.org/10.1016/S1074-7613(00)00064-9
https://doi.org/10.1016/S1074-7613(00)00064-9
https://doi.org/10.1016/S1074-7613(00)00053-4
https://doi.org/10.1016/S1074-7613(00)00053-4
https://doi.org/10.1016/S1074-7613(00)00053-4
https://doi.org/10.1016/S1074-7613(00)00053-4
https://doi.org/10.1126/science.288.5475.2357
https://doi.org/10.1126/science.288.5475.2357
https://doi.org/10.1126/science.288.5475.2357
https://doi.org/10.1126/science.288.5475.2357
https://doi.org/10.1126/science.1231143
https://doi.org/10.1126/science.1231143
https://doi.org/10.1126/science.1231143
https://doi.org/10.1084/jem.20161451
https://doi.org/10.1084/jem.20161451
https://doi.org/10.1084/jem.20161451
https://doi.org/10.1084/jem.20161451
https://doi.org/10.1016/S0014-5793(98)01514-2
https://doi.org/10.1016/S0014-5793(98)01514-2
https://doi.org/10.1016/S0014-5793(98)01514-2
https://doi.org/10.1016/j.virol.2004.01.033
https://doi.org/10.1016/j.virol.2004.01.033
https://doi.org/10.1016/j.virol.2004.01.033
https://doi.org/10.4049/jimmunol.177.9.6301
https://doi.org/10.4049/jimmunol.177.9.6301
https://doi.org/10.4049/jimmunol.177.9.6301
https://doi.org/10.1371/journal.ppat.0020053
https://doi.org/10.1371/journal.ppat.0020053
https://doi.org/10.1371/journal.ppat.0020053
https://doi.org/10.1371/journal.ppat.0020053
https://doi.org/10.4049/jimmunol.180.1.483
https://doi.org/10.4049/jimmunol.180.1.483
https://doi.org/10.4049/jimmunol.180.1.483
https://doi.org/10.1073/pnas.0400525101
https://doi.org/10.1073/pnas.0400525101
https://doi.org/10.1073/pnas.0400525101
https://doi.org/10.1073/pnas.0400525101
https://doi.org/10.4049/jimmunol.176.3.1937
https://doi.org/10.4049/jimmunol.176.3.1937
https://doi.org/10.4049/jimmunol.176.3.1937
https://doi.org/10.4049/jimmunol.176.3.1937
https://doi.org/10.1073/pnas.0810372105
https://doi.org/10.1073/pnas.0810372105
https://doi.org/10.1073/pnas.0810372105
https://doi.org/10.1073/pnas.0810372105
https://doi.org/10.1371/journal.pone.0004127
https://doi.org/10.1371/journal.pone.0004127
https://doi.org/10.1371/journal.pone.0004127
https://doi.org/10.1371/journal.pone.0004127
https://doi.org/10.1038/nature12862
https://doi.org/10.1038/nature12862
https://doi.org/10.1038/nature12862
https://doi.org/10.1038/nature12862
https://doi.org/10.1084/jem.20161759
https://doi.org/10.1084/jem.20161759
https://doi.org/10.1084/jem.20161759
https://doi.org/10.1073/pnas.1704259114
https://doi.org/10.1073/pnas.1704259114
https://doi.org/10.1073/pnas.1704259114
https://doi.org/10.1073/pnas.1704259114
https://doi.org/10.1074/jbc.M310175200
https://doi.org/10.1074/jbc.M310175200
https://doi.org/10.1074/jbc.M310175200
https://doi.org/10.1074/jbc.M310175200
https://doi.org/10.1084/jem.20081370
https://doi.org/10.1084/jem.20081370
https://doi.org/10.1084/jem.20081370
https://doi.org/10.1038/nm.2861
https://doi.org/10.1038/nm.2861
https://doi.org/10.1038/nm.2861
https://doi.org/10.1073/pnas.1005807107
https://doi.org/10.1073/pnas.1005807107
https://doi.org/10.1073/pnas.1005807107
https://doi.org/10.1073/pnas.1005807107
https://doi.org/10.1146/annurev-med-050715-104506
https://doi.org/10.1146/annurev-med-050715-104506
https://doi.org/10.1084/jem.20181621
https://doi.org/10.1084/jem.20181621
https://doi.org/10.1084/jem.20181621
https://doi.org/10.1016/j.immuni.2017.04.025
https://doi.org/10.1016/j.immuni.2017.04.025
https://doi.org/10.1016/j.immuni.2017.04.025
https://doi.org/10.1016/j.immuni.2017.04.025
https://doi.org/10.1093/infdis/jix166
https://doi.org/10.1093/infdis/jix166
https://doi.org/10.1093/infdis/jix166
https://doi.org/10.1016/j.cell.2020.05.016
https://doi.org/10.1016/j.cell.2020.05.016
https://doi.org/10.1016/j.cell.2020.05.016
https://doi.org/10.1016/j.cell.2020.05.016
https://doi.org/10.1126/science.abd4570
https://doi.org/10.1126/science.abd4570
https://doi.org/10.1126/science.abd4570
https://doi.org/10.1126/science.abd4585
https://doi.org/10.1126/science.abd4585
https://doi.org/10.1126/science.abd4585
https://doi.org/10.1084/jem.20180628
https://doi.org/10.1084/jem.20180628
https://doi.org/10.1084/jem.20180628
https://doi.org/10.1126/science.aaa1578
https://doi.org/10.1126/science.aaa1578
https://doi.org/10.1126/science.aaa1578
https://doi.org/10.1126/science.aaa1578
https://doi.org/10.1126/scitranslmed.aac4227
https://doi.org/10.1126/scitranslmed.aac4227
https://doi.org/10.1126/scitranslmed.aac4227
https://doi.org/10.1084/jem.20182295
https://doi.org/10.1084/jem.20182295
https://doi.org/10.1084/jem.20182295
https://doi.org/10.1084/jem.20182295
https://doi.org/10.1016/j.molmed.2018.06.004
https://doi.org/10.1016/j.molmed.2018.06.004

B

RESEARCH ARTICLE

Mol Med.2018;24(8):658-668.
. Belardelli F, Vignaux F, Proietti E, Gresser I.
Injection of mice with antibody to interferon

8

puary

renders peritoneal macrophages permissive
for vesicular stomatitis virus and encephalo-
myocarditis virus. Proc Natl Acad SciU SA.
1984;81(2):602-606.

82. Gresser I. Wherefore interferon? J Leukoc Biol.
1997;61(5):567-574.

83. Faria PA, et al. VSV disrupts the Rael/mrnp41
mRNA nuclear export pathway. Mol Cell.
2005;17(1):93-102.

84. Desforges M, et al. Different host-cell shutoff
strategies related to the matrix protein lead to
persistence of vesicular stomatitis virus mutants
on fibroblast cells. Virus Res. 2001;76(1):87-102.

85. Ferran MC, Lucas-Lenard JM. The vesicular
stomatitis virus matrix protein inhibits transcrip-
tion from the human beta interferon promoter.
J Virol. 1997;71(1):371-377.

86. Daffis S, Samuel MA, Suthar MS, Gale M, Dia-
mond MS. Toll-like receptor 3 has a protective

role against West Nile virus infection. J Virol.
2008;82(21):10349-10358.

87. Chen G. Splitting hESC/hiPSC lines with EDTA
in feeder free conditions. Harvard Stem Cell
Institute; 2008.

88. Wang Z, Liu Y, Lin W, Cui S. A real-time PCR to
detect and analyze virulent EMCV loads in sows
and piglets. Mol Biol Rep. 2012;39(12):10013-10017.

89. Ewels P, Magnusson M, Lundin S, Kéller M.
MultiQC: summarize analysis results for multiple
tools and samples in a single report. Bioinformat-
ics. 2016;32(19):3047-3048.

90. Porcaro F, Corsello G, Pajno GB. SLIT’s preven-
tion of the allergic march. Curr Allergy Asthma
Rep.2018;18(5):31.

91. Dobin A, et al. STAR: ultrafast universal RNA-seq
aligner. Bioinformatics. 2012;29(1):15-21.

92. Wang L, Wang S, Li W. RSeQC: quality con-
trol of RNA-seq experiments. Bioinformatics.
2012;28(16):2184-2185.

93. Liao Y, Smyth GK, Shi W. featureCounts: an
efficient general purpose program for assigning

The Journal of Clinical Investigation

sequence reads to genomic features. Bioinformat-
ics. 2013;30(7):923-930.

94. Harrow J, et al. GENCODE: the reference human
genome annotation for The ENCODE Project.
Genome Res. 2012;22(9):1760-1774.

95. Love MI, Huber W, Anders S. Moderated estima-
tion of fold change and dispersion for RNA-seq
data with DESeq2. Genome Biol. 2014;15(12):550.

96. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a
Bioconductor package for differential expression
analysis of digital gene expression data. Bioinfor-
matics. 2009;26(1):139-140.

97. GuZ, Eils R, Schlesner M. Complex heatmaps
reveal patterns and correlations in multi-
dimensional genomic data. Bioinformatics.
2016;32(18):2847-2849.

98. Kramer A, Green J, Pollard ], Tugendreich S.
Causal analysis approaches in Ingenuity Pathway
Analysis. Bioinformatics. 2013;30(4):523-530.

99. Paquet D, et al. Efficient introduction of specific
homozygous and heterozygous mutations using
CRISPR/Cas9. Nature. 2016;533(7601):125-129.

J Clin Invest. 2021;131(1):e134529 https://doi.org/10.1172/)CI134529


https://www.jci.org
https://doi.org/10.1172/JCI134529
https://doi.org/10.1016/j.molmed.2018.06.004
https://doi.org/10.1073/pnas.81.2.602
https://doi.org/10.1073/pnas.81.2.602
https://doi.org/10.1073/pnas.81.2.602
https://doi.org/10.1073/pnas.81.2.602
https://doi.org/10.1073/pnas.81.2.602
https://doi.org/10.1073/pnas.81.2.602
https://doi.org/10.1002/jlb.61.5.567
https://doi.org/10.1002/jlb.61.5.567
https://doi.org/10.1016/j.molcel.2004.11.023
https://doi.org/10.1016/j.molcel.2004.11.023
https://doi.org/10.1016/j.molcel.2004.11.023
https://doi.org/10.1016/S0168-1702(01)00251-9
https://doi.org/10.1016/S0168-1702(01)00251-9
https://doi.org/10.1016/S0168-1702(01)00251-9
https://doi.org/10.1016/S0168-1702(01)00251-9
https://doi.org/10.1128/JVI.71.1.371-377.1997
https://doi.org/10.1128/JVI.71.1.371-377.1997
https://doi.org/10.1128/JVI.71.1.371-377.1997
https://doi.org/10.1128/JVI.71.1.371-377.1997
https://doi.org/10.1128/JVI.00935-08
https://doi.org/10.1128/JVI.00935-08
https://doi.org/10.1128/JVI.00935-08
https://doi.org/10.1128/JVI.00935-08
https://doi.org/10.1007/s11033-012-1870-y
https://doi.org/10.1007/s11033-012-1870-y
https://doi.org/10.1007/s11033-012-1870-y
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1007/s11882-018-0785-7
https://doi.org/10.1007/s11882-018-0785-7
https://doi.org/10.1007/s11882-018-0785-7
https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1101/gr.135350.111
https://doi.org/10.1101/gr.135350.111
https://doi.org/10.1101/gr.135350.111
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1038/nature17664
https://doi.org/10.1038/nature17664
https://doi.org/10.1038/nature17664

	Graphical abstract

