Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Identifying target cells for a tick-borne virus that causes fatal hemorrhagic fever
Satoko Yamaoka, … , Carla Weisend, Hideki Ebihara
Satoko Yamaoka, … , Carla Weisend, Hideki Ebihara
Published January 6, 2020
Citation Information: J Clin Invest. 2020;130(2):598-600. https://doi.org/10.1172/JCI134512.
View: Text | PDF
Commentary

Identifying target cells for a tick-borne virus that causes fatal hemorrhagic fever

  • Text
  • PDF
Abstract

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease in China, South Korea, and Japan caused by the tick-borne SFTS virus (SFTSV). Severe and fatal SFTS presents as a hemorrhagic fever characterized by high viral load, uncontrolled inflammatory response, dysregulated adaptive immunity, coagulation abnormalities, hemorrhage, and multiorgan failure with up to 33% case fatality rates (CFRs). Despite its public health significance in Asia, vaccines and specific therapeutics against SFTS are still unavailable. A better understanding of the pathogenesis of SFTS is crucial to improving medical countermeasures against this devastating disease. In this issue of the JCI, Suzuki and colleagues analyzed histopathological samples from 22 individuals who succumbed to SFTS, and identified antibody-producing B cell–lineage plasmablasts and macrophages as principal target cells for SFTSV infection in fatal SFTS. Their results suggest that SFTSV-infected post–germinal center B cells, plasmablasts, and macrophages affect systemic immunopathology and dysregulation, which likely leads to fatal outcomes.

Authors

Satoko Yamaoka, Carla Weisend, Hideki Ebihara

×

Full Text PDF | Download (115.30 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts