Supplemental figure legends

Figure S1. Related to Figure 1. (A) Saturation analysis for evaluating ChIA-PET data quality. The left and middle panels represent RNA Pol II ChIA-PET from this study. The right panel represents RAD21 ChIA-PET from ENCODE. By employing a down-sampling strategy, the total ChIA-PET sequencing reads were randomly portioned into $10 \%, 20 \%, \ldots, 80 \%$, 90% sub-samples representing varying sequencing depth, which were then individually used to do the interaction-calling separately. Then, interactions detected from sub-samples were compared with interactions detected from the total sequencing reads. (B) Length of interactions across the four cell lines. Three criteria of the PETs (>=1,2 or 3) are shown in pink, blue and green. The y axis is distance transformed by log10. The blue, red, and green lines connecting the violins signify the median, mean, and Huber M-estimator, respectively. The black dotted line distinguishes TAD interactions (less than or equal to 1MB) from longer interactions. (C) The number of chromatin interactions between different genomic elements across four cell lines, including interaction types between promoter, gene body, other region and enhancers. The color density shows the ratio of each type of interactions. (D) Distributions of PET numbers along with the distance between peak anchors in the four cell lines. The length of PET is transformed to log10bp. Anova test was used for multiple groups comparison. Boxplot represents median, 0.25 and 0.75 quantiles with lines at $1.5 x$ interquartile range. Distribution of enhancers per gene (E) and genes per enhancer (F) in the four cell lines. (G) The number of enhancers for each cell line (yellow) and the number of enhancers that display RNA Pol II interactions with gene promoters (orange). (H) Correlation between transcript abundance and enhancers per gene. The transcript abundance was measured by FPKM transformed by log2. The correlation efficient was calculated by spearman correlation and p-value is labeled. (I) The interactions are well fitted as NB distribution in four cells. The PETs scores were normalized as the raw pairs among per 10k region peak per 10 million PETs. The distributions of chromatin interactions were fitted as NB distribution by using Matlab fitdist toolbox. The fitting goodness was tested by using K-S test. (J) Motif analysis of promoter and enhancer regions in the four cell lines. Upper panel: motif enrichment of enhancer regions in the four cell lines. The type of motif sequences and p-values are labelled. Lower panel: motif enrichment of promoter regions in the four cell lines.

Figure S2. Related to Figure 1. Interaction comparison. The top, left panel displays all shared and unique interactions. The middle-left and bottom-left panels divide these interactions into "short" and "long", respectively. The analysis was repeated excluding interactions that only have one PET (middle columns) and excluding interactions that have only one or two PETs (right columns). (B-C) Enriched pathways and gene ontology (GO) terms based on RNA-seq and ChIAPET data, upon comparison with the benign RWPE-1 cells. (B) Enriched GO terms for differential gene expression. (C) Enriched GO terms for differential chromatin interactions. Blue: comparison between DU145 and RWPE-1; red:
comparison between LNCaP and RWPE-1; yellow: comparison between VCaP and RWPE-1.

Figure S3. Related to Figure 2. Integrated genome view of HOXB13 gene and its adjacent regions in LNCaP cells. (A) The data tracks represent RNA-seq, ChIP-seq for CTCF, FOXA1, AR, H3K27ac and RNA Pol II, ChIA-PET for RNA Pol Il and RAD21, and HiC data in the LNCaP cell line. (B) ChIA-PET contact heatmap representing RNA Pol II (left) and RAD21 (right) associated chromatin interactions for the HOXB13 gene and neighborhood regions. The HOXB13 gene is shown in light green color.

Figure S4. Related to Figure 3. (A) Immunoblot analysis to determine the effect of treatment with various doses of BETi, JQ1 for 24 hours on the steady-state levels of AR in LNCaP and VCaP cells. MYC is used as a positive control and actin is the loading control. The antibody against AR recognizes its N -terminus. (B) Immunoblot representing the steady-state levels of AR in four cell lines using antibodies recognizing its N - and C -terminus, respectively. (C) Amplification status analysis of $A R$, AR enhancers peaks, MYC and FOXA1 in mCRPC patient samples by ddPCR. (D) Correlation of all 6 AR enhancer peaks amplification versus AR gene copy number amplification in mCRPC patient samples. (E) Correlation of all 6 AR enhancer peaks gain versus AR gene copy number gain in mCRPC patient samples. (F) Correlation between $A R$ copy number and $A R$ gene expression ($R=0.43, P=4 \times 10^{-6}$). (G) Integrated genome view of a genomic region (chrX:66389092-66738319) using whole genome sequencing data of a CRPC sample. A 349227 bp deletion is discovered which is supported by 139 reads out of total 7775 reads in the region.

Figure S5. Related to Figure 3. Transcriptional regulation of FOXA1 gene and its neighborhood genes. (A-B) Integrated genome view of FOXA1 and its adjacent regions based on data of RNA-seq, ChIP-seq of CTCF, FOXA1, AR, H3K27ac and RNA Pol II, ChIA-PET of RNA Pol II are shown in LNCaP and VCaP cell lines, respectively. Additionally, phospho RNA Pol II and ERG ChIPseq is described for VCaP cells. The FOXA1 gene is highlighted in light-blue color. (C) Immunoblot analysis showed Increased expression of FOXA1 in LNCaP and VCaP cell lines. Actin is the loading control.

Figure S6. Related to Figure 5. Integrated genome view of KLK3 gene and its neighborhood regions representing RNA-seq, CTCF, FOXA1, AR, H3K27ac and RNA Pol II ChIP-seq and RNA Pol II ChIA-PET data from LNCaP (A) and VCaP cells (B), respectively. In addition, phospho RNA Pol II and ERG ChIP-seq is described for VCaP cells. The KLK3 gene and up-stream regions are highlighted in light blue color.

Figure S7. Related to Figure 5. Integrated genome view of gene KLK3 and its adjacent regions based on H3K27ac ChIP-seq data. H3K27ac ChIP-seq in 96
datasets show universal peaks in the constitutively active distal enhancer of $K L K 3$. The KLK3 gene and up-stream regions are highlighted in light-blue color.

Figure S8. Related to Figure 6. (A-B) Integrated genome view of gene MYC and its adjacent regions representing RNA-seq, CTCF, FOXA1, AR, H3K27ac and RNA Pol II ChIP-seq, and RNA Pol II ChIA-PET are shown for LNCaP (A) and VCaP cells (B), respectively. In addition, phospho RNA Pol II and ERG ChIP-seq is described for VCaP cells. The MYC gene locus is highlighted in lightblue color. SNP sites located in MYC neighborhood are shown. (C-D) Integrated genome view of EZH2 locus and its adjacent regions based on data from RNAseq, ChIP-seq of CTCF, FOXA1, AR, H3K27ac and RNA Pol II, ChIA-PET of RNA Pol II are shown in LNCaP (C) and VCaP (D) cells, respectively. Additionally, phospho RNA Pol II and ERG ChIP-seq is described for VCaP cells. The EZH2 gene locus is highlighted in light-blue color. (E) Integrated genome view of gene MYC and its adjacent regions based on H3K27ac ChIP-seq data in a panel of cell lines. The MYC gene region is highlighted in light-blue color. (F) This scatterplot shows the correlation between RNA expression level of MYC and the maximum enhancer peak score within the region shown in panel E (chr8: $127,800 \mathrm{~kb}-129,400 \mathrm{~kb}$). All samples which have expressions of MYC (TPM>1) are retained in this plot, and the enhancer score is measured by the maximum ChIP-seq peak height. The correlation efficient is calculated by Pearson correlation and p-value is labeled. (G) Integrated genome view of gene EZH2 and its adjacent regions based on H3K27ac ChIP-seq data in a panel of cell lines. The EZH2 gene region is highlighted in light-blue color. (H) This scatterplot shows the correlation between RNA expression level of $E Z H 2$ and the maximum enhancer peak score within the region shown in panel G (chr7: 148,400kb$149,400 \mathrm{~kb}$). All samples which have expression of $E Z H 2$ (TPM >1) are included in this plot, and the enhancer score is measured by the maximum ChIP-seq peak height. The correlation efficient is calculated by Pearson correlation and p-value is labeled.

Figure S9. Related to Figure 9. (A) siRNA mediated knockdown of FAM57A, GEMIN4 and VPS53 genes resulted in a modest increase in the viability of LNCaP cells as shown by Cell titer glow analysis conducted 7 days post siRNA treatment. (B) Validation of siRNA-based gene knockdown in LNCaP cells. qRTPCR analysis of the expression of VPS53, GEMIN4 and FAM57A genes with the treatment of siRNA as indicated. (* $\mathrm{P}<0.05$, ** $\mathrm{P}<0.01$, *** $\mathrm{P}<0.001$, **** $\mathrm{P}<0.0001$, by two-tailed Student's t-test; Error bars, standard deviation of 3 technical replicates).

B

> —Median length —Mean length
> _Huber M-estimator length
C

D

Figure S1 (Page 2)

E

G

I

LNCaP

F

Gene number per enhancer

H

RWPE-1

RWPE－1	LNCaP	VCaP	DU145
Enhancer	Enhancer	Enhancer	Enhancer
	FOXA1（Forkhead），P－value＝1e－285 수AAGTAAACA	CTCF（Zf），P－value＝1e－323 	
		FOXA1（Forkhead）， P －value＝1e－30 AAAGTAAACA	305 CTCF（Zf），P－value $=1 \mathrm{e}-27$ ATAGTGCCACTTAGTGGCCA
	HOXB13（Homeobox），P－value＝1e－54 ITTTAT두GG논		ETV1(ETS), P-value=1e-24 AACCGGAAGT
Fli1（ETS），P－value＝1e－31 둣A더TTCCGGT			$\begin{aligned} & \text { TEAD(TEA), P-value }=1 \mathrm{e}-24 \\ & \text { 드둣GGAATGC } \end{aligned}$
ERG（ETS），P－value＝1e－30 ACAGGAAGTE	$\begin{gathered} \text { EHF(ETS), P-value }=1 \mathrm{e}-48 \\ \text { ACCAGGAGT } \end{gathered}$	$\begin{gathered} \text { ETV1(ETS), P-value=1e-120 } \\ \text { AACAGGAAGT- } \end{gathered}$	
$\begin{gathered} \text { KLF5(Zf), P-value=1e-30 } \\ \text { 今GGGGCGGGT } \end{gathered}$	Jun－AP1（bZIP），P－value＝1e－48 줄ATGAGTCA둘츨	HOXB13（Homeobox），P－value $=1 \mathrm{e}-$ ITTTAT두GGG	e-106
$\operatorname{CTCF}($ Zf），P－value $=1 \mathrm{e}-22$ ATAGTGCCACTTGGTGGCKA		Fli1（ETS），P－value＝1e－104 둣수TTCCGGT	
	Fli1（ETS），P－value＝1e－22 둣섯TTCCGㅜ도돛		
RWPE－1	LNCaP	VCaP	DU145
Promoter	Promoter	Promoter	Promoter
	Elk4（ETS），P－value＝1e－38 듯석TTCCGGT	Elk4（ETS），P－value＝1e－57 둣섣TCCG至	NFY（CCAAT），P－value＝1e－29 AGCCAATCGG
	ELF1（ETS），P－value＝1e－35 A를CCGGAAGT	ETS（ETS），P－value＝1e－47 AACCGGAAGI	Fli1（ETS），P－value＝1e－25 둣숟TCCGㅜ눋
ELF1（ETS），P－value＝1e－13 AECCGGAAGT	$\mathrm{NFY}(\mathrm{CCAAT}), \mathrm{P}$－value $=1 \mathrm{e}-25$ AGCCAATCGG AGCCAATCAG	NFY（CCAAT）， P －value $=1 \mathrm{e}-37$ AGCCAATCGG	YY1（Zf），P－value＝1e－23 CAAGATGGCGGC
$\begin{gathered} \text { NFY(CCAAT), P-value }=1 \mathrm{e}-11 \\ \text { AGCCAATCAG } \end{gathered}$	$\begin{gathered} \text { YY1 (Zf), P-value=1e-24 } \\ C A A G A T G G C G G C \end{gathered}$	$\begin{gathered} \text { YY1 (Zf), } \mathrm{P} \text {-value }=1 \mathrm{e}-37 \\ \text { CAAGATGGCGGC } \end{gathered}$	$\begin{gathered} \text { ELF1(ETS), P-value=1e-22 } \\ \text { A今CCGGAGT } \end{gathered}$
BMYB（HTH），P－value $=1 \mathrm{e}-6$ 둣츨AAC돛G두수ㅅㅡㅜ		TFE3（bHLH），P－value＝1e－7 ATCACGTGAC두ㅅㅜㅜ	Sp1（Zf），P－value＝1e－14 GGCCCCGCCCCC
YY1（Zf），P－value＝1e－5 CAAGATGGCGGC	$\begin{gathered} \text { NRF(NRF), P-value=1e-8 } \\ \text { ETGCGCATGCGC } \end{gathered}$	NRF（NRF），P－value＝1e－6 ©TCGCGCATGCGC	Atf3（bZIP），P－value＝1e－11 준ATGACTCAT둣출
	$\begin{gathered} \text { TFE3(bHLH), P-value=1e-7 } \\ \text { GTCACGTGACTKE } \end{gathered}$	Sp1（Zf），P－value＝1e－5 GGCCCCGCCCCC	$\begin{gathered} \text { E2F4(E2F), P-value=1e-10 } \\ \text { EGCGGGAAATE } \end{gathered}$
			NRF（NRF），P－value＝1e－7 ©TTGCGCATGCGC

A

Interactions with 2 or more PETs

Figure S3

A

RNA Pol II ChIA-PET

B

Figure S4

Figure S5

Figure S6

Figure S7

Figure S8 (Page 1)
A

B

C

$$
\begin{aligned}
& \begin{array}{lcccc}
1 & 2 & 3 & 7,8 & 9,10 \\
& 4,5,6 & 121316 & 14,15
\end{array}
\end{aligned}
$$ SNPs

D

Figure S8 (Page 2)

F

Figure S9
A

B

Table S1. Related to Figures 1 and 2. Metadata table for the datasets used in this study.

Experiment	Cell line	Molecule	Source	GEO/ENCODE ID
RNA-seq	DU145	l	This study	GSE121022
ChIP-seq	DU145	H3K27ac	This study	GSM3424003
ChIP-seq	DU145	CTCF	This study	GSM3424002
ChIAPET	DU145	RNA Pol II	This study	GSM3423999
ChIAPET	DU145	RAD21	ENCODE	ENCSR672RHL
RNA-seq	LNCaP	/	This study	GSE121022
ChIP-seq	LNCaP	CTCF	GEO	GSM947528
ChIP-seq	LNCaP	AR	This study	GSM3424005
ChIP-seq	LNCaP	FOXA1	GEO	GSM2219864
ChIP-seq	LNCaP	H3K27ac	GEO	GSM1902615
ChIP-seq	LNCaP	H3K4me3	GEO	GSM945240
Dnase-seq	LNCaP	DNase I	GEO	GSM816637
ChIAPET	LNCaP	RNA Pol II	This study	GSM3423998
ChIAPET	LNCaP	Rad21	ENCODE	ENCSR011ITK
HiC	LNCaP	I	ENCODE	ENCSR346DCU
RNA-seq	RWPE-1	/	This study	GSE121022
ChIP-seq	RWPE-1	CTCF	ENCODE	ENCFF391XEK
ChIP-seq	RWPE-1	H3K27ac	GEO	GSM1541009
ChIAPET	RWPE-1	RNA Pol II	This study	GSM3424000
RNA-seq	VCaP	/	This study	GSE121022
ChIP-seq	VCaP	CTCF	GEO	GSE844332
ChIP-seq	VCaP	AR	GEO	GSM1328945
ChIP-seq	VCaP	FOXA1	GEO	GSM2058886
ChIP-seq	VCaP	H3K27ac	ENCODE	ENCFF190ZWT
ChIP-seq	VCaP	ERG	GEO	GSM1328979
ChIP-seq	VCaP	RNA Pol II phospho	GEO	GSM1328964
ChIAPET	VCaP	AR	GEO	GSM1327093
ChIAPET	VCaP	RNA Pol II	This study	GSM3423997

Table S2-1. Related to Figures 1 and 2. Metadata table for ChIA-PET sequenced in this study.

| Cell Line | Total PETs ${ }^{1}$ | Valid PETs ${ }^{2}$ | Output
 PETs 3 | Uniquely
 Mapped
 PETs 4 | Total
 Broad
 Peaks | Self PETs ${ }^{\mathbf{5}}$ | PETs
 between
 Peaks | Intra
 PETs 6 | Inter
 PETs 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RWPE-1 | $278,678,565$ | $256,081,201$ | $213,698,640$ | $90,123,783$ | 86,711 | $10,235,232$ | 184,671 | 47,469 | 137,202 |
| LNCaP | $342,749,728$ | $244,073,222$ | $152,299,081$ | $135,848,887$ | 65,335 | $12,972,501$ | 159,283 | 51,365 | 107,918 |
| VCaP | $254,392,059$ | $188,211,704$ | $135,372,820$ | $117,548,587$ | 60,656 | $15,665,876$ | 492,546 | 88,374 | 404,172 |
| DU145 | $231,264,122$ | $202,773,594$ | $165,934,884$ | $72,043,490$ | 58,097 | $7,658,637$ | 243,953 | 38,130 | 205,823 |

${ }^{1}$ Total PETs: total sequenced raw Pair End Tags.
${ }^{2}$ Valid PETs: total PETs after linker trimming that kept for alignment, regardless of whether they have linkers or not. (this is used for alignment).
${ }^{3}$ Output PETs: Successfully aligned on hg19 reference genome after removing unmapped reads and low MAPQ reads.
${ }^{4}$ Uniquely Mapped PETs: Uniquely mapped PETs after removing PCR duplicates. (This is used for following peak calling and interaction analysis).
${ }^{5}$ Self PETs: Self-ligation PET (two ends of the same DNA fragment).
${ }^{6}$ Intra PETs: intra-chromosomal PETs.
${ }^{7}$ Inter PETs: inter-chromosomal PETs.

Table S2-2. Related to Figures 1 and 2. Metadata table for ChIP-seq sequenced in this study.

Sample ID	Target	Cell line	Total reads	Mapped hg19 reads	Mapped hg19 ratio
DU145_INPUT	None	DU145	$55,199,482$	$37,950,546$	68.75%
DU145_H3K27ac	H3K27ac	DU145	$44,248,954$	$35,526,292$	80.29%
DU145_CTCF	CTCF	LNCaP	$52,829,386$	$42,818,743$	81.05%
LNCaP_INPUT	None	LNCaP	$53,984,265$	$34,778,710$	64.42%
LNCaP_AR	AR	LNCaP	$83,915,780$	$55,429,089$	66.05%

Table S2-3. Related to Figures 1 and 2. Metadata table for RNA-seq data sequenced in this study.

Cell line	Replicate	Total reads	Mapped rRNA reads	Mapped rRNA ratio	Retained reads	Mapped genome reads	Mapped genome ratio
*DU145	1	$134,038,110$	$10,743,305$	8.02%	$123,294,805$	$113,512,312$	92.07%
DU145	2	$23,796,797$	313,557	1.32%	$23,483,240$	$22,513,624$	95.87%
RWPE-1	1	$1,228,613$	35,375	2.88%	$1,193,238$	$1,031,576$	86.45%
RWPE-1	2	$43,783,623$	$2,296,860$	5.25%	$41,486,763$	$39,111,293$	94.30%
*RWPE-1	3	$117,596,563$	$6,435,787$	5.47%	$111,160,776$	$102,784,548$	92.46%
LNCaP	1	$24,266,367$	313,951	1.29%	$23,952,416$	$22,311,856$	93.15%
*LNCaP	2	$100,996,513$	$1,359,705$	1.35%	$99,636,808$	$93,931,367$	94.30%
LNCaP	3	$36,843,667$	282,480	0.77%	$36,561,187$	$29,593,164$	80.90%
*VCaP	1	$119,025,099$	$5,905,928$	4.96%	$113,119,171$	$98,423,765$	87.01%
VCaP	2	$22,201,556$	203,535	0.92%	$21,998,021$	$19,614,776$	89.17%

*Data shown in IGV track.
rRNA represents for ribosome RNAs.

Table S5. Related to Figure 2. Peak overlapping of RAD21, RNA Pol II, H3K27ac and CTCF for LNCaP and DU145 cells. The P-value of an overlapped number was calculated by using hypergeometric test, one-side testing of bigger than the overlapped number.

Cell Name	Peak Name	RNA Pol II		RAD21	
LNCaP		RNA Pol II (All Peaks 62563)	RNA Pol II (Intrainteraction Peaks 33336)	RAD21 (All Peaks 65485)	RAD21 (Intrainteraction Peaks 55294)
	CTCF (76292)	$\begin{gathered} 19952, \\ P(X \geq 19952)=0.99 \end{gathered}$	13147, $P(X \geq 13147)=1$	$\begin{gathered} 36122, \\ P(X \geq 36122)=8.41 \mathrm{E}-04 \end{gathered}$	$\begin{gathered} 34109, \\ P(X \geq 34109)=1.08 \mathrm{E}-13 \end{gathered}$
	RAD21 (65485)	27029, $P(X \geq 27029)=1$	$\begin{gathered} 17640 \\ \mathrm{P}(\mathrm{X} \geq 17640)=0.99 \end{gathered}$	---	---
	$\begin{gathered} \text { H3K27ac } \\ (62723) \\ \hline \end{gathered}$	$\begin{gathered} 33649, \\ P(X \geq 33649)=1.89 \mathrm{E}-08 \end{gathered}$	$\begin{gathered} 23013 \\ P(X \geq 23013)=2.91 \mathrm{E}-71 \end{gathered}$	23258, $P(X \geq 23258)=1$	21138, $P(X \geq 21138)=1$
DU145		RNA Pol II (All Peaks 58097)	RNA Pol II (Intrainteraction Peaks 22063)	RAD21 (All Peaks 90274)	RAD21 (Intrainteraction Peaks 51326)
	CTCF (36152)	9542, $\mathrm{P}(\mathrm{X} \geq 9542)=1$	5541, $\mathrm{P}(\mathrm{X} \geq 5541)=1$	$\begin{gathered} 28936, \\ P(X \geq 28936)=9.18 \mathrm{E}-139 \end{gathered}$	26739, $P(X \geq 26739)=0$
	RAD21 (90274)	25084, $P(X \geq 25084)=1$	14612, $P(X \geq 14612)=1$	---	---
	$\begin{aligned} & \text { H3K27ac } \\ & (50364) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 28448, } \\ P(X \geq 28448)=7.14 \mathrm{E}-09 \end{gathered}$	20095, $P(X \geq 20095)=0$	23138, $P(X \geq 23138)=1$	19664, $P(X \geq 20095)=1$

Table S6. Related to Figure 3. Baseline characteristics for those patients with aCGH performed.

	All patients $\mathrm{N}=27$
Age at diagnosis, years	$62.6(8.2)^{*}$
Mean (SD)	
Histology, \mathbf{N} (\%)	$23(85)$
Adenocarcinoma	$4(15)$
NA	
Gleeson, N (\%)	$7(26)$
≤ 7	$14(52)$
>7	$6(22)$
NA	
Presenting PSA, ug/I	$110.5(16.7-$
Median (IQR)	$565.0)^{\wedge}$
Metastatic at diagnosis,	
(\%)	$9(33)$
No	$14(52)$
Yes	$4(15)$
NA	
Primary therapy, N (\%)	$8(30)$
Radical	$17(63)$
Palliative	$2(7)$
NA	
Biopsy site, N (\%)	$9(33)$
Bone marrow	$11(41)$
Lymph node	$2(7)$
Liver	$1(4)$
Soft tissue	$4(15)$
Prostate	

$N A$ - not available, N - number, SD - standard deviation, IQR - interquartile range.
*Data not available for two patients
^3 PSA values missing

Table S8. Related to Figure 3. AR enhancers assays

Assay ID	Repo rter 1 Dye	Reporter 1 Concentr ation $(\mu \mathrm{M})$	Forward Primer Concentr ation ($\mu \mathrm{M}$)	Reverse Primer Concentr ($\mathrm{\mu M}$)	Forward Primer Sequence	Reverse Primer Sequence	Reporter 1 Sequence	$\begin{gathered} \text { Ampli } \\ \text { con } \\ \text { Size } \end{gathered}$
Peak 1 CDA AAHV	FAM	5	18	18	CTGGATGGACCTTTGGGTTA тСтTT	GCCCACTCCTATACACTT CTTCACT	CTTGGAGAGGAGGTAA ATATG	80
$\begin{gathered} \text { Peak2_CDD } \\ \text { JXNP } \end{gathered}$	FAM	5	18	18	GGCAGATGGACAGGCAAGTT T	CCCACTCTCAGCCAGTTC TG	ACGTAAAGCAAGGCCA CATAAA	73
peak3_CDF VKUJ	FAM	5	18	18	CTGTAGTTGACTGCAGAGGG AATTT	CATTCTTCTCTGTGCACTG tCTAGT	CTAGGAACCTCCCCAA ATACCT	82
$\begin{gathered} \text { peak4_CDM } \\ \text { FW } 39 \end{gathered}$	FAM	5	18	18	TGTGTTTCTGGTTTTGTTAGT TATCTATTGCT	TCCTGACCCACAGAAATT GTGAAAA	AAGGTGCTAAGTTGTG AATAATTT	107
$\begin{gathered} \text { peak5_CD9 } \\ \text { HH46 } \end{gathered}$	FAM	5	18	18	CAATGCAACATGTTACAAAT CCTTCTGA	GGTTCAGGCCCATTGATT TGG	CTTCTGGACGTGAGTGA TAGTC	93
peak6_CDW CWJT	FAM	5	18	18	GCGCAGCCTATTTACATGAT TTCA	GGTGATGATAGAGAGATA GTGGACCAA	AAGGTCAACAAGATAA GGTAATCTC	101

Table S9. Related to Figure 9.
siRNAs used in the study are:

siRNAs			
Gene	Gene Accession	Catalogue	Sequence
Non-targeting (pool)	N/A	D-001810-10	UGGUUUACAUGUCGACUAA UGGUUUACAUGUUGUGUGA UGGUUUACAUGUUUUCUGA UGGUUUACAUGUUUUCCUA
Androgen Receptor (pool)	NM_000044	L-003400-00-0005	GAGCGUGGACUUUCCGGAA UCAAGGAACUCGAUCGUAU CGAGAGAGCUGCAUCAGUU CAGAAAUGAUUGCACUAUU
FAM57A (pool)	NM_024792	L-014448-02-0020	CGAUCAACUAGGAUGAAUU ACUACAGGGAAGCGUGAAA CCAAAUUGUGCCCUGGGUA GUAGGUAGUUAUUGAUCGU
GEMIN4 (pool)	NM_015721	L-020756-01-0020	CGUUGACACUUCUGCCGAA UACCUGUGCGGGAGCGAAA GGUCAUAGUGCACCCGGAA
VPS53 (pool)	NM_001128159	L-017048-00-0020	GUGCAGAACUAGAGCGCUU GGAACGUAGAUCACGCCAAA GGUCAGGCAUUU
			UAUUCGAACUGUUGUAAGA GGAUGUAAGUCUGAUUGAA

Table S10. Related to Figure 9.
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) primers used in the study are:

QPCR primers		
Gene	Forward(5'-3')	Reverse(5'-3')
FAM57	CGAACCAGAGACCAGAACCG	CTGAATCAGAACCCTGCCCA
GEMIN4	TCTTCTAAGTCGGCCTCAGC	CATGTTCCTCCTGGCTGGATT
VPS53	ACCAGGCGAAGACAATACGG	GTCTGTGCAGCCTTCACTCT
Androgen Receptor (AR)	AGTCAATGGGCAAAACATGG	TTGTGTCAAAAGCGAAATGG
GAPDH	GAGAGAAACCCGGGAGGCTA	TCACCTTCCCCATGGTGTCT

Methods

ChIP-seq

The cells were crosslinked using 1% formaldehyde and quenched by 1.25 M glycine. The cells were lysed, sonicated, and used in a Chromatin Immunoprecipitation (ChIP) reaction (HighCell\# ChIP kit protein G (Diagenode Inc., NJ) as per the manufacturer's recommendation using the CTCF (3418S, Cell signaling Technologies) and H3K27ac (39133, Active Motif) antibodies. The ChIP processed DNA was then reverse crosslinked and purified using the IPure kit (Diagenode Inc., NJ). The ChIP DNA was quantified and used for construction of next generation sequencing libraries (KAPA Hyper Prep, KAPA Biosystems, MA). The ChIP sequencing (ChIP-Seq) libraries, after appropriate size selection using Agencourt AMPure XP (Beckman Coulter Life Sciences, IN), were sequenced with single-end reads of 75 bp on Illumina NextSeq 500.

ChIP-seq data analysis

First, we did quality control for ChIP-seq datasets by FastQC (version 0.11.5) [Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data.], and then trimmed adaptor sequences from raw reads by FASTX_Toolkit (version 0.0.13.2, command fastx_clipper, http://hannonlab.cshl.edu/fastx_toolkit/). After adaptor trimming, reads shorter than 18 nt were discarded (adaptor sequence is "GATCGGAAGAGCACACGTCTGAA"). Second, ChIP-Seq reads were aligned to human reference genome (hg19 version) by bowtie (version 1.0.0) (1), using the parameter as -v $1-$ M $1-m 2$--best -S. Considered reads have multiple alignments in the genome, we only retained reads that have no more than two alignments and reported the best aligned position by "--best". Third, macs2 was used to call peaks from aligned ChIP-Seq reads, with default parameters (2). Integrated Genomics Viewer (IGV, v2.3.79) (3) was used to visualize ChIP-seq peak data.

RNA-seq

RNA was extracted from the cell lines used for ChIA-PET using the RNeasy Mini kit (QIAGEN, MD). The total RNA was analyzed using the RNA Screen Tape Station (Agilent, CA) and quantified using the ThermoFisher Qubit (Waltham, MA). One microgram of total RNA from each sample was used to prepare libraries using the KAPA mRNA Hyper prep kit (KAPA Biosystems, CA). The quality of the libraries was assessed using the Tape Station High Sensitivity DNA Screentape (Agilent, CA) and sequenced with single read of 75 bp . Library clustering was performed on a cBot with Illumina HiSeq PE Cluster kit v3 (San Diego, CA). The libraries were sequenced as single end 75 basepair reads on an Illumina NextSeq 500 (San Diego, CA) with an Illumina HiSeq SBS kit v3 (San Diego, CA). Base calling and quality scoring were performed using Real-Time Analysis (version 1.18.64) (San Diego, CA) and FASTQ file generation and de-multiplexing using CASAVA(San Diego, CA).

RNA-Seq data analysis

Quality Control

We did quality control for RNA-Seq datasets of four cell lines by FastQC. Then, we removed reads that mapped to human ribosome RNA sequences using bowtie.

Alignment

Retained reads from the previous step were processed to map to human reference genome (version hg19) by Tophat2 (version 2.0.10) (4), with parameter "--read-mismatches 2 --segment-mismatches 0 -g 1 --report-secondaryalignments". RNA-Seq libraries were constructed with strand information (first-stranded). DNA duplications generated by PCR were removed by samtools (command rmdup) (5).

Differential expression

Express (version 1.4.1) was used to calculate read counts for each gene (6). As express can only calculate read counts on transcript level, the estimated gene counts were summed across all the isoforms of the gene. Then the read count matrix files were used as input file for DESeq2 to identify differentially expressed genes (7). Significant differentially expressed genes were selected following the criteria that the absolute value of $\log 2$ foldchange is no less than 1 , and adjusted p -value is less than 0.05 .

Definition of regulatory elements

For our analysis, several different genomic elements were defined, including promoters, enhancers, gene bodies and other regions. Promoters are defined as regions from upstream 500nt (-500 nt) to downstream 250nt $(+250 \mathrm{nt})$ of the transcription start site (TSS) of a gene. Gene bodies are defined by subtracting promoter regions from whole gene regions based on annotation file of hg19. Other regions are genomic regions that are neither promoters not gene bodies. Combining ChIP-seq data of H3K27ac of four cell lines, enhancers are defined as H3K27ac peak regions, discarding peaks which have overlaps with promoters.

Correlation analysis

Correlation co-efficiency was calculated between RNA expression level and chromatin interactions. RNA expression level was measured by FPKM transformed by $\log 2$ calculated based on RNA-Seq data, while chromatin interactions were measured by PET numbers calculated from ChIA-PET data of four cell lines. As there are two or three biological replicates for RNA-seq datasets in each cell line, we took the mean FPKM of replicates as the expression level of each gene. Cor.test in R was used to calculate the correlation co-efficiency and p-value.

Motif enrichment analysis

Motif sequences enriched in promoter regions and enhancer regions were identified by homer (version 4.7), with default parameters (8). Significantly enriched motifs were selected following the thresholds described below:
I. For motifs enriched in enhancer regions: p-value $<1 \mathrm{e}-20$, while for motifs enriched in promoter regions: p value $<1 \mathrm{e}-5$.
II. Motifs are ranked by p-value.
III. Motifs with the same sequence type, like bZIP and Zf , are further curated to avoid redundancy (showing the one with the most significant p-value).

Data Visualization

The Integrative Genomics Viewer (IGV) is used to visualize the track files for different gene loci (3). HiCPlotter was used to draw chromatin interaction heatmap (9).

Predicting potential gene target of enhancers, AR binding peaks, FOXA1 binding peaks and PCa risk SNP loci by using ChIA-PET data

The potential gene targets of cis-elements and trans-acting factors were predicted on the basis of their relationship with ChIA-PET interaction anchor peaks. In this study, potential gene targets of enhancers, AR binding peaks, FOXA1 binding peaks and PCa risk SNP loci are provided in supplementary tables S3, S7 and S8.

Potential gene targets of enhancers

For identifying the potential targets of enhancers, we filtered the RNA Pol II ChIA-PET interaction anchor peaks that overlapped with H3K27ac ChIP-seq peaks. Next, the H3K27ac peaks were assigned their paired peaks on the basis of PET interactions. The genes whose promoter regions (from -500 nt to +250 nt from the TSS) overlapped with the paired peak regions were considered as potential targets of corresponding enhancers.

Potential gene targets of AR and FOXA1 binding peaks

Potential targets of AR and FOXA1 binding peaks in LNCaP and VCaP cells were also predicted by following the same strategy as above, only replacing the H3K27ac ChIP-Seq data with AR or FOXA1 ChIP-Seq data. Potential target genes identified by integrating RNA Pol II ChIA-PET with AR or FOXA1 binding peaks were classified as ChIA-PET plus ChIP-seq group (Group 1). Genes that are nearest to AR or FOXA1 binding peaks were classified as AR or FOXA1 ChIP-seq group (Group 2) (by utilizing tool closestBed in bedtools). To balance the number of different gene groups, genes in Group 2 were randomly selected with comparable number as Group 1. Also, comparable number of all annotated genes (GENCODE v19) were randomly selected as control group (Group 3). The AR-FOXA1 co-occupied regions that overlapped with the H3K27ac mark were designated as AR-FOXA1 co-occupied enhancers, and genes located in the paired RNA Pol II anchor peaks were assigned as their targets.

Potential gene targets of PCa risk SNP loci

We filtered the ChIA-PET interaction anchor peaks that overlapped with PCa risk SNP loci. The genes located in the paired anchor-peaks were extracted as targets of the risk SNP loci.

Patients and tissue samples

Patients were identified from a population of men treated at the Royal Marsden NHS Foundation Trust who developed castration resistant prostate cancer. Patients with adequate DNA from formalin-fixed, paraffin-embedded biopsies to perform array CGH were selected. Biopsies were obtained from bone marrow (9), lymph node (11), liver (2), soft tissue (1) and prostate (4). All patients had given written informed consent and were enrolled in institutional protocols approved by the Royal Marsden NHS Foundation Trust Hospital (London, UK) ethics review committee (reference no. 04/Q0801/60). A total of 27 patients had sufficient DNA for testing. Demographic and clinical data for each patient were retrospectively collected from the hospital electronic patient record system.

Array Comparative genomic hybridization (aCGH)

Briefly 10 ng of tumor DNA and a pool reference of 20 male normal DNA were amplified using GenomePlex ${ }^{\circledR}$ Complete Whole Genome Amplification (WGA) Kit (Sigma-Aldrich, MO, USA), according to manufacturer procedures. 500 ng of amplified tumor DNA was fluorescently labeled with Cy 5 , and the reference male DNA labeled with Cy3 using SureTag Complete DNA Labeling Kit (Agilent Technologies CA, USA). Labeled DNA was purified and hybridized utilizing the Agilent SurePrint G3 Human array CGH Microarray Kit, 2x400K. Slides were scanned using the SureScan microarray scanner and ratios of tumor DNA to reference male reference DNA were determined using the Feature extraction software and followed by CytoGenomics Software from Agilent Technologies. Smoothed $\log _{2}$ ratio values <-0.25 were categorized as losses; those >0.25 as gains; and those in between as unchanged. Amplifications were defined as smoothed $\log _{2}$ ratio values ≥ 1.2 and homozygous deletions as the segment $\log _{2}$ ratio values ≤-1.2.

Digital PCR

Digital PCR was performed on a QX100 droplet digital PCR system (Bio-Rad). Copy Number Assays were performed with a FAM-AR Taqman Copy Number Assay, assay ID : Hs 00037560_cn and a reference copy number Vic-assay for RNAse P (cat 4403326) (Thermofisher). Copy Number Assay for AR enhancer peaks were FAM-Taqman custom designed probes (see table below). PCR reactions were prepared with 5ng DNA and Bio-Rad 2 x ddPCR supermix (no dUTP) for probes (Cat number 1863010) in a total volume of $20 \mu \mathrm{l}$, and partitioned into $\sim 14,000$ droplets per sample in a QX100 droplet generator according to manufacturer's instructions. Emulsified PCR reactions were run on a 96 well plate on an Eppendorf Nexus GSX1 thermal cycler incubating the plates at $95^{\circ} \mathrm{C}$ for 10 min followed by 40 cycles of $95^{\circ} \mathrm{C}$ for 15 sec and $60^{\circ} \mathrm{C}$ for 60 sec , followed by 10 min incubation at $98^{\circ} \mathrm{C}$. The temperature ramp increment was $2.5^{\circ} \mathrm{C} / \mathrm{sec}$ for all steps. Plates were read on a Bio-Rad QX100 droplet reader and digital PCR analysis was performed using QuantaSoft v1.3.2.0 software from Bio-Rad to assess the number of positive droplets. At least two negative control wells with no DNA were included in every run.

Whole genome sequencing (WGS) and Copy number alteration (CNA) analysis

For the WGS experiments, tumor DNA was extracted from seven $10-\mu$ m-thick frozen sections after confirmation of tumor cell presence on a $4-\mu$ m-thick hematoxylin and eosin (H\&E)-stained slide. Germline DNA was extracted from saliva. The QIAmp DNA Mini Kit (\#51304; Qiagen) was used for DNA isolation from both
fresh/frozen sections and buccal swabs. Library preparation was performed using the TruSeq Nano DNA Library Prep Kit. Sequencing was performed using the Illumina HiSeq 2000 System. Tumor and matched germline DNA samples were profiled with a standard WGS protocol. Paired-end sequencing reads were aligned to the human reference genome (GRCh37/hg19) using Illumina Isaac Genome Alignment Software embedded in Illumina pipeline version v2.0.1(10). The absolute gene copy number in tumor was derived from NGS data based on comparing genome coverage between matched tumor-normal samples. CNV analysis used CNV-seq (11) which applied a robust statistical model that allows confidence assessment of observed copy number ratios and adjust confounders to achieve absolute gene copy number in tumor.

SNP data analysis

The 122 germline SNPs were obtained from previous study of prostate cancer (12). The hg 19 genome was separated into bins/blocks with the size of the mean length of all peaks in each cell line. Based on overlapping the RNA Pol II peaks, all blocks were subsequently classified into peak-blocks and non-peak blocks. For each cell line, peak-blocks were defined as the number of peaks, and non-peak blocks were calculated by subtracting the number of peaks from the total number of blocks. A bootstrapping probability was calculated by random sampling of genome blocks. Each run, the blocks were randomly sampled as same number as peak-blocks and count the number of blocks that have SNPs. Then the empirical p-value was calculated for enrichment analysis based on in total of 10000 runs.

CPCG cohort

We interrogated a previously published cohort of 128 intermediate risk prostate cancer samples that underwent RNA-Seq, described previously (13). Genotype calls were extracted from WGS of matched blood samples using GATK (v.3.4.0+), described previously (14).

TCGA cohort

The TCGA PRAD was used a validation cohort (15). Only samples with concordance between SNP6 array genotypes and whole exome sequencing (WXS) blood samples calls $>80 \%$ were retained (348 samples). Genotypes were imputed using the Sanger Imputation Service - pre-phasing using Shapeit2 (16), imputation using PBWT (17) and the Haplotype Reference Consortium (release 1.1) panel (18).

Germline-RNA associations (eQTL) discovery and validation

For each SNP-target pair, we tested for eQTLs first in the CPCG discovery cohort and then validated significant associations in the TCGA cohort. We fit a linear regression model treating genotypes additively, i.e. number of alternative alleles present $(\mathrm{AA}=0, \mathrm{AB}=1, \mathrm{BB}=2)$, with principal components 1 and 2 to control from population stratification. False discovery adjustment was applied over all SNP-target pairs and significant associations were defined as FDR <0.05. eQTLs were considered validated if they had FDR <0.05 in the TCGA validation cohort and the directionality of the coefficient was the same in both cohorts (i.e. $\operatorname{sign}\left(\beta_{\mathrm{discover}}\right)=$
$\operatorname{sign}\left(\beta_{\text {validation }}\right)$). To assess the impact of ERG status on rs684232:FAM57A, rs684232:VPS53 and rs684232:GEMIN4 eQTLs, CPCG samples were subsetted into ERG positive and negative based on the presence of the TMPRSS2-ERG fusion, as described previously (14). We quantified each eQTL within positive and negative individuals separately using the same linear regression model described above. mRNA abundance differences between individuals positive and negative for TMPRSS2-ERG fusion with the same genotype were quantified using Mann-Whitney test.

Differential H3K27ac binding

Peak bed files and raw fastqs for H3K27ac ($\mathrm{n}=92$), H3K27me3 ($\mathrm{n}=76$), AR ($\mathrm{n}=88$) and H3K4me3 ($\mathrm{n}=56$) were downloaded from the Gene Expression Omnibus (GSE120738) (19). Raw fastqs were aligned using bwa (v.0.7.15) and the aligned bam files from each target were merged for each patient (i.e. H3K27ac, H3K27me3, H3K4me3 and AR bams from the same patient were merged). This merging step increased the coverage as well as reduced allele bias due to allele specific binding. Using the merged bams, patients were genotyped at overlapping sites of interest using GATK (v3.4.0+) HaplotypeCaller. Using the peak bed files, consensus peak bed was generated by using DiffBind R package. Bedtools coverageBed was used to overlap the read counts with the consensus peaks. The overlapped read counts were normalized for sequencing depth using TMM method by edgeR. Differential H3K37ac binding at rs684232 was quantified using Mann-Whitney test considering a recessive model.

Immunoblot analysis

Cells were harvested and lysed using RIPA ($150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM}$ EDTA, 50 mM Tris-Cl, 1% NP-40, 0.5% Sodium deoxycholate, $0.1 \% \mathrm{SDS}$) buffer supplemented with proteinase inhibitor (cOmplete EDTA free protease inhibitor tablet, cat no 11873580001 , Roche). After determining the protein concentration of lysates, samples were separated on $4-12 \%$ gradient gels (Invitrogen, NW04122). To detect full length and variants of AR protein, the immunoblots were performed using anti-AR (Sigma, A9853; this antibody binds to the N-terminus of AR), anti-AR (Sigma, SAB5500007; this antibody binds to the C-terminus of AR), anti-Actin (Sigma, AC-74), anti-beta tubulin (SantaCruz, sc9104), and anti-cMyc (Cell Signaling, 5605S) antibodies. To compare endogenous EZH2 and FOXA1 proteins, anti-EZH2 (active motif, 39901), anti-FOXA1 (Cell Signaling, 58613) were used.

Luciferase reporter assays

The ~ 1100 base pair promoter/enhancer region containing the wild-type or risk allele rs684232 was cloned into pGL2 luciferase reporter plasmid (Promega) and verified by Sanger sequencing. LNCaP or VCaP cells were seeded on 24 -well plates and transfected with the indicated plasmids. The Fire fly luciferase / Renilla luciferase activities were measured using the Dual-Glo luciferase assay system as described in the manufacturer's protocol (Promega, E2940).

siRNA knockdown and Gene expression studies

Small interfering RNA (siRNA) were purchased from Horizondiscovery. siRNAs transfection was carried out by using Lipofectamine RNAiMAX transfection Reagent (Thermo Fisher Scientific, \#13778-150) and total RNA was extracted using RNeasy Plus Mini Kit (QIAGEN, \#74134) at 72 hr post transfection. Reverse transcription and quantitative PCR were performed as previously described (20).

CellTiter-Glo assay

LNCaP cells were seeded into multiple 96-well plates one day before the transfection with siRNA. To determine the number of viable cells in the culture, CellTiter-Glo reagent (Promega, G7570) was added to each well (7 days post siRNA transfection) and mixed by orbital shaker according to the manufacturer's instructions. Plates were incubated for 10 min at room temperature, then luminescence was measured using a microplate reader (TECAN).

Supplemental References

1. Langmead B, Trapnell C, Pop M, and Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
2. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
3. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24-6.
4. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, and Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
5. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9.
6. Roberts A, and Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nature methods. 2013;10(1):71-3.
7. Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
8. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576-89.
9. Akdemir KC, and Chin L. HiCPlotter integrates genomic data with interaction matrices. Genome Biol. 2015;16:198.
10. Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH, et al. Isaac: ultrafast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013;29(16):2041-3.
11. Xie C, and Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 2009;10:80.
12. Guo H, Ahmed M, Zhang F, Yao CQ, Li S, Liang Y, et al. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nat Genet. 2016;48(10):1142-50.
13. Chen S, Huang V, Xu X, Livingstone J, Soares F, Jeon J, et al. Widespread and Functional RNA Circularization in Localized Prostate Cancer. Cell. 2019;176(4):831-43 e22.
14. Fraser M, Sabelnykova VY, Yamaguchi TN, Heisler LE, Livingstone J, Huang V, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature. 2017;541(7637):359-64.
15. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015;163(4):1011-25.
16. Delaneau O, Marchini J, and Zagury JF. A linear complexity phasing method for thousands of genomes. Nature methods. 2011;9(2):179-81.
17. Durbin R. Efficient haplotype matching and storage using the positional BurrowsWheeler transform (PBWT). Bioinformatics. 2014;30(9):1266-72.
18. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279-83.
19. Stelloo S, Nevedomskaya E, Kim Y, Schuurman K, Valle-Encinas E, Lobo J, et al. Integrative epigenetic taxonomy of primary prostate cancer. Nat Commun. 2018;9(1):4900.
20. Li X, Baek G, Ramanand SG, Sharp A, Gao Y, Yuan W, et al. BRD4 Promotes DNA Repair and Mediates the Formation of TMPRSS2-ERG Gene Rearrangements in Prostate Cancer. Cell reports. 2018;22(3):796-808.
