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Introduction
Whole-genome sequencing (WGS) and exome sequencing studies 
have revealed that prostate cancer (PCa) is generally characterized 
by lower mutation rates and higher rates of recurrent genomic rear-
rangements. The majority of PCa-associated recurrent genomic 
rearrangements promote the upregulation of transcription factor 
genes. For example, genomic rearrangements and gene fusions 
resulting in the upregulation of ETS transcription factor family 
genes like ERG and ETV1 are observed in more than 50% of PCa 
samples (1). The androgen receptor (AR) is a master transcription 
factor that is essential for normal development of the prostate gland. 
Intriguingly, aberrant AR signaling drives many facets of PCa etiol-
ogy, including lethal metastatic castration-resistant prostate cancer 
(mCRPC) development (2). Copy number alterations and amplifi-
cations of the AR locus are observed in over 60% of mCRPC cas-
es (3, 4). The AR and the pioneer factor FOXA1 co-occupy distant 
regulatory elements, such as enhancers, to regulate transcription (2, 
5). The binding of ETS transcription factors to these regulatory ele-
ments adds an additional layer of complexity to the transcriptional 
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capture (3C) methods to map the genomic interaction landscape 
of any chromatin-associated protein of interest (11, 12). We sought 
to identify global differences in transcriptional regulation by com-
paring RNA Pol II ChIA-PET, along with ChIP-Seq and RNA-Seq 
analyses in benign prostate cells (RWPE-1) and PCa cells (LNCaP, 
VCaP, and DU145) (Supplemental Tables 1 and 2; supplemental 
material available online with this article; https://doi.org/10.1172/
JCI134260DS1). LNCaP and VCaP cells are AR positive, whereas 
RWPE-1 and DU145 cells are AR negative (Figure 1A).

Binding peaks represent the fundamental basis of ChIA-PET 
analysis; peaks that interact with other peaks are called anchor 
peaks, whereas noninteracting ones are termed nonanchor peaks. 
Thus, a single RNA Pol II ChIA-PET experiment can provide both 
2D data on RNA Pol II binding peaks, as well as 3D data on RNA 
Pol II binding anchor peaks and nonanchor peaks. Paired-end tags 
(PETs) are the units used for measuring the interactions between 
a pair of anchor peaks, with more PETs between anchors signify-
ing stronger interactions. We identified thousands of RNA Pol II–
associated chromatin interactions spanning all chromosomes in 
the cell lines analyzed. Saturation analysis indicated that we had 
sufficient sequencing depth to detect high-confidence chromatin 
interactions supported by 3 or more PETs. For example, by using 
only 50% of the sequencing reads, we were able to rediscover 
64%–80% of chromatin interactions supported by 3 or more PETs 
and 76%–90% of chromatin interactions supported by 4 or more 
PETs (Supplemental Figure 1). Importantly, the saturation analy-
sis indicated that our data were comparable to the gold-standard 
ENCODE ChIA-PET data sets.

We also estimated the length distribution of RNA Pol II–asso-
ciated chromatin interactions by setting multiple PET cutoffs for 
various interaction strengths (Supplemental Figure 1B). Over-
all, the bulk of chromatin interactions ranged from 3 kb to 1 Mb 
in all the cell lines analyzed. Interactions greater than 1 Mb were 
relatively rare, especially at higher PET cutoffs. We extended this 
association by comparing interactions between cell lines (Supple-
mental Figure 2A). As expected, we found a greater overlap for 
interactions of less than 1 Mb between any 2 or more cell lines at 
all measured stringencies and PET cutoffs. We observed maximal 
overlap in RNA Pol II–associated chromatin interactions between 
LNCaP and VCaP cells. This is probably because both LNCaP 
and VCaP cells are AR positive and are dependent on androgen 
signaling for survival. These results suggest that an overlap in 
master transcription factors is associated with a parallel overlap in 
RNA Pol II–associated chromatin interactions. By partitioning the 
genome into 3 groups — promoters, gene bodies and other regions 
— we observed thousands of interactions within and between 
these groups (Supplemental Figure 1C, top). We probed the chro-
matin interaction patterns of active enhancers by mapping acetyl-
ated histone H3 at lysine 27–marked (H3K27ac-marked) sites onto 
the RNA Pol II ChIA-PET anchor sites. In addition to interactions 
between enhancers and promoters, we also discovered thousands 
of enhancer-enhancer and promoter-promoter interactions (Sup-
plemental Figure 1C, bottom), implying that a complex network of 
chromatin interactions coordinates transcriptional regulation in 
these cells. We leveraged our ChIA-PET data to pair enhancers and 
their potential target genes in the 4 cell lines (Supplemental Table 
3). We observed that an increase in the RNA Pol II–associated 

output, ultimately resulting in the oncogenic phenotype (6, 7). Tak-
en together, these studies indicate that transcriptional dysregula-
tion is a distinguishing feature of PCa development.

Two-dimensional (2D) genomics approaches like ChIP-Seq 
have contributed to the identification of thousands of enhancers 
in PCa (7, 8). However, the targets of most of these enhancers are 
unknown. It is unclear whether individual enhancers regulate sin-
gle or multiple genes and, conversely, whether individual genes are 
regulated by single or multiple enhancers in PCa. 2D genomics can-
not reveal whether multiple genes and enhancers are coordinately 
regulated in shared nuclear space. Methods like Hi-C have enabled 
the identification of topologically associating domains (TADs) that 
change in size between normal and PCa cells (9, 10). However, in 
general, Hi-C studies have limited utility in the precision mapping of 
enhancer-promoter contacts. The absence of this knowledge has sty-
mied our understanding of the regulatory targets of somatic muta-
tions and germline risk alleles residing in the intergenic regions.

We present for the first time to our knowledge the 3D land-
scape of RNA polymerase II–associated (RNA Pol II–associated) 
chromatin interactions in normal prostate cells and PCa cells. By 
pairing thousands of enhancers to their target genes, we identified 
thousands of transcriptional network hubs operating within the 
framework set by structural proteins like CTCF and cohesins. Inte-
grative analyses of these data uncovered multiple mechanisms of 
transcriptional regulation and its dysregulation in PCa. Finally, 
we demonstrate that many somatic and germline DNA alterations 
rewire the landscape of RNA Pol II interactions in PCa.

Results
RNA Pol II–associated chromatin interactions in PCa. Chromatin 
interaction analysis by paired-end tag sequencing (ChIA-PET) is a 
genome-wide integration of ChIP and chromosome conformation 

Figure 1. Analysis of RNA Pol II–associated chromatin interactions. (A) 
Pipeline for ChIA-PET data processing and identification of chromatin 
interactions. (B) Enhancers per gene and genes per enhancer for each cell 
line. For enhancers per gene, all expressed genes (fragments per kb per 
million mapped reads [FPKM] >1) were included; for genes per enhancer, 
all enhancers located in RNA Pol II peak anchor regions were included. Box 
plot represents the median and the 25% and 75% quantiles, with lines at 
1.5 times the IQR. The significance for each pair comparison was tested 
using the Kolmogorov-Smirnov test (†P < 2.2 × 10–16).The analysis was nor-
malized by adjusting for sequencing depth. (C) Correlation between RNA 
expression and chromatin interaction across the 4 cell lines. The expres-
sion level was measured by FPKM transformed by log2, and chromatin 
interactions were measured by the number of promoter PETs. The correla-
tion efficient was calculated by Spearman’s correlation, and P values are 
shown. (D) Significant gain and loss of RNA Pol II–associated chromatin 
interactions in the 4 cell lines. The 3 solid lines show the distributions of 
the 3 PCa cell lines compared with benign cells (RWPE-1), whereas the 
3 broken lines show the distributions among the 3 PCa cell lines. The 
significant gain or loss interactions were obtained using the DNB model. 
The total number of interactions that were significantly altered between 
cell lines are listed accordingly. (E) Scatter plot shows the correlation 
between changes in gene expression and changes in promoter-associated 
chromatin interactions. Graphs show Spearman’s correlation coefficients 
for the top 10%, 20%, 40%, 60%, and 80% differentially expressed genes 
(right panel). FC, fold change. (F) Total number of PETs at promoter regions 
in the 4 cell lines. Genes are ranked by increasing number of PETs. Eight 
representative genes are labeled 1 through 8 in the plots.
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promoter. The luminal-like LNCaP and VCaP cells had more 
PETs in the luminal marker gene promoter KRT8 than in the basal 
marker gene promoter KRT5. We observed the opposite trend in 
the more basal-like RWPE-1 cells. Notably, the AR gene promot-
er had approximately 50 independent PETs in VCaP cells. The 
EZH2 gene promoter had a greater number of PETS in PCa cells 
as compared with benign RWPE-1 cells. Next, we examined PCa 
enriched pathways and gene ontology (GO) terms using gene lists 
obtained from differential transcript abundance and differential 
chromatin interactions. Although both these analyses indicated 
enrichment of common categories such as metabolic processes, 
cellular process, and cell cycle–related processes, among others, 
we also identified categories unique to differential chromatin 
interactions such as chromatin organization and translation (Sup-
plemental Figure 2, B and C).

We also investigated the DNA sequence features of promot-
ers and enhancers (Supplemental Figure 1J). In general, promoters 
exhibited less variability than did enhancers. ETS, CCAAT, and 
YY1 motifs were commonly observed in the promoters of all the 
cell lines. Enhancers showed considerable diversity in terms of 
DNA sequence features. ETS and CTCF motifs were commonly 
observed in the enhancers of all the cell lines. The FOXA1 fork-
head motif and HOXB13 homeobox motif were unique to LNCaP 
and VCaP cells. The leucine zipper motif bZIP was the most sig-
nificantly enriched enhancer motif in RWPE-1 and DU145 cells.

Integrative analysis of RNA Pol II–associated chromatin inter-
actions. To better understand the regulatory concepts associ-
ated with transcriptional control, we integrated our RNA Pol II 
ChIA-PET data with multiple additional data sets (Supplemental 
Table 1 and ref. 13). We examined a representative DNA region 
from LNCaP cells with both transcriptionally active and inactive 
genes by overlaying our RNA Pol II ChIA-PET data with RAD21 
ChIA-PET, Hi-C, RNA-Seq, DNase-Seq, and ChIP-Seq data for 
CTCF (TAD and sub-TAD boundary element mark), H3K4me3 
(active promoter mark), and H3K27ac (active enhancer mark) 
(Supplemental Tables 1 and 2). Our RNA Pol II ChIA-PET data 
were consistent with the architectural features of these inde-
pendent data sets (Figure 2A). Both active and repressed regions 
showed substantial chromatin contacts as visualized by the Hi-C 
track. However, the nature of the interactions within active and 
repressed regions revealed characteristic differences. Consistent 
with RNA-Seq, DNAse-Seq, H3K4me3, and H3K27ac signals, we 
observed that both RNA Pol II– and RAD21-associated chroma-
tin interactions were enriched in the active regions. The promi-
nent RNA Pol II interactions almost always involved H3K4me3 
and/or H3K27ac marks. The RAD21 interactions were primar-
ily associated with CTCF-bound regions. Next, we compared 
the RNA Pol II and RAD21 ChIA-PET data sets. The genome-
wide total RNA Pol II peaks as well as the interaction anchor 
RNA Pol II peaks overlapped with H3K27ac peaks with statisti-
cal significance (P < 0.001, hypergeometric test), but not with 
CTCF or RAD21 peaks (Figure 2B and Supplemental Table 5). 
The genome-wide total RAD21 peaks as well as the interaction 
anchor RAD21 peaks overlapped with CTCF peaks with statis-
tical significance (P < 0.001, hypergeometric test), but not with 
RNA Pol II or H3K27ac peaks (Figure 2C and Supplemental Table 
5). The length of RAD21-associated chromatin interactions was 

chromatin interaction strength between enhancers and promoters 
was associated with a decrease in the 2D distances between the 
interacting regions (Supplemental Figure 1D). In comparison with 
the benign RWPE-1 cells, all the PCa cell lines displayed an overall 
increase in enhancer usage per gene as well as an accompanying 
increase in gene targets per enhancer (Figure 1B and Supplemen-
tal Figure 1, E–G). Next, we determined the relationship between 
enhancers per gene and gene expression and observed a very weak 
correlation (Supplemental Figure 1H), implying that enhancers 
per gene is not a useful predictor of gene expression.

We observed that RNA Pol II interaction strength, as measured 
by the number of PETs in gene promoters, positively correlated 
with mRNA abundance in all 4 cell lines (Figure 1C) and was a 
much better predictor of gene expression than enhancers per gene. 
The interaction strength between anchors followed a negative 
binomial (NB) distribution (Supplemental Figure 1I). By applying 
the difference of NB distributions (DNBs), a new statistical model 
for comparing 2 different negative binomial distributions, we iden-
tified thousands of significantly gained and lost interactions across 
all the possible 6 pair-wise comparisons among the 4 cell lines (Fig-
ure 1D and Supplemental Table 4). Next, we evaluated the relation-
ship between changes in gene expression and changes in promot-
er-associated chromatin interactions between the benign RWPE-1 
cells and the 3 PCa cell lines. We initiated the analyses by exam-
ining all genes that were upregulated or downregulated by 2-fold 
or more, followed by additional analyses by filtering the top 80%, 
60%, 40%, 20%, and 10% upregulated or downregulated genes 
from the starting list. Remarkably, as we traversed from all genes to 
the top 10% of genes, we found that the correlation also increased 
(Figure 1E). We observed this trend for all our comparisons. This 
result indicates that changes in RNA Pol II–associated chromatin 
interactions are likely to be drivers of gene expression changes. 
This is particularly the case for the top dysregulated genes.

To extend this correlation further, we rank-ordered all the 
genes on the basis of the number of PETs in their promoters (Fig-
ure 1F). Genes like FOS, JUN, and KLF6 were highly expressed 
in all 4 cell lines and had more than 25 independent PETS in the 

Figure 2. Integrative analysis of chromatin interactions. (A) Integrated 
genome view representing DNase-Seq; ChIP-Seq for CTCF, H3K4me3, and 
H3K27ac; RNA-Seq; ChIA-PET for RNA Pol II and RAD21; and Hi-C data from 
the LNCaP cell line for a representative region with both active and repressed 
genes. Chr1, chromosome 1. (B) Analysis of overlap between H3K27ac ChIP-
Seq and RNA Pol II ChIA-PET data for 4 cell lines. Left: overlap in the number 
of total peaks; right: overlap in the number of peaks with intrachromosomal 
interactions. (C) Analysis of overlap between CTCF ChIP-Seq and RAD21 
ChIA-PET data for LNCaP and DU145 cells. Left: overlap in the number of 
total peaks; right: overlap in the number of anchor peaks with intrachro-
mosomal interactions. (D) Comparison of PET lengths between RNA Pol II 
ChIA-PET and RAD21 ChIA-PET data from LNCaP and DU145 cells. Box plot 
represents the median and the 25% and 75% quantiles, with lines at 1.5 
times the IQR. †P < 2.2 × 10–16, by Kolmogorov-Smirnov test. (E) Integrated 
genome view of the KRT8-KRT18 gene cluster and its neighborhood in 
LNCaP cells. The data tracks represent RNA-Seq; ChIP-Seq for CTCF, FOXA1, 
AR, H3K27ac, and RNA Pol II; ChIA-PET for RNA Pol II and RAD21; and Hi-C 
data for the LNCaP cell line. (F) ChIA-PET contact heatmap representing 
RNA Pol II– and RAD21-associated chromatin interactions for the KRT8-
KRT18 gene cluster and neighborhood regions. The KRT8-KRT18 gene cluster 
is shown in light green.
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Figure 3. Transcriptional regulation of 
AR and FOXA1 loci. (A and B) Integrated 
genome view of the AR gene and its adja-
cent regions from –1400 kb to +400 kb in 
LNCaP and VCaP cells. RNA Pol II ChIA-PET, 
RNA-Seq and CTCF, FOXA1, AR, H3K27ac, 
and RNA Pol II ChIP-Seq data are shown. In 
addition, AR ChIA-PET, phospho–RNA Pol 
II, and ERG ChIP-Seq are shown for VCaP 
cells. The AR gene and upstream regions are 
highlighted in light blue. (C) Summary of the 
copy number aberrations associated with 
the AR and its enhancers. Heatmap shows 
shows the aCGH high-density probes  for 27 
patients with mCRPC. Gains are depicted 
in pink and losses in light blue, whereas 
amplifications are shown in red and deep 
deletions in dark blue. Each column is a 
probe in the aCGH platform, and each row 
represents a sample. Probes that cover the 
EDA2R, AR, and regions of the enhancer 
peaks are shown. (D) Schematic representa-
tion of a deletion between the AR gene and 
its enhancers. (E) Comparison of RNA Pol 
II–associated chromatin interactions at the 
FOXA1 locus and its adjacent regions in the 
4 cell lines.
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significantly longer than that for RNA Pol II–associated inter-
actions (Figure 2D). On the basis of these analyses, chromatin 
interactions can be hierarchically classified into 2 tiers: the out-
er RAD21-associated interactions at CTCF-bound sites and the 
inner RNA Pol II–associated interactions at H3K27ac-marked 
sites. Given that RAD21 is a cohesin component, our results are 
consistent with the concept that RAD21 interactions represent 
boundaries of insulated neighborhoods or TADs. Functionally, 
the outer RAD21 interactions provide insulation for the inner 
RNA Pol II–associated chromatin interactions. Conceptually, 
although lineage-restricted enhancers trigger the transcriptional 
activation of their cognate target genes, this insulation draws the 
boundary and prevents these enhancers from activating genes 
outside the boundary. We present 2 examples to illustrate this 
point in the context of prostate epithelial lineage identity.

KRT8-KRT18 gene cluster expression is limited to prostate 
luminal epithelial cells and luminal PCa represented by LNCaP 
and VCaP cells. The KRT8 and KRT18 genes display divergent 
transcription from a bidirectional promoter/enhancer element 
marked by FOXA1 and H3K27ac (Figure 2E). We observed that the 
inner, short-range RNA Pol II–associated chromatin interactions 
were flanked by outer, long-range RAD21-associated chromatin 
interactions at sites marked by CTCF binding (Figure 2, E and 
F). On the basis of these data, we hypothesize that although lin-
eage-restricted transcription factors, such as FOXA1, specify the 
activation of lineage-restricted enhancers, the RAD21 interactions 
specify the gene targets of these enhancers by creating protective 
moats. Although several type II keratin genes are located in this 
subchromosomal region, our study offers an explanation for why 
the expression of KRT8 and KRT18 genes is unique to the prostate 
luminal epithelial lineage, which is that RAD21 interactions insu-
late these 2 genes and their enhancers. The same concept can be 
used to explain the lineage-specific regulation of HOXB13 and sev-
eral other genes (Supplemental Figure 3).

Transcriptional regulation of AR and FOXA1 loci. Having 
established genomic concepts that underlie transcriptional reg-
ulation, we next examined the mechanisms associated with dys-
regulated transcription in PCa. The AR is the central effector of 
the androgen signaling pathway, which is frequently dysregulat-
ed in PCa. Recent studies have reported the identification and 
amplification of an AR enhancer in mCRPC (4, 14, 15); however, 
unbiased maps of RNA Pol II–associated chromatin interactions 
at the AR locus are not available to date. We report the identi-
fication of an active AR enhancer cluster located approximately 
700 kb upstream of the AR promoter (Figure 3, A and B). This 
H3K27ac-marked enhancer cluster is occupied by the AR and 
FOXA1 and interacted with the AR promoter in LNCaP and VCaP 
cells. The AR gene and its enhancers are amplified in VCaP cells, 
thereby resulting in its overexpression (16). Consistent with AR 
locus amplification, VCaP cells displayed an increase in the total 
number of chromatin interaction modules comprising the AR 
gene and its distal enhancer compared with LNCaP cells. These 
results suggest that AR enhancers play a significant role in driv-
ing AR expression in both the absence and presence of AR locus 
amplification. By integrating our RNA Pol II ChIA-PET data with 
the AR ChIA-PET data set for VCaP cells (5), we observed that 
the complex chromatin interactions in the AR locus were in part 

mediated by AR binding (Figure 3B). VCaP cells express ERG, a 
transcription factor that is formed by genomic rearrangements 
involving TMPRSS2 and ERG genes (1, 17). Interestingly, we also 
observed ERG binding to the AR enhancer cluster in VCaP cells. 
Thus, the enhancer cluster functions as a landing site for mas-
ter regulators, which govern AR transcription in a combinatorial 
manner. Consistent with the role of bromodomain and extra-
terminal (BET) family proteins in controlling enhancer-driven 
gene expression (18), we found that treatment with a BET bro-
modomain inhibitor (BETi) reduced AR expression in a dose- 
dependent manner (Supplemental Figure 4, A and B).

Given that targeting the AR signaling axis remains the main-
stay of therapy for metastatic PCa, we addressed the relevance of 
AR enhancers in a clinical setting. We conducted high-density array 
comparative genomic hybridization (aCGH) to evaluate the copy 
number status of AR and its enhancers in metastatic tumor biopsies 
from 27 patients with mCRPC (Figure 3C and Supplemental Table 
6). We observed (a) 20 patients with both AR gene amplification/
copy number gain as well as AR enhancer amplification/copy num-
ber gain; (b) 1 patient with AR gene amplification/copy number 
gain, but no accompanying changes in the AR enhancer; and (c) 4 
patients with AR enhancer amplification/copy number gain, but no 
accompanying changes in the AR gene. Two patients in this cohort 
did not have amplification or copy number gain in the AR gene or 
the AR enhancer. In summary, AR enhancer alterations were more 
prevalent than AR gene alterations in our mCRPC cohort.

We validated these results by conducting droplet digital PCR 
(ddPCR) analysis of an independent, clinically well-annotated 
mCRPC cohort (n = 46 mCRPC patients) (ref. 19 and Supplemental 
Figure 4C). Again, we observed that amplification of AR enhancers 
correlated with AR gene amplification (Supplemental Figure 4D) 
and that copy number gain of AR enhancers correlated with AR 
gene copy number gain (Supplemental Figure 4E). To establish 
the relationship between AR gene copy number and mRNA abun-
dance, we reanalyzed the data from 122 patients with mCRPC in 
the SU2C cohort (3). As hypothesized, we found that AR gene copy 
number and mRNA abundance were significantly correlated (Sup-
plemental Figure 4F). Overall, our results point to an essential role 
for AR enhancers in promoting AR transcription in mCRPC.

We suggest that the extra copies of genomic DNA from the AR 
locus, formed by the amplification process, are further subjected 
to iterative rounds of mutagenesis and epigenetic alterations and 
ultimately filtered by treatment-induced evolutionary selection. 
For example, WGS analysis of a representative mCRPC specimen 
with amplification of AR and its enhancers resulted in the discov-
ery of a subclonal deletion of approximately 350 kb that brings 
the entire enhancer cluster closer to the AR gene (Figure 3D and 
Supplemental Figure 4G). This deletion is supported by 139 inde-
pendent unique reads (of 7775 reads) and is localized within the 
AR-amplified (20-copy) region. Given the negative correlation 
between 2D distances separating the interacting regions and RNA 
Pol II–associated chromatin interaction strength (Supplemental 
Figure 1D), as well as the positive correlation between RNA Pol 
II–associated chromatin interaction strength and transcript abun-
dance (Figure 1, C and E), we suggest that such deletions are likely 
to further influence AR transcription. Intriguingly, we observed 
enhanced CTCF binding to the 3′ end of the AR gene in VCaP cells 
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Figure 4. Chromatin interaction–associated transcriptional targets of the AR and FOXA1. (A) The expression of AR/FOXA1 target genes discovered by 
integrating RNA Pol II ChIA-PET with AR/FOXA1 ChIP-Seq was compared with the expression of genes that were nearest to AR/FOXA1 binding peaks 
according to ChIP-Seq data and randomly selected control genes in VCaP and LNCaP cells. The y axis represents expression levels, measured as FPKM 
transformed by log2. The box plots represent the median and 25% and 75% quantiles, with lines at 1.5 times the IQR. †P < 2.2 × 10–16, by Kolmogor-
ov-Smirnov test). (B) Gene promoters that interact with AR, FOXA1, and AR-FOXA1 co-occupied regions in the RNA Pol II ChIA-PET data sets are shown in 
yellow. Gene promoters that interact with AR, FOXA1, and AR-FOXA1 co-occupied enhancers in the RNA Pol II ChIA-PET data sets are shown in orange. (C) 
Pathway analysis for gene promoters that interact with AR-FOXA1 co-occupied regions in LNCaP and VCaP cells in the RNA Pol II ChIA-PET data sets.
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lished that the AR upregulates the expression of KLK3. The KLK3 
gene resides in a gene cluster that also includes multiple members 
of the KLK family. We leveraged our ChIA-PET data to create a 
portrait of transcriptional regulation at the KLK gene cluster (Fig-
ure 5A). We identified multiple H3K27ac-marked active enhancers 
surrounding KLK3 and neighboring KLK genes in the AR-positive 
LNCaP and VCaP cells, which express KLK3. These enhancer 
locations were devoid of the H3K27ac mark in the AR-negative 
RWPE-1 and DU145 cells which do not express KLK3. The active 
enhancers in the KLK cluster were occupied by the AR and FOXA1 
(Supplemental Figure 6, A and B). Remarkably, every H3K27ac-
marked enhancer in the KLK cluster interacted with an upstream 
H3K27ac-marked distal enhancer located in the gene C19ORF48. 
The distal enhancer was not bound by the AR or FOXA1 but was 
active in all 4 of the prostate cell lines analyzed. In the AR-neg-
ative cells, this enhancer interacted with other active enhancers 
away from the KLK3 gene. Analysis of this subchromosomal region 
using H3K27ac ChIP-Seq data sets from approximately 100 cell 
types indicated that the distal enhancer was constitutively active 
in all the cell lineages analyzed (Supplemental Figure 7). However, 
the activity of enhancers flanking the distal constitutive enhancer 
was highly cell-type specific and provided epigenetic fingerprints 
for every cell type. It is likely that the flanking enhancers were 
activated by binding of tissue-specific transcription factors to 
their cognate recognition sites. Thus, we conclude that complex 
chromatin interactions between constitutive enhancers and tis-
sue-specific enhancers specify the expression of lineage-restricted 
genes like KLK3.

ZBTB16 is another classic AR target gene that is misregulat-
ed in mCRPC (3, 6). We observed that ZBTB16 was expressed in 
AR-positive LNCaP cells but was transcriptionally silent in DU145 
cells, which do not express the AR. In LNCaP cells, the binding of 
the AR and FOXA1 was associated with H3K27ac-marked intra-
genic enhancers. RNA Pol II ChIA-PET indicated interactions 
between these enhancers and the promoter of ZBTB16 (Figure 5B). 
These RNA Pol II interactions were insulated by outer chromatin 
interactions involving RAD21 at sites comarked by CTCF binding. 
Enhancers having CTCF occupancy appeared to draw the RNA Pol 
II–associated interactions toward the boundaries of the insulated 
neighborhood. In DU145 cells, the absence of a H3K27ac mark 
indicated that the intragenic enhancers were inactive, presum-
ably because these cells do not express the AR (Figure 5C). As a 
consequence, there were no RNA Pol II interactions and the gene 
was silent. However, RAD21 interactions did exist at identical sites 
comarked by CTCF binding. Although AR and FOXA1 binding, 
enhancer activation, and the associated RNA Pol II interactions 
upregulated lineage-restricted genes like ZBTB16, cohesin-asso-
ciated chromatin interactions appeared to function as moats to 
prevent ZBTB16 enhancers from activating other genes outside 
the neighborhood.

Transcriptional architecture of MYC and EZH2 loci. MYC is 
an oncogene that is misregulated in multiple cancers, including 
PCa. Tandem duplications involving the MYC neighborhood 
are frequently observed in mCRPC (4, 15). We queried RNA Pol 
II ChIA-PET data sets to examine the landscape of chromatin 
interactions surrounding the MYC gene. We observed extensive 
RNA Pol II–associated chromatin interactions within the 1.8-Mb 

that had AR amplification, but not in LNCaP cells (Figure 3, A and 
B). VCaP cells also express AR variant proteins that lack the C-ter-
minus ligand–binding domain (Supplemental Figure 4B). CTCF 
binding to a subset of AR alleles in the context of AR amplification 
could activate neoinsulator elements that would in turn interfere 
with the RNA Pol II activity to generate truncated AR variants. 
Thus, AR amplification can set the stage for multiple downstream 
regulatory processes to drive the lethal phenotype.

We also examined the transcriptional architecture of the gene 
encoding the pioneer factor FOXA1, which collaborates with the 
AR to activate enhancers (2). We noticed that multiple enhancers 
located within the adjacent MIPOL1 gene interacted with the 
FOXA1 gene. These enhancers were cobound by the AR and 
FOXA1 (Figure 3E and Supplemental Figure 5). ERG also bound to 
this enhancer cluster in VCaP cells. Thus, we conclude that master 
regulators like the AR and FOXA1 autoregulate their own expres-
sion by binding to their enhancers and that the gene fusion prod-
uct ERG adds an additional layer of complexity to the regulation of 
and by the regulators.

Transcriptional regulation by the AR and FOXA1. The overall 
expression of genes nearest to the AR or FOXA1 binding peaks 
was not very different from that of randomly selected control 
genes (Figure 4A). Given our observation that multiple genes and 
enhancers coordinately interacted to regulate transcription, we 
hypothesized that chromatin-bound AR and FOXA1 are likely to 
regulate genes that are located beyond their nearest neighbors. 
For example, the AR enhancers are closer to the EDA2R gene than 
to the AR gene. By overlapping AR and FOXA1 binding peaks with 
RNA Pol II ChIA-PET anchor peaks, we created virtual chromatin 
contact maps of AR and FOXA1 occupancy and traced the target 
genes (Supplemental Table 7). Importantly, the expression of tar-
get genes discovered by our new approach was significantly high-
er than the expression of the nearest neighboring genes as well as 
control genes in all our comparisons (Figure 4A). These studies 
highlight the utility of mapping RNA Pol II–associated chromatin 
interactions to decipher the master transcription factor–enhancer 
–target gene regulatory networks.

To garner insights into the functional processes governed 
by the combinatorial binding of master transcription factors, we 
queried the RNA Pol II ChIA-PET data for chromatin interac-
tions between AR-FOXA1 co-occupied regions and gene promot-
ers (Figure 4B). This was followed by pathway analysis of these 
AR-FOXA1 chromatin interaction target genes. We were surprised 
to discover that the genes involved in EIF2 signaling were maxi-
mally enriched in both LNCaP and VCaP cells (Figure 4C). The 
EIF2 pathway regulates translation initiation. Our results are con-
sistent with other studies reporting AR-mediated transcriptional 
control of translation initiation (20). We now show that translation 
initiation is mediated by chromatin interactions involving the AR 
and FOXA1. More generally, our results indicate that master tran-
scription factors cooperatively regulate the 3D genome organiza-
tion to control the transcriptome, and eventually the proteome, to 
establish lineage identity.

AR binding, histone acetylation, and regulation of the kallikrein 
gene cluster and ZBTB16. Prostate-specific antigen (PSA), the pro-
tein product of the kallikrein 3 (KLK3) gene, is one of the most 
commonly used PCa screening biomarkers (21). It is well estab-
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clude that many PCa risk loci in the MYC subchromosomal region 
were located on or near enhancers and were associated with RNA 
Pol II–associated chromatin interactions.

The histone methyl transferase EZH2 is overexpressed in 
several solid tumors, including PCa, however, the mechanisms 
underlying its transcriptional regulation are not completely under-
stood (26). By integrative analysis of RNA Pol II ChIA-PET data, 
we identified chromatin interaction involving a H3K27ac-marked 
enhancer and the EZH2 promoter in RWPE-1, LNCaP, VCaP, and 
DU145 cells (Figure 6, C and D, and Supplemental Figure 8, C 
and D). The strength of this interaction was higher in VCaP and 
DU145 cells. Conversely, the EZH2 promoter interacted with a 
single enhancer in benign RWPE-1 cells, but with multiple addi-
tional distant enhancers in the cancerous LNCaP, VCaP, and 
DU145 cells. These enhancers in turn interacted with additional 
modules of enhancers, promoters, and gene bodies, resulting in 
complex transcriptional hubs. Thus, the strength of individual 
enhancer-promoter interactions and the modular assembly of 
interacting enhancers govern EZH2 regulation in PCa cells. We 
analyzed the enhancer mark H3K27ac in the EZH2 neighborhood 
in a panel of cell lines (Supplemental Figure 8G). Again, by assign-
ing the maximum enhancer peak score in the gene neighborhood 
as a surrogate for enhancer activity, we observed a positive cor-
relation between enhancer activity and EZH2 transcript abun-
dance (Supplemental Figure 8H).

Germline PCa risk variants and transcriptional regulation. In 
most GWAS, disease-associated SNPs map to noncoding regions, 
creating bottlenecks in interpreting their functional role. We lever-
aged our RNA Pol II ChIA-PET data sets to interpret the function 
of PCa risk SNPs identified from GWAS. We analyzed a curated 
list of 122 PCa risk SNPs from multiple GWAS (27) to assess how 
risk alleles impact transcription control. We hypothesized that 
many risk alleles would be located in enhancers and/or promoters 
and hence influence the transcriptional regulation of target genes 
by altering chromatin interactions. To understand the functional 
relevance of PCa risk loci in the context of genome architecture, 
we applied hypothesis testing using both simulation experiments 
and enrichment analysis.

We computationally partitioned the genome into several 
thousand bins and conducted simulations to test the observed 
versus expected values for (a) RNA Pol II peaks that overlap with 
PCa risk SNPs and (b) chromatin interaction–associated RNA Pol 
II peaks that overlap with PCa risk SNPs. The observed overlap 
between RNA Pol II peaks and PCa risk SNPs in RWPE-1, LNCaP, 
and VCaP cells was significantly greater than the expected values 
derived from 10,000 simulations (Figure 7A). We also observed 
the same trend for the subset of RNA Pol II peaks involved in chro-
matin interactions in RWPE-1, LNCaP, and VCaP cells (Figure 7B). 
Interestingly, neither RNA Pol II peaks nor chromatin interaction–
associated RNA Pol II peaks in AR-nonexpressing DU145 cells 
showed a statistically significant enrichment for PCa risk SNPs. 
The results obtained with computational simulations were large-
ly recapitulated by conducting enrichment analysis using Fisher’s 
exact test (Figure 7C). These analyses indicated that RNA Pol II–
bound regions and chromatin interactions were enriched for PCa 
risk SNPs in both normal prostate epithelial cells as well as AR-pos-
itive PCa cells. The absence of this enrichment in the AR-negative 

subchromosomal region harboring the MYC oncogene (Figure 
6A). The anchor peaks were characterized by the H3K27ac mark, 
which is indicative of transcriptional regulation by enhancers, 
and were highly cell-type specific. In RWPE-1, LNCaP, and VCaP 
cells, the interactions spanned both the 5′ upstream and 3′ down-
stream regions of MYC, whereas in DU145 cells, the interactions 
were comparatively restricted to the 3′ downstream region of 
MYC. Interestingly, in LNCaP and VCaP cells, the RNA Pol II–
associated chromatin interactions surrounding MYC exhibited 
substantial overlap and also displayed AR and FOXA1 occupan-
cy (Supplemental Figure 8, A and B). Thus, it is conceivable that 
binding of the AR and FOXA1 facilitates the site-specific recruit-
ment of coactivators, resulting in the formation of H3K27ac 
mark and enhancer activation. These activated enhancers in 
turn interact with the MYC promoter and transmit the signal to 
modulate RNA Pol II activity. Consistent with our study, recent 
Hi-ChIP studies of H3K27ac in leukemia and lymphoma cells 
and of cohesin in HCT-116 cells reported that the enhancer 
landscape of the MYC locus is cell-type specific (22, 23). Our 
analysis of the active enhancer mark H3K27ac in approximate-
ly 100 cell types revealed distinct patterns of enhancer activity 
on both sides of the MYC gene (Supplemental Figure 8E). Given 
the unavailability of RNA Pol II ChIA-PET data for most of these 
cell lines, we assigned the maximum enhancer peak score in 
the gene neighborhood as a surrogate for enhancer activity. We 
observed a positive correlation between enhancer activity and 
MYC transcript abundance (Supplemental Figure 8F). As MYC is 
expressed in most human cancers, we propose a working mod-
el that depicts cell-type–specific transcription factors specifying 
enhancer activation at their cognate binding sites in the neigh-
boring subchromosomal region and resulting in transcriptional 
regulation of MYC via chromatin interactions.

Another interesting feature of the MYC locus is that the 
region is devoid of protein coding genes but has an abundance 
of noncoding RNAs. We noticed that several MYC interacting 
anchor regions represented genes that encode noncoding RNAs. 
For example, the long, intergenic, noncoding RNA PCAT-1, which 
is overexpressed in PCa (24), was associated with AR and FOXA1 
binding and was enriched with the H2K27ac mark (Supplemental 
Figure 8, A and B). PCAT-1 and its neighboring enhancers direct-
ly interacted with the MYC promoter in VCaP cells. PCAT-1 and 
its neighboring enhancers showed indirect interaction with the 
MYC promoter in LNCaP cells; these interactions converged at an 
intervening DNA region that was flanked by germline PCa risk–
predisposing SNPs. The chromosome 8q24 harbors risk alleles for 
multiple cancers, including PCa (25). Several PCa risk SNPs from 
GWAS (n = 16) lay in the region upstream of MYC, 7 of which were 
located within enhancer elements in 1 or more of the cell types 
analyzed (Figure 6B, left). Four of these 7 SNP loci were also asso-
ciated with chromatin interactions (Figure 6B, right). We con-

Figure 5. Transcriptional regulation the KLK gene cluster and ZBTB16. (A) 
Comparison of RNA Pol II–associated chromatin interactions and H3K27ac 
ChIP-Seq signals in the KLK3 gene and its neighborhood regions from –350 
Kb to +350 Kb in 4 cell lines. (B and C) Transcriptional regulation of the 
ZBTB16 gene in (B) LNCaP and (C) DU145 cells.
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Transcriptional regulation by the PCa risk SNP rs684232. The 
PCa risk SNP rs684232 has been reported to function as an expres-
sion quantitative trait locus (eQTL) (28–31). We delved deeper 
into the mechanism by which this SNP affects PCa risk by using 

DU145 cells provided both a valuable internal control and deeper 
biological insight. These results also imply that PCa risk alleles are 
not enriched in transcription-associated cis elements for all cell 
types; rather, this enrichment is restricted to certain lineages.

Figure 6. Transcriptional regulation 
of the MYC and EZH2 genes. (A) 
Comparison of chromatin interac-
tions, H3K27ac ChIP-Seq, and RNA-
Seq signals of the MYC gene and 
its adjacent regions from –1000 kb 
to +600 kb in 4 cell lines. The MYC 
gene is highlighted in light blue. 
PCa risk SNP loci located in the MYC 
neighborhood are shown. (B) Left: 
Venn diagram describes the number 
of PCa risk SNP loci located within 
the coordinates of RNA Pol II peaks 
for 3 cell lines. Right: Venn diagram 
shows the number of PCa risk SNP 
loci located within the coordinates 
of anchor regions of RNA Pol II–
associated chromatin interactions 
for 3 cell lines. (C) Transcriptional 
regulation of the EZH2 gene and its 
neighboring genes. Comparison of 
RNA Pol II ChIA-PET, H3K27ac ChIP-
Seq, and RNA-Seq signals at the 
EZH2 locus and its adjacent regions 
from –150 kb to +800 kb in 4 cell 
lines. (D) Immunoblot representing 
endogenous EZH2 expression in 
RWPE-1, LNCaP, VCaP, and DU145 
cells. The EZH2 and actin blots were 
obtained from separate gels that 
were run contemporaneously.

https://www.jci.org
https://www.jci.org
https://www.jci.org/130/8


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

3 9 9 9jci.org   Volume 130   Number 8   August 2020

that the presence of the risk allele was associated with decreased 
H3K27ac levels in the locus (Figure 8D). Furthermore, the pres-
ence of the risk allele was also associated with decreased H3K27ac 
levels in the FAM57A and GEMIN4 genes (Figure 8E). These results 
suggest that the risk allele manifests transcriptional downregula-
tion by reducing enhancer activity. Next, we studied the effect of 
the WT and risk alleles in enhancing gene transcription by con-
ducting dual-luciferase reporter assays in LNCaP and VCaP cells 
(Figure 8, F and G). The WT allele markedly increased the reporter 
luciferase activity, and the magnitude of the effect was significant-
ly reduced in the presence of the risk allele in both cell lines. Thus, 
by integrating cell-based assays and population genomics, we have 
unraveled mechanistic features of transcriptional regulation by the 
PCa risk SNP rs684232.

The regulation and clinical significance of the transcriptional tar-
gets of the PCa risk SNP rs684232. We next hypothesized that mas-
ter transcription factors cooperatively act on enhancer elements 
to upregulate expression of the risk SNP rs684232 target genes 
VPS53, FAM57A, and GEMIN4. siRNA-based knockdown of the AR 
resulted in the downregulation of VPS53, FAM57A, and GEMIN4 
transcription in LNCaP cells (Figure 9A). To explore the relation-

our RNA Pol II ChIA-PET data. The risk SNP rs684232 is located 
approximately 1 kb upstream of the VPS53 transcriptional start 
site (TSS) in a proximal enhancer element. RNA Pol II ChIA-PET 
analysis revealed chromatin interactions between the VPS53 pro-
moter and the adjacent genes FAM57A and GEMIN4, indicating 
that these genes are coregulated transcriptionally (Figure 8A). To 
assess the clinical significance of the chromatin interactions, we 
examined patient tumor data from 3 clinical cohorts from The Can-
cer Genome Atlas (TCGA), the Canadian Prostate Cancer Genome 
(CPC-GENE), and the Porto cohort (8, 32, 33). By stratifying the 
tumors into AA, AB, and BB genotypes, with A and B representing 
the WT allele and the risk allele, respectively, we observed that the 
presence of the risk allele was associated with decreased expression 
of VPS53, FAM57A, and GEMIN4 genes in all the 3 clinical cohorts 
with statistical significance (Figure 8B). These data indicate that 
the risk SNP rs684232 is likely to downregulate these 3 neighboring 
genes. The locus harboring the risk SNP rs684232 has the H3K27ac 
enhancer mark and is co-occupied by the AR, FOXA1, and ERG in 
VCaP cells (Figure 8C). We examined the epigenetic correlates of 
the germline risk SNP rs684232 in the Porto cohort by stratifying 
the patient tumors into AA, AB, and BB genotypes (8). We found 

Figure 7. Evaluation of RNA Pol II–associated peaks and interaction with 122 prostate-specific germline SNP locations. (A) Peak analysis. The red dashed 
lines indicate the observed number of peaks containing SNPs for each cell line. The histograms illustrate the results from 10,000 simulations that assessed 
the expected number of peaks containing SNPs. The mean of the simulations is shown with a dashed black line. ***P < 0.001, for significant differences 
between the expected and observed values. RWPE-1, LNCaP, VCaP, and DU145 have 17, 13, 14, and 4 peaks that overlap SNPs, respectively. The black dashed 
lines indicate the expected number of overlapping peaks (the mean of all the simulations). The expected values for RWPE-1, LNCaP, VCaP, and DU145 cells 
are 4.88, 4.09, 4.03, and 3.44, respectively. (B) Interaction analysis. The same procedure was repeated except using only the peaks involved in interactions. 
The red dashed lines indicate the observed number of SNPs, and the black dashed lines show the expected values. *P < 0.05 and ***P < 0.001, for signifi-
cant differences between the expected and observed values. RWPE-1, LNCaP, VCaP, and DU145 cells had an observed value of 10, 9, 5, and 1, respectively, as 
indicated by the red dashed lines. The expected values for RWPE-1, LNCaP, VCaP, and DU145 cells are indicated by the black dashed lines and were 1.81, 2.17, 
2.60, and 1.30, respectively. (C) Enrichment analysis. Fisher’s enrichment analysis was performed to compare the number of SNP-positive peaks with the 
rest of the genome as well as to compare the number of SNP-positive and interaction-positive peaks with the rest of the genome. ***P < 0.001, for signifi-
cant enrichment. Fisher’s exact test was used to determine the P values for C. Empirical method was used to determine the P values for A and B.
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siRNA-based knockdown of VPS53, FAM57A, and GEMIN4 in 
LNCaP cells resulted in a modest increase in cell viability, both 
individually and in combination (Supplemental Figure 9).

Discussion
In this study, we describe the landscapes of transcription in PCa 
and identify thousands of RNA Pol II–associated long-range chro-
matin interactions — with implications ranging from basic biology 
to cancer etiology and risk. We have shown that RNA Pol II–asso-
ciated chromatin interactions strongly overlap with the H3K27ac 
marks, which are indicative of active enhancers. The enrichment 
of transcription factor binding motifs in enhancers provides a flex-
ible mechanism for cells to change their state by altering their pool 
of transcription factors and/or their DNA binding sites — a feature 
that is constantly exploited in cancers.

The physical nature and temporal dynamics of chromatin 
interactions are still elusive. These chromatin interactions can 
also be promoted by bromodomain and extraterminal (BET) pro-
teins. Because of the presence of tandem acetyl lysine binding 
bromodomains, BET proteins can function as adaptors to con-
nect enhancers with promoters, and both enhancers and pro-
moters are rich in acetylated proteins. In addition to cooperative 
interactions via specific structured bromodomains, it has not 
escaped our notice that the low-complexity regions/disordered 
domains of BET proteins and perhaps other transcriptional reg-
ulators can also enhance chromatin interactions via liquid-liquid 
phase separation, and this could be further regulated by post-
translational modifications (34–36). At present, it is not clear if 
the DNA regions in between enhancers and promoters loop out 
or if these regions are associated with weak, nonspecific chro-
matin interactions. Clearly, there is much complexity associated 
with such chromatin interactions. This complexity is necessary, 
as a single genotype gives rise to multiple phenotypes and cell 
types at the organismal level. However, underlying this com-
plexity is a simple design principle for transcriptional regulation 
conserved from bacteria to humans: genome-wide binding of 
trans-acting factors and cognate cis-regulatory elements to spec-
ify which genes are turned on and which are turned off by RNA 
polymerase at any given time. This design and the genome orga-
nization are progressively altered during cancer development.

By integrative analysis, we have outlined the architectural fea-
tures of transcription control. The RAD21 interactions associated 
with CTCF binding provide a structural framework for RNA Pol II 
interactions associated with the H3K27ac mark. RAD21 interac-
tions are in general longer than RNA Pol II interactions. RAD21 
interactions may form closed genomic neighborhoods (also 
called insulated neighborhoods, sub-TADs, or chromatin contact 
domains) to contain RNA Pol II interactions. A significant pro-
portion of enhancers contain CTCF elements, but promoters are 
not enriched for these elements. Therefore, it could be speculated 
that enhancers with CTCF elements connect with both promot-
ers and CTCF-containing boundary elements; the promoters will 
be indirectly drawn toward boundary elements because of their 
interaction with enhancers. Thus, multiple layers of chromatin 
interactions specify the transcriptional output of individual cellu-
lar lineages: enhancer-promoter interactions direct the specificity 
of transcriptional regulation, whereas enhancer-boundary inter-

ship between the presence of the risk SNP rs684232 and AR occu-
pancy in the locus, we examined the Porto cohort by stratifying the 
patient tumors into AA, AB, and BB genotypes. The presence of 
the risk allele was associated with decreased AR occupancy in the 
locus (Figure 9B). These results indicated that, mechanistically, 
the risk SNP rs684232 diminished AR binding and enhancer acti-
vation, resulting in downregulation of the 3 target genes.

We also addressed the role of ERG in the framework of tran-
scription control by the risk SNP rs684232. As ERG expression 
is a gene fusion–mediated acquired somatic event, although the 
risk allele is inherited from the germline, the simultaneous pres-
ence of these 2 properties may have opposing effects in terms of 
expression of the 3 target genes. We further stratified the CPC-
GENE cohort into ERG-positive and -negative groups. Remark-
ably, the association between the presence of the risk allele and 
the downregulation of the target genes was more profound in 
ERG-positive tumors than in the ERG-negative tumors (Figure 
9C). Thus, we conclude that the effect of the risk allele rs684232 
on its target genes is further modulated by acquired somatic 
events like ERG gene fusions.

We observed a decrease in the transcript abundance of VPS53, 
FAM57A, and GEMIN4 genes with an increase in the PCa Inter-
national Society of Urological Pathology (ISUP) grade group, and 
the effect was most prominent for GEMIN4 (Figure 9D). We also 
stratified the PCa patient tumors on the basis of VPS53, FAM57A, 
and GEMIN4 transcript abundance. We found that lower GEM-
IN4 expression in tumors was associated with shorter biochem-
ical recurrence–free (BCR-free) survival (Figure 9E). Although 
we also observed a weak trend with VPS53 and FAM57A, it did 
not reach statistical significance. Consistent with these findings, 

Figure 8. Transcriptional regulation by the PCa risk SNP rs684232. (A) 
Integrated genome view of RNA Pol II–associated chromatin interactions 
in the genomic region harboring the PCa risk SNP rs684232. (B) rs684232 
was significantly associated with mRNA abundance of FAM57A, VPS53, 
and GEMIN4 in the CPC-GENE, TCGA, and Porto cohorts. Box plots represent 
the median and the 0.25 and 0.75 quantiles, with whiskers at 1.5 times 
the IQR. mRNA abundance was measured in FPKM. The numbers below 
the genotypes indicate the number of samples in each group. P values and 
effect size are from a linear model. (C) Epigenetic features of the PCa risk 
SNP rs684232 locus in VCaP cells are described using ChIP-Seq analysis. 
(D) rs684232 falls in an active enhancer region, and the alternative allele 
was found to be significantly associated with decreased H3K27ac binding. 
Heatmap shows H3K27ac ChIP-Seq signal within chr17:614900-622900 
(x axis) for 92 patients (y axis). Color indicates ChIP-Seq signal intensity, 
and the black bar in the covariate along the top indicates the location of 
rs684232. Box plot shows H3K27ac signal intensity stratified by genotype 
in the Porto cohort (Mann-Whitney U test for the recessive model). The y 
axis represents the number of H3K27ac ChIP-Seq read counts mapped to 
the SNP rs684232 region, which were normalized by the trimmed mean 
of M values (TMM). (E) Box plots show H3K27ac signal intensity in the 
promoter regions of FAM57A and GEMIN4 stratified by genotype in the 
Porto cohort (Mann-Whitney U test for the recessive model). P values and 
effect size are from a linear model. (F) Sequence analysis to confirm the 
cloning of the WT and risk (rs684232) alleles in the pGL2 luciferase reporter 
plasmid. (G) Luciferase reporter assays in LNCaP and VCaP cells. Cells were 
cotransfected with pSV-Renilla and the luciferase reporter encoding the WT 
or risk (rs684232) allele and processed 48 hours after transfection. Firefly 
Luc/Renilla Luc activity was determined (mean ± SD, n = 6; ****P < 0.0001, 
by 2-tailed Student’s t test).
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We have shown that germline PCa risk alleles were enriched in 
the enhancers found in nonmalignant, basal-like RWPE-1 prostate 
epithelial cells, as well as in luminal AR-positive cancer cells, but 
not in AR-negative cancer cells that had diverged transcription-
ally. Unlike mutations in exons, which typically affect individu-
al genes, PCa risk alleles like rs684232 can simultaneously alter 
the expression of multiple genes. Importantly, our discovery of a 
genetic interaction between the germline risk allele rs684232 and 
the somatically acquired TMPRSS2-ERG indicates a potential role 
of epistasis and modifier genes in modulating PCa risk. These 
results have implications for the development of intervention 
strategies to prevent or delay the onset of PCa.

In summary, we have described the genome architectural fea-
tures of transcription control in multiple PCa cellular models, inte-
grated the results with existing data sets, expanded our discover-
ies to clinical specimens, and, finally, made relevant connections 
to PCa germline susceptibility alleles. We anticipate that this work 
will create fertile avenues for future research in transcriptional 
regulation and cancer development.

Methods
Cell lines. The cell lines used in this study (RWPE-1, LNCaP, VCaP, and 
DU145,) were procured from the American Type Culture Collection 
(ATCC) and grown according to their recommendations. All cell lines 
were verified by genotyping.

Chromatin interaction analysis by ChIA-PET. ChIA-PET analysis 
was performed using previously published methods with a few modifi-
cations (42). Briefly, approximately 200 million cells per cell line were 
cross-linked using 1.5 mM EGS (35 minutes) and 1% formaldehyde (8 
minutes) and then quenched using 0.125M glycine (5 minutes) at room 
temperature. The cells were lysed and the chromatin was sheared 
using a HighCell ChIP Kit Protein G (Diagenode) and used for ChIP. 
The anti–Pol II monoclonal antibody 8WG16 (BioLegend) was used. A 
quality check for the ChIP product was carried out by quantitative PCR 
(qPCR) using the primers GAPDH promoter, forward: 5′-TACTAGC-
GGTTTTACGGGCG-3′, GAPDH promoter, reverse: 5′-TCGAACAG-
GAGGAGCAGAGAGCGA-3′ as a positive control and GAPDH exon 
8, forward: 5′-CCATCACTGCCACCCAGAAG-3′, GAPDH exon 8, 
reverse: 5′-AGCTTCCCGTTCAGCTCAGG-3′ as the negative con-
trol. The ChIP DNA was quantified by fluorometry (Qubit, Invitrogen, 
Thermo Fisher Scientific) and then end-blunted, A-tailed, and prox-
imity-ligated overnight with a biotinylated bridge linker. The DNA 
was reverse crosslinked, fragmented using transposase (Nextera DNA 
Library Preparation Kit, Illumina), and purified (Genomic DNA Clean 
& Concentrator, Zymo Research). Libraries were constructed using a 
minimal number of cycles for PCR amplification, and the PCR products 
were purified, size selected (Agencourt Ampure XP, Beckman Coulter), 
and quality checked using Tape Station (High Sensitivity D1000 Scre-
entape, Agilent Technologies). Paired-end sequencing (2 × 150 bp) in 
NextSeq 500 (Illumina) was carried out to yield approximately 70–80 
million reads per sample.

ChIA-PET data processing and analysis. Data processing of ChIA-
PET reads was performed using ChIA-PET2 software (43) to obtain 
the binding peaks and the interactions among peaks. Pair-end read 
(PET) sequences were scanned to filter the bridge linker sequence 
5′-CGCGATATCTTATCTGACT-3′. The filtered reads were mapped 
to the human reference genome (hg19), and only uniquely aligned 

actions and boundary-boundary interactions serve as protective 
moats to reduce off-target chromatin interactions and control 
transcriptional noise. Genomic rearrangements, gene fusions, and 
CTCF mutations enable cancer cells to breach the boundaries of 
lineage-dependent transcriptional regulation (1, 17, 37).

Misregulation of chromatin interactions is a distinguish-
ing feature of most cancers. For example, TMPRSS2-ERG gene 
fusions are observed in 50% of human PCas (1). As a result of the 
gene fusion, ERG is transcriptionally activated by the promoter 
and enhancer elements of the AR target gene TMPRSS2. Most 
PCa treatment strategies target the AR signaling axis. Hence, it is 
critical to understand the transcriptional regulation of and by the 
AR. In this study, we have identified and described long-range 
AR enhancer clusters. We found that AR locus amplification was 
associated with increased interaction between AR enhancers and 
the promoter. Analysis of mCRPC specimens suggested that AR 
locus amplification frequently involved AR enhancer amplifica-
tion. Thus, enhancers regulated AR function in cell line models 
and clinical PCa specimens.

We delineate general principles of oncogene activation. The 
genomic location of the MYC locus facilitates its activation by mul-
tiple enhancers in various cancers because of the availability of 
multiple transcription factor binding sites. Remarkably, we found 
that several PCa GWAS alleles lay on MYC enhancers, suggestive 
of altered chromatin interactions and transcriptional misregu-
lation. The cooperative action of multiple enhancers underlies 
EZH2 upregulation in PCa. More generally, we suggest that RNA 
Pol II network hubs provide multiple nodes for receiving, process-
ing, and transmitting regulatory signals, thereby contributing to 
coordinated transcription as well as regulation of dynamic pro-
cesses like transcriptional bursting (38, 39). Multinodal transcrip-
tional hubs are likely to be associated with subclonal transcription-
al variability in tumors, resulting in the selection of drug-tolerant 
clones and emergence of resistance to targeted therapies (40, 41).

Figure 9. Transcriptional regulation and clinical correlates of the chro-
matin interaction targets of the PCa risk SNP rs684232. (A) qRT-PCR val-
idation of AR knockdown and the expression of VPS53, GEMIN4, and 
FAM57A genes upon treatment of LNCaP cells with AR siRNA. **P < 0.01, 
and ***P < 0.001, by 2-tailed Student’s t test. Error bars indicate the SD 
of 3 technical replicates. (B) Box plot shows AR ChIP-Seq signal intensi-
ty stratified by genotype in the Porto cohort (Mann-Whitney U test for 
the recessive model). The y axis shows the number of AR ChIP-Seq read 
counts mapped to the SNP rs684232 region, which were normalized by 
the TMM method. Box plot represents the median and the 0.25 and 0.75 
quantiles, with whiskers at 1.5 times the IQR. (C) The regulatory impact of 
rs684232 was enhanced in the presence of the TMPRSS2-ERG fusion. Box 
plots show the mRNA abundance (FPKM) of each gene stratified by geno-
type and further split by ERG status in the CPC-GENE cohort. βpositive and 
βnegative, and the associated P values quantify the eQTL within ERG-posi-
tive and -negative patients, respectively (linear model). (D) Box plots 
show the mRNA abundance of FAM57A, GEMIN4, and VPS53 genes in PCa 
specimens from TCGA cohort. Tumors were classified into various ISUP 
grade groups. Relationship between mRNA abundance and ISUP Grade 
Group was quantified using Spearman’s correlation and represented as 
Spearman’s rho and corresponding P values. The P values for Spearman’s 
correlation were computed using the algorithm AS 89 (47). (E) BCR-free 
survival curves for PCa patient groups defined by transcript abundance for 
FAM57A, GEMIN4, and VPS53 genes in the CPC-GENE cohort. P values in E 
were determined by log-rank test.
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mean ± SD. Two-tailed Student’s t tests were used to determine signif-
icance for qRT-PCR and reporter luciferase assays, and P values of less 
than 0.05 were considered statistically significant.

Study approval. All procedures involving human subjects were 
approved by the ethics review committee of the Royal Marsden NHS 
Foundation Trust Hospital (reference no. 04/Q0801/60).
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(MAPQ ≥30) PETs were retained. By evaluating the genomic loca-
tions of the 2 ends of a PET, each PET was categorized as either intra-
chromosomal PET (2 ends in the same chromosome) or interchromo-
somal PET (2 ends in different chromosomes). All intrachromosomal 
PETs were further separated into self-ligation PETs (2 ends in the 
same peak region) or regular intrachromosomal PETs (between 2 dif-
ferent peak regions). These data were used to define the interaction 
strength between 2 peak regions. The RNA Pol II binding peaks were 
then compared between different cell lines to identify commonali-
ties, and the R package Vennerable (https://sourceforge.net/proj-
ects/vennerable) was used to generate the Venn diagram.

DNB model. For a pair of interacting peaks, the number of PETs 
between them is defined as their interaction strength. We found that 
the interaction strengths of a cell line followed a NB distribution, 
which is commonly observed in analysis of RNA-Seq and ChIP-Seq 
data (44, 45). Since there is a lack of computational methods for direct-
ly comparing 2 samples of ChIA-PET data that are fitted as NB distri-
butions, we introduced a statistical model, named the DNB model, to 
compare 2 general NB distributions whose parameters were real posi-
tive numbers. Suppose that X and Y are the random variables of 2 NB 
distributions, where X ~ NB(r1, p1) and Y ~ NB(r2, p2). We calculated the 
probability function of their difference Z = X – Y. Using the convolu-
tion formula, we have:

     (Equation 1)

We then calculated the probability mass function (PMF) of Z as:

     (Equation 2)

For a peak pair i, we could calculate their difference of interaction 
strength Xi and Yi for 2 samples. We then calculated the probability 
of P(Z > Xi – Yi) to determine whether the difference was significant. 
Clearly, the smaller the P value, the more significant was the differ-
ence of the interaction strengths between 2 samples. With a signif-
icance level of 0.05 as a threshold, we obtained a large number of 
peak pairs whose interactions were significantly changed by compar-
ing LNCaP, VCap, and DU145 cells with RWPE-1 cells. For the peak 
pair with significant different interactions, their nearest genes were 
extracted for functional analysis of GO terms and pathways using the 
PANTHER database (46). 

Data and software availability. The ChIA-PET, ChIP-Seq, and 
RNA-Seq data have been deposited in the NCBI’s Gene Expression 
Omnibus (GEO) database under the accession numbers GSE121020, 
GSE121021, and GSE121022, respectively. The aCGH data have been 
deposited in the EMBL-EBI’s ArrayExpress archive under acces-
sion number E-MTAB-7326, and the WGS data were deposited and 
the European Nucleotide Archive (ENA) under accession number 
ERS2773662.

Statistics. All quantitative reverse transcription PCR (qRT-PCR) 
experiments were performed in triplicate, and quantitative data are 
presented as the mean ± SD. All reporter luciferase assays were per-
formed in 6 replicates, and quantitative data are presented as the 
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