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BACKGROUND. Induction of innate immune memory, also termed trained immunity, by the antituberculosis vaccine bacillus
Calmette-Guérin (BCG) contributes to protection against heterologous infections. However, the overall impact of BCG
vaccination on the inflammatory status of an individual is not known; while induction of trained immunity may suggest
increased inflammation, BCG vaccination has been epidemiologically associated with a reduced incidence of inflammatory
and allergic diseases.

METHODS. We investigated the impact of BCG (BCG-Bulgaria, InterVax) vaccination on systemic inflammation in a cohort
of 303 healthy volunteers, as well as the effect of the inflammatory status on the response to vaccination. A targeted
proteome platform was used to measure circulating inflammatory proteins before and after BCG vaccination, while ex vivo
Mycobacterium tuberculosis- and Staphylococcus aureus-induced cytokine responses in peripheral blood mononuclear cells
were used to assess trained immunity.

RESULTS. While BCG vaccination enhanced cytokine responses to restimulation, it reduced systemic inflammation. This
effect was validated in 3 smaller cohorts, and was much stronger in men than in women. In addition, baseline circulating
inflammatory markers were associated with ex vivo cytokine responses (trained immunity) after BCG vaccination.

CONCLUSION. The capacity of BCG to enhance microbial responsiveness while dampening systemic inflammation should be
further explored for potential therapeutic applications.

FUNDING. Netherlands Organization for Scientific Research, European Research Council, and the Danish National
Research Foundation.

Introduction lenge, up to 1 year after vaccination (3-6). The longevity of this

The traditional view of vaccines is that they protect against a
particular infection by induction of long-lasting specific adaptive
immune memory. The discovery of the induction of nonspecific
innate immune memory (also termed trained immunity) by the
antituberculosis vaccine bacillus Calmette-Guérin (BCG) has
led to a paradigm shift in our understanding of our immune sys-
tem (1, 2). BCG vaccination can induce epigenetic modifications
and metabolic rewiring of monocytes, resulting in increased
cytokine responses upon subsequent unrelated-pathogen chal-
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effect is explained by BCG-induced reshaping of hematopoietic
stem and progenitor cells within the bone marrow compartment,
resulting in long-lasting transcriptional changes associated with
myeloid cell development and function (3, 4). Recently, BCG
vaccination was shown to reduce Plasmodium falciparum par-
asitemia in a controlled human malaria infection model (5), as
well as yellow fever viremia following yellow fever vaccination
(6), suggesting that BCG-induced trained immunity also contrib-
utes to enhanced overall protection of infants after BCG vaccina-
tion (7-12). However, future studies are warranted to assess the
duration of these effects.

Although studies so far suggest that BCG vaccination elicits
enhanced activation only upon subsequent reinfection (5, 6),
concerns may be raised that BCG could promote a proinflamma-
tory environment facilitating the development of inflammation-
mediated diseases such as atherosclerosis (13-15) and autoim-
mune and autoinflammatory diseases (16, 17). On the other hand,
epidemiological studies suggest that BCG vaccination reduces
the risk of atopy, eczema, and asthma (18-22), diseases in which
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Figure 1. Flow chart of the study. Flow dia-
gram describing the number of participants
who were enrolled in the study, who were
excluded or dropped out of the study, or
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inflammation plays an important role. Therefore, the impact of
BCG vaccination on the inflammatory status of an individual
needs to be explored. In addition, BCG-induced specific (23, 24)
and nonspecific (7, 25) protective effects vary across different
settings and are variable between healthy volunteers (5, 6, 26).
Understanding this variability may help identify individuals that
will specifically benefit from BCG vaccination, or other interven-
tions aimed at induction of trained immunity (2, 27). The prevac-
cination inflammatory status may contribute toward observed
variability in immune responses after BCG vaccination, as was
recently shown for hepatitis B (28) and yellow fever vaccination
(29). Therefore, we aimed to investigate the interaction between
inflammation and BCG vaccination by assessing a comprehen-
sive set of circulating inflammatory biomarkers before and after
BCG vaccination in a cohort of 303 healthy volunteers from the
Human Functional Genomics Project (300-BCG cohort, www.
humanfunctionalgenomics.org), and we validated the findings in
3independent cohorts.

Results

BCG vaccination downregulates circulating inflammatory markers.
A total of 307 healthy volunteers were included in the 300BCG
cohort. Four participants were excluded from further analysis
due to medication use, resulting in 303 volunteers who completed
the first visit (Figure 1). Fifty-six percent of the participants were
female, the mean age was 26 years (range 18-71), and the mean
body mass index (BMI) was 22.5 (+2.6 SD) kg/m?. BCG scars (data
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available for 286 volunteers) developed in 271 individuals (95%),
with a mean size of 0.42 cm (+0.17 SD) 3 months after vaccination.

A targeted proteome platform was used to measure 92
inflammatory markers before (n = 301), and 2 weeks (n = 292)
and 3 months (n = 277) after BCG vaccination. The quality of the
measurement was high, with 99% of the samples passing qual-
ity control. Overall, 73 of the 92 (79%) proteins were detected
in at least 75% of the plasma samples and included in the anal-
ysis. Numerous baseline circulating inflammatory proteins
showed a positive correlation with baseline whole blood counts
of immune cell subsets (Figure 2A), as exemplified by the asso-
ciation of circulating oncostatin M (OSM) concentrations and
neutrophil counts (Figure 2B) or circulating IL-6 concentrations
and monocyte counts (Figure 2C). The fact that a number of
inflammatory mediators are associated with cell counts is not
necessarily surprising, as a significant number of the inflam-
matory mediators are correlated with each other, and in turn
inflammation is associated with immune cell numbers in the
blood. Surprisingly however, one-third of the proteins (25 out of
73) showed a significant decrease 2 weeks after BCG vaccina-
tion (Figure 3A). Of the 25 proteins with significantly reduced
concentrations at 2 weeks, 10 remained lower 3 months after
BCG vaccination (Figure 3B), such as TNF ligand superfamily
member 12 (TWEAK) and sirtuin 2 (SIRT2) (Figure 3, C and D).
No circulating protein was found to be significantly increased 3
months after BCG vaccination. An overview of fold changes in
circulating inflammatory proteins is included in Supplemental
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Figure 2. Correlations between baseline inflammatory markers and baseline whole blood counts. (A) Spearman’s correlations between absolute whole
blood counts (monocytes, total white blood cells, neutrophils, lymphocytes, eosinophils, basophils, platelets, red blood cells, and hemoglobin) and
circulating inflammatory markers at baseline (before BCG vaccination). Positive correlations are depicted in red, negative correlations in blue (n = 302).
Spearman’s correlations between whole blood neutrophil counts and circulating oncostatin M (OSM) (B), and between whole blood monocyte counts and

circulating IL-6 (C) are shown as examples of positive correlations (n = 300).

Table 1 (supplemental material available online with this article;
https://doi.org/10.1172/]JCI133935DS1).

As an internal validation for a true effect of BCG vacci-
nation, fold changes in significantly changed proteins were
compared between BCG scar-positive volunteers (n = 271)
versus volunteers who did not develop a scar (n = 15). In total,
5 proteins differed significantly between scar-positive and scar-
negative volunteers (Figure 4A), with all proteins being lower
in individuals that had a scar 3 months after vaccination. SIRT2
is given as an example of a protein that is significantly lower
in scar-positive individuals 3 months after BCG vaccination in
Figure 4B. Only a small proportion of participants (5%) did not
develop a scar. Therefore, the circulatory proteins that signifi-
cantly changed after BCG vaccination were also correlated to
scar size. In addition to the 5 proteins that showed a significant
difference between scar-negative and scar-positive volunteers,
5 other proteins (ADA, MCP-2, caspase-8, CCL23, and OPG)
were also significantly associated with scar size. The direction
of the effect was similar for all 10 proteins; an increase in scar
size was associated with a stronger reduction in the circulatory
protein after BCG vaccination, further supporting the finding
that BCG-induced immunological effects result in decreased
systemic inflammation.

To validate our findings, this identical set of proteins was
determined before and after BCG vaccination in plasma samples
of 39 adult volunteers from 3 independent BCG vaccination trials
(4-6). Even within these small cohorts, we were able to validate

our findings regarding reduced concentrations of ADA, TWEAK,
delta- and notch-like epidermal growth factor-related receptor
(DNER), and neurotrophin-3 (NT-3), and increased concentration
of IL-17C after BCG vaccination (Figure 5).

BCG vaccination affects whole blood cell counts. Consider-
ing the observed differences in inflammatory status after BCG
vaccination, we evaluated whole blood counts before and after
BCG vaccination. Although total white blood counts remained
stable after vaccination, BCG vaccination induced a slight
increase in both lymphocyte (median 1.87 x 10°/L at baseline
and 1.97 x 10°/L at 2 weeks, P = 0.009) and monocyte (median
0.47 x 10°/L at baseline and 0.48 x 10°/L at 2 weeks, P = 0.003)
counts, which returned to baseline between 2 weeks and 3
months after vaccination. In addition, red blood cell counts
and hemoglobin levels showed a slight reduction 2 weeks after
vaccination (P < 0.0001 for both), eosinophil counts showed a
slight increase up to 3 months (P = 0.002), and platelet counts
a mild reduction 3 months after vaccination (P = 0.0005). An
overview of median whole blood cell counts per visit and P
values is included in Supplemental Table 2.

Antiinflammatory effect of BCG vaccination is sex dependent. We
next examined the effect of age, sex, and cytomegalovirus (CMV)
serostatus on the concentrations of inflammatory proteins. The
median age of our study population was 23 years (range 18-71),
and 80% of the cohort was 25 or younger. Of the 73 proteins ana-
lyzed in our cohort, 6 had a negative correlation with age, and 19
a positive correlation with age (FDR < 0.05). We also measured

5593

jci.org  Volume130  Number10  October 2020


https://www.jci.org
https://www.jci.org
https://www.jci.org/130/10
https://www.jci.org/articles/view/133935#sd
https://www.jci.org/articles/view/133935#sd
https://doi.org/10.1172/JCI133935DS1

5594

CLINICAL MEDICINE

A
0.001
TWEAKe oDNER
CD244
[ ]
cD6
0.01 °
) STAMPB CASP-8 ADA
sirT2 NOLB_puce
CD40
CXCLS, CD5  eL17¢ FGF2
o« ST1AT CXE'—}%“SP\CDCM 2
E L7 "TAP TGF beta-1
4E-BP1 XCL11 NT-3
< p;a\.m-mm
cxoLt ¢ g
0.1 )
[ ]
[ J
L]
[ )
%
éo’o o °
P
1 .1'
0.8 0.9 1.0 1.1 1.2
Fold change (day 14/day 0)
C
*% *
2 -
x
<
i
=
'_
o
(o))
c 1
c
<
(&}
o
o
i
0.51

Day 14/day 0 Day 90/day 0

The Journal of Clinical Investigation

B
0.001
SIRT2
Y ©STAMPB o244
ST1A1 ®
[ ]
0.01
CCL23
[ ]
4E-BP1
o NT-3
[m] AXIN.1 ) WEAK
[T 8 @
CD5
0.1 . °
' e 2% °
[ )
% , °
ed ° o
® e
@ ‘.: [ ] [ ]
® [ ]
; apbe
0.8 1.0 1.2
Fold change (day 90/day 0)
D
* *%*
®
161 ® o
S
as
%)
(0]
()]
G
< L
[&]
°
©
L
0.25
0.0625

Day 14/day 0 Day 90/day 0

Figure 3. Inflammation after BCG vaccination. Fold changes in circulating inflammatory markers on day 14 versus baseline (A) and day 90 versus baseline
(B). Significant changes compared with baseline are depicted in red, nonsignificant changes are depicted in gray (n = 290-fold change on day 14 versus
baseline, n = 275-fold change on day 90 versus baseline; FDR < 0.05 is considered significant). Fold changes in TWEAK (C) and SIRT2 (D) are depicted as
examples of significantly decreased circulating inflammatory markers after BCG vaccination (*FDR < 0.05, **FDR < 0.01).

CMV IgG in the plasma of our study participants. Five (CXCL9,
FGF-19, TRAIL, CXCL10, and CXCL11) out of the 73 proteins ana-
lyzed in our study were higher in the CMV IgG-positive individu-
als (24%) compared with the CMV IgG-negative individuals (P <
0.05), but none of these differences were statistically significant
after correction for multiple testing.

Stratified by sex (males n = 132, females n = 171), concen-
trations of inflammatory markers were significantly different
between males and females at baseline (Figure 6A). Prevaccina-
tion concentrations of 41 inflammatory markers were significantly
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higher in males compared with females, and 6 proteins were found
to be significantly lower in males compared with females. These
sex-dependentdifferencesininflammatorymarkerswerevalidated
in a second set of healthy volunteers (males n = 215, females n =
278). In total, 34 proteins were significantly different between
males and females in both healthy cohorts (Figure 6B). Of these
34, only 3 proteins were higher in females, while 31 were signifi-
cantly higher in males.

Strikingly, the effect of BCG on systemic inflammation
appeared to be much stronger in males, with 25 proteins showing
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Figure 4. Differences in fold change in circulating proteins between scar-positive and scar-negative individuals. (A) Significant differences in fold
changes in circulating proteins (significantly different in the entire cohort after FDR < 0.05 correction) between scar-positive (n = 290) and scar-negative
(n =15) individuals 90 days after vaccination. Fold changes higher than 1 depicted on a red scale, fold changes lower than 1 depicted on a blue scale. P <
0.05 by Wilcoxon's matched-pairs signed-rank test. (B) SIRT2 was plotted as an example of a protein that is significantly lower in scar-positive individuals

3 months after BCG vaccination.

a significantly lower concentration 2 weeks after BCG vaccination
after correction for multiple testing and none a higher concentra-
tion (Figure 6C). Three months after BCG vaccination, 16 of the
25 downregulated proteins at the 2-week time point remained sig-
nificantly lower compared with baseline in males (Figure 6D). In
contrast, no significant changes were found at 2 weeks or 3 months
after BCG vaccination in females after correction for multiple test-
ing. An overview of fold changes in circulating inflammatory pro-
teins can be found in Supplemental Table 1.

Baseline characteristics such as age and BMI did not differ
between males and females, but there were minor significant
differences in red blood cell, platelet, monocyte, and eosino-
phil counts (Supplemental Table 3). In order to try to explain the
sex-differential effects, we correlated circulating concentrations
of adipokines (adiponectin, resistin, and leptin; higher in females)
and testosterone levels (higher in males) with concentrations of
the inflammatory proteins that were downregulated after BCG
vaccination in males but not in females. Interestingly, baseline
plasma testosterone showed a negative association with fold
increase in several circulating inflammatory proteins after BCG
vaccination in males (Figure 7A). This relationship is given as an
example for CXCL1 in Figure 7B.

Correlation between inflammatory proteins and ex vivo cytokine
productionis sex dependent. We next examined if inflammatory pro-
tein profiles predicted ex vivo PBMC-derived cytokine production
before and after BCG vaccination. Two weeks and 3 months after
BCG vaccination, both Mycobacterium tuberculosis- and Staphylo-
coccus aureus-induced production of innate cytokines was upreg-
ulated; S. aureus-induced TNF-a is given as an example in Figure
8A, in both men and women (sex-specific data not shown). Spe-
cific adaptive immune memory responses, as assessed by specif-
ic stimulation of IFN-y production with M. tuberculosis, were also
upregulated by BCG vaccination (Figure 8B). At 2 weeks after vac-
cination, the increase in IFN-y in response to M. tuberculosis was

significantly higher in females compared with males (P = 0.025,
Figure 8C). No changes in lymphocyte or monocyte percentages
withinthe PBMC fraction could be observed after BCG vaccination
(Supplemental Table 4). Numerous prevaccination inflammatory
proteins correlated with the increase in innate cytokine produc-
tion capacity following BCG vaccination (Figure 8D). Circulating
inflammatory proteins predominantly correlated with trained
immunity responses 2 weeks after vaccination, and less with
longer-term responses 3 months after vaccination. Interestingly,
females mostly showed positive correlations whereas males only
showed negative correlations between baseline circulating pro-
teins and trained immunity responses following BCG vaccination,
as for instance clearly shown for the relationships between plasma
ADA, CD5, CD8a, IL-12B, TNFRSF9, and increase in S. aureus-
induced IL-6. Especially in males, lower baseline concentrations
of several inflammatory proteins were associated with increased
M. tuberculosis-induced IL-1B, IL-6, and TNF-a responses
after BCG vaccination. In contrast, higher baseline concentra-
tions of several other inflammatory proteins were associated with
enhanced M. tuberculosis-induced IFN-y responses. Interestingly,
circulating IL-10 showed a strong positive correlation with
increased M. tuberculosis-induced IFN-y production after BCG
vaccination in both males and females.

Discussion

BCG vaccination has important nonspecific effects by protecting
against heterologous infections (7-12), being effective against
bladder cancer (30), and reducing the risk of developing allergic
and autoimmune diseases (18-22). However, while earlier studies
have reported an upregulation of cytokine responses to nonspe-
cific ex vivo restimulation (trained immunity), the impact of BCG
vaccination on steady-state levels of inflammation was largely
unknown. In this large cohort of healthy volunteers, we show that
BCG vaccination enhances the capability of innate immune cells
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to respond with an antimicrobial response (assessed by cytokine
production capacity), but at the same time downregulates the sys-
temic inflammation as measured by decreased concentrations of
proinflammatory proteins in the circulation of healthy volunteers.

This modulatory effect on systemic inflammation may
explain some of the beneficial effects of BCG vaccination in
inflammatory diseases. Induction of trained immunity by endog-
enous stimuli is believed to contribute to the development of
atherosclerosis (13-15, 31), autoimmune and autoinflammatory
diseases (16, 17), and due to the induction of trained immunity
by BCG, one might hypothesize that BCG vaccination is a risk
factor for these conditions. However, our results argue against a
potentiating effect of BCG vaccination oninflammatory diseases
such as atherosclerosis, and rather suggest that it may actually
protect against inflammatory conditions. In support of this
hypothesis, BCG vaccination in mice reduced the levels of circu-
lating proinflammatory cytokines (32), lowered plasma choles-
terol, and delayed the formation (33) and size of atherosclerotic
lesions (32). Prospective studies have demonstrated beneficial
effects of BCG vaccination in patients with autoimmune diseas-
es such as multiple sclerosis (34-36) and type 1 diabetes mel-
litus (37, 38). Other studies have shown that BCG can prevent
the development of diabetes in mice (39, 40). The reduction in
circulating inflammatory markers following BCG vaccination
might also contribute to the lower reported incidence of atopy
and allergy after BCG vaccination (18, 19). Although a large pro-
spective BCG vaccination trial in Danish newborns showed no
effect on the incidence of atopy at the age of 13 months (41), a
protective effect against atopic dermatitis was observed (22),
in line with previous findings from a Dutch trial (21). Finally, a
recent report suggested a beneficial effect of BCG on the devel-
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opment of Alzheimer’s disease (42) in which downregulating
inflammatory processes might play a role (43).

It remains unknown how BCG reduces overall inflammation
while at the same time improving myeloid, NK, and heterologous
T cell responsiveness to microbial challenges. Earlier studies have
focused on the gene sets that are upregulated during BCG vacci-
nation in human myeloid cells. It is imperative that future studies
extend these investigations in 2 directions: to evaluate the genes
sets that are eventually silenced by BCG vaccination on the one
hand, and to investigate the effects of BCG vaccination on nonim-
mune cells, which could also contribute to the release of inflam-
matory mediators on the other hand. In earlier studies from our
group we have shown that, after induction of trained immunity,
markers of both M1 and M2 macrophages are upregulated; we
therefore proposed that the trained immunity phenotype is dis-
tinct from the classical M1/M2 dichotomy (44). In addition, earlier
studies have shown that BCG vaccination tips the balance toward
a more Thl-type response (45). A comprehensive assessment of
these processes in follow-up studies is warranted.

Interestingly, we found a strong sex-differential effect, with
significant reductions in inflammatory proteins after BCG vacci-
nation in males only. Several studies have shown that both pro-
tective as well as detrimental nonspecific effects of vaccines are
sex dependent (10, 46-51). Most of these consisted of observa-
tional studies, but 3 randomized trials have shown a sex-specific
effect in all-cause morbidity and mortality after neonatal BCG
vaccination (10). Within the first week after vaccination, strong
protective effects were detected in boys, which waned after the
first week, whereas in girls, the protective effect was limited in
the first week, but more pronounced after the first week follow-
ing vaccination (10). We found several negative correlations
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changes between males (n = 132) and females (n = 171). Significant changes between sexes are depicted in red (FDR < 0.05). (B) Comparison of inflamma-
tory proteins between males and females from the discovery cohort (300BCG) were plotted against the comparison between males (n = 215) and females
(n = 278) from the validation cohort (500FG). Proteins that were only significantly different in the 300BCG cohort are depicted in green (n = 9), those that
were only significant in the 500FG cohort are depicted in blue (n = 3), and the proteins significantly different between males and females in both cohorts
are depicted in red (n = 34) and are labeled with their name (FDR < 0.05). Fold changes of circulating inflammatory markers on day 14 versus baseline

(C) and day 90 versus baseline (D) in the male-only (n = 132) versus the female-only (n = 171) subset. Significant changes compared with baseline in the
male-only subset are depicted in red (FDR < 0.05), and proteins that did not significantly change after BCG vaccination in either the male-only or the
female-only subset are depicted in gray. There were no proteins significantly different in the female-only subset.
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Figure 7. Correlations between circulating hormones and inflammatory proteins. (A)
Fold changes of proteins that significantly changed after BCG vaccination in males
were correlated to baseline testosterone, adiponectin, leptin, and resistin concen-
trations. Only proteins with a significant correlation with one of the hormones are
depicted in this figure. *P < 0.05, **P < 0.01, ***P < 0.001 by Spearman’s correlation.
The color represents the strength and the direction of the correlation. (B) Spearman’s
correlation between testosterone at baseline and fold change in CXCL12 weeks after

vaccination is shown as an example.

between baseline testosterone concentrations and changes in
circulating proteins after BCG vaccination in males, suggesting
a possible role for testosterone in our observed sex-differential
effects after BCG vaccination. In line with these findings, pre-
vious in vitro studies have demonstrated that high dihydrotes-
tosterone concentrations reduced monocyte-derived IL-6 and
TNF-a production after 24-hour stimulation with BCG (52). It
remains to be investigated how our findings link to the observed
sex differences in epidemiological studies, considering that BCG
is mainly administered in neonates in tuberculosis-endemic
countries, which is different from our study. It might seem evi-
dent that the mechanisms responsible for sex differences are
different in young infants compared with adults due to the dif-
ferences in sex hormones. Interestingly however, sex hormone
levels peak shortly after birth, the so-called mini puberty (53),
which is at the same time that neonates normally receive their
BCG vaccination, indicating that sex hormones could modulate
BCG-induced effects in the neonatal period as well as later in
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life. Still, there might be different mechanisms oper-

Resistin R . o
-0.09 ating in these different age groups, which is why
0.02 future research should investigate these effects in
_0' 05 other relevant populations.
0 0 6 Another important finding from this study is that
0' 00 the prevaccination inflammatory status alters both
0' 00 specific and nonspecific immune responses after
0' 03 BCG vaccination. Circulating inflammatory pro-
' teins mostly seem to potentiate short-term nonspe-
0.00 . . . . .
0.01 cific effects of BCG vaccination (trained immunity
. responses 2 weeks after vaccination), and to a lesser
-0.03 . . S .
0.07 extent the longer-term induction of trained immuni-
_0'03 ty. Sex specificity was detected in the effect of base-

line inflammation on induction of trained immunity.
The lower the baseline inflammation in males, the
better the training responses, whereas higher base-
line inflammation in females was associated with an
enhanced training phenotype. Considering the dif-
ferences in concentrations of baseline inflammatory
status between males and females, our results sug-
gest that a certain optimum in prevaccination circu-
lating inflammatory markers facilitates induction of
trained immunity after BCG vaccination. In addition,
baseline inflammation also impacts the longer-term
effects of BCG vaccination on the induction of spe-
cific M. tuberculosis-induced cytokine responses. In
males, we found a clear dichotomy in the associa-
tions between baseline inflammatory status and M.
tuberculosis-induced cytokine responses after BCG
vaccination: a predominantly negative association
between several circulating inflammatory proteins
and innate cytokine responses, and exclusively pos-
itive associations between circulating inflammatory
markers and IFN-y responses. For specific adaptive
responses, higher baseline concentrations of IL-10,
IL-12B, and CXCL10 (also known as IFN-y-induced
protein 10), which has previously shown to be import-
ant in mycobacterial outgrowth and was identified
as possible novel marker of trained immunity (54),
resulted in increased M. tuberculosis-induced IFN-y responses.
Our data are partially in line with previous observations that low-
er prevaccination inflammation enhances vaccine immunogenic-
ity (28, 29), which in our case holds specifically true for induc-
tion of innate immune memory responses in males. Effects of
prevaccination inflammatory status have recently been found for
hepatitis B vaccination (28); a higher frequency of both activated
innate immune cells and proinflammatory cytokines correlated
with lower neutralizing antibody titers following HBV vaccina-
tion (28). Similarly, after yellow fever vaccination, baseline num-
bers of activated CD8" T cells and B cells and proinflammatory
monocytes resulted in lower neutralizing antibody titers follow-
ing vaccination (29).

Our study is limited by the fact that we have used a focused pro-
teomics platform. Future studies should expand these investigations
by studying the effect of BCG vaccination at a broader level by untar-
geted proteomics. Moreover, longitudinal studies should focus on
the risk of developing inflammatory diseases after BCG vaccination.
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Figure 8. Ex vivo PBMC-derived cytokine production and associations with baseline circulating inflammatory proteins. Fold changes compared with
baseline of ex vivo PBMC-derived S. aureus-induced TNF-a responses (A) and M. tuberculosis-induced IFN-y responses (B) on day 14 versus baseline and
day 90 versus baseline as examples of upregulated cytokine responses after BCG vaccination (fold change day 14 versus baseline n = 289, fold change

day 90 versus baseline n = 275). *P < 0.05, **P < 0.01, ***P < 0.001 by Wilcoxon's matched-pairs signed-rank test. (C) Fold changes in IFN-y in response

to M. tuberculosis on day 14 versus baseline separated by sex. (D) Spearman’s correlations between baseline inflammatory proteins and fold changes in
PBMC-derived S. aureus-induced IL-1B, IL-6, and TNF-a responses and M. tuberculosis-induced IFN-y responses separated by sex. Significant, positive
correlations (p > 0) are depicted in red, significant negative correlations (p < 0) in blue, and nonsignificant correlations in white. Only proteins with a signif-
icant correlation with at least one of the ex vivo cytokine responses are depicted in this figure.
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Also, our validation cohorts were too small to be analyzed when strat-
ified by sex. Finally, BCG-Denmark was used in the third validation
cohort, while BCG-Bulgaria was used in our study and the other 2 val-
idation cohorts. Considering the differences in the immune response
induced by different BCG strains (55, 56), this might explain some of
the discrepancies between the cohort studies.

The findings from this study confirm the immunomodula-
tory properties of BCG vaccination, but also demonstrate a clear
effect of inflammation on (non)specific immunogenicity of BCG
vaccination. Our findings are likely to explain at least some of the
multiple examples from the literature in which BCG improved or
protected against inflammatory, allergic, or autoimmune diseas-
es. More studies are needed to increase our understanding of the
interaction between inflammation, epigenetic reprogramming,
and cellular metabolism of innate immune cells during induc-
tion of trained immunity, as well as possible sex specificity of
these effects. Multiple tuberculosis vaccine candidates have now
entered clinical trials to potentially replace BCG in the future.
These vaccines should also be tested for their ability to induce
trained immunity and affect systemic inflammation, as well as for
potential sex differences. A better understanding of these effects
may help optimize vaccine efficacy and explore novel applications
of BCG vaccination.

Methods
Study design and patient cohorts. To study the immunological effects
of BCG vaccination, 307 healthy (male and female) adult volunteers
of Western European ancestry were included in the 300BCG cohort
between April 2017 and June 2018 in the Radboud University Medical
Center. Healthy volunteers were recruited using local advertisements
and flyers in Nijmegen, and were compensated for participation. After
written informed consent was obtained, blood was collected, followed
by administration of a standard dose of 0.1 mL BCG (BCG-Bulgaria,
InterVax) intradermally in the left upper arm by a medical doctor.
Vaccination of study participants was organized in batches of 6-16
subjects per day. Two weeks and 3 months after BCG vaccination,
additional blood samples were collected. Exclusion criteria were use
of systemic medication other than oral contraceptives or acetamin-
ophen, use of antibiotics 3 months before inclusion, previous BCG
vaccination, history of tuberculosis, any febrile illness 4 weeks before
participation, any vaccination 3 months before participation, and a
medical history of immunodeficiency.

A healthy cohort of 493 individuals of Western European descent
was used as an independent validation cohort (500FG cohort, see
www.humanfunctionalgenomics.org). The participants were recruited
between August 2013 and December 2014 at the Radboud Universi-
ty Medical Center (57). In addition, 3 BCG studies conducted at the
Radboud University Medical Center, all in BCG-naive participants,
were used as independent validation cohorts. In validation cohort 1,
15 subjects (67% male, age 18-50 years) received a standard dose of
BCG vaccination (BCG-Bulgaria, InterVax) between January 2017 and
April 2017 (4). Blood was drawn before, 2 weeks, and 3 months after
vaccination. In validation cohort 2, 9 healthy volunteers (33% male,
age 18-35 years) received a standard dose of BCG vaccination (BCG-
Bulgaria, InterVax) in August 2016 (5). Blood was drawn at baseline
and 5 weeks after vaccination. In validation cohort 3, 15 male volun-
teers (age 19-37 years) received a standard dose of BCG vaccination
Volume 130 Number 10
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(BCG-Denmark, SSI) between February 2015 and November 2015 (6).
Blood was drawn at baseline and 4 weeks after vaccination.

PBMC isolation and stimulation. PBMCs were isolated from EDTA
whole blood with Ficoll-Paque (GE Healthcare) density gradient separa-
tion. PBMCs were washed twice with phosphate-buffered saline (PBS)
and counted with a Sysmex hematology analyzer (XN-450). Complete
blood counts were performed on EDTA whole blood and PBMC fractions
after Ficoll isolation on a Sysmex XN-450 hematology analyzer. Cells
were suspended in Dutch-modified Roswell Park Memorial Institute
(RPMI) 1640 medium (Invitrogen), supplemented with 50 ug/mL genta-
mycin, 2mM Glutamax (GIBCO), and 1 mM pyruvate (GIBCO). PBMCs
(5x10%) were cultured in a final volume of 200 pL/well in round-bottom
96-well plates (Greiner) and stimulated with RPMI 1640 (medium con-
trol), heat-killed M. tuberculosis HR37v (5 pg/mL, specific stimulus), or
heat-killed S. aureus (1 x 105 CFU/mL, nonspecific stimulus). Superna-
tants were collected after 24 hours and 7 days of incubation at 37°C and
stored at -20°C until analysis. Cytokine levels were measured in 24-hour
(IL-1B, IL-6, and TNF-0) and 7-day (IFN-y) supernatants. Supernatant
samples from one participant from different time points were measured
on the same plate to ensure that variation between plates would not
affect the calculated fold changes.

Protein and hormone measurements. Circulating plasma inflamma-
tory markers were measured before, 2 weeks, and 3 months after BCG
vaccination using the commercially available Olink Proteomics AB
Inflammation Panel (92 inflammatory proteins), using a Proceek Mul-
tiplex proximity extension assay (58). In this assay, proteins are rec-
ognized by pairs of antibodies coupled to cDNA strands, which bind
when they are in close proximity and extend by a polymerase reaction.
A pooled plasma sample and an interplate control were included on
each plate in triplicate to correct for batch differences. Plasma sam-
ples from one participant from different time points were measured
on the same plate to ensure that variation between plates would not
affect the calculated fold changes. Detected proteins were normalized
according to interplate controls to minimize interassay variation and
measured on a log, scale as normalized protein expression values.

In addition, adiponectin, resistin, and leptin were measured in
EDTA plasma at baseline using the R&D Systems DuoSet ELISA kits
following the manufacturer’s protocol. Testosterone was also mea-
sured in plasma at baseline by LC-MS/MS after protein precipitation
and solid-phase extraction as described previously (57). Also, IgG
class antibodies against CMV were measured in EDTA plasma using
the Genway Biotech ELISA according to the manufacturer’s protocol.

Statistics. All computational analyses were performed in R 3.3.3.
Proteins were excluded from the analysis when the target protein was
detected in less than 75% of the samples. Protein concentrations under
the detection threshold were replaced with the protein’s lower limit of
detection. Protein circulation concentrations were then correlated with
blood counts using Spearman’s rank-order correlation. Protein con-
centrations were compared between baseline and 2 weeks as well as 3
months after BCG vaccination using Wilcoxon’s matched-pairs signed-
rank test. An FDR of less than 0.05 based on the Benjamini-Hochberg
procedure was considered significant. Subsequently, blood counts were
compared between baseline and 2 weeks as well as 3 months after BCG
vaccination using Wilcoxon’s matched-pairs signed-rank test. Baseline
testosterone, adiponectin, resistin, and leptin levels were correlated
with fold changes in circulating inflammatory markers using Spear-
man’s rank-order correlation. Finally, raw cytokine values from the
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PBMC stimulation experiments were first log transformed, and then
corrected for batch effects using a linear regression model. Corrected
cytokine concentrations were compared between baseline and 2 weeks
as well as 3 months after BCG vaccination using Wilcoxon’s matched-
pairs signed-rank test. Corrected cytokine production was converted
to fold changes from baseline. These fold changes were thereafter cor-
related with baseline inflammatory markers using Spearman’s rank-
order correlation separated by sex. A 2-sided P value of less than 0.05
was considered statistically significant.

Study approval. The 300BCG (NL58553.091.16) and 500FG
(NL42561.091.12) studies were approved by the Arnhem-Nijmegen
Medical Ethical Committee. Validation cohorts 1 (NL55825.091.15)
and 3 (NL50160.092.24) were also approved by the Arnhem-Nijme-
gen Medical Ethical Committee, and validation cohort 2 was approved
by the Central Committee on Research Involving Human Subjects
(CCMO NL56222.091.15). Written informed consent was obtained
before any research procedure was initiated. All studies were per-
formed in accordance with the declaration of Helsinki.
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