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Introduction
Cell senescence has been well recognized over the past several  
decades as a biological process with stable cell cycle arrest in dip-
loid cells. This phenomenon was initially described in primary 
human fibroblasts after limited passages in cell culture (1). It has 
been shown that senescence can occur in various types of cells 
and tissues under different physiological and pathological condi-
tions, including in normal aging, cancer, and infectious diseases 
(2–8). Senescent cells have permanent cell cycle arrest, but remain 
viable and metabolically active and possess unique functions and 
regulatory mechanisms that distinguish them from quiescent and 
apoptotic cells (9–12). Senescence induction in tumor cells direct-
ly controls tumor initiation, stemness, development, and prolif-
eration via regulation of many oncogenes and the key cell cycle 
checkpoint genes (3, 13–17). In addition, induction of tumor cells 
to become senescent cells is a potential anticancer therapeutic 
strategy (13, 18, 19).

Recent studies have shown that senescence also occurs in 
human T cells, causing dysregulation of the immune system 
during the normal aging process (12, 20, 21). Furthermore, 
accumulation of senescent CD8+ T cells has also been found 
in younger patients with chronic viral infections, as well as 
patients with certain types of cancers (22–28). To explore the 
mechanisms responsible for the induction of senescent T cells 
in cancer patients, more recent studies suggest that both natu-
rally occurring regulatory T cells (nTregs) and tumor-derived 
Tregs can strongly suppress naive/effector T cells through the 
induction of responder T cell senescence (29–32). In addi-
tion, different types of tumor cells can directly convert normal 

immune cells into senescent T cells (27, 33, 34). These senes-
cent T cells have altered phenotypes and possess strong sup-
pressive activity that can potently amplify immune suppres-
sion within the tumor microenvironment. Senescent T cells 
influence both immune cells and tumor cells through different 
potential molecular processes in the tumor microenvironment 
to promote tumor development and progression (discussed fur-
ther in the following sections) (27, 29, 30, 33, 34). In addition, in 
vivo studies using adoptive transfer immunotherapy melanoma 
models have demonstrated that human tumor cells or Tregs can 
induce senescence in adoptively transferred tumor-specific T 
cells and decrease their antitumor efficacy (31–33). Notably, the 
incidence and prevalence of cancer are also markedly increased 
with aging, which could be due to the increase of senescence in 
T cells in elderly individuals (35–37). The increasing evidence 
clearly suggests that prevention of senescence development in 
effector T cells is urgently needed for successful tumor immu-
nity and immunotherapy.

In addition to senescence in T cells, T cell exhaustion is 
another important dysfunctional state in cancers (38, 39). Senes-
cent and exhausted T cells both have defective effector func-
tions for tumor immunity, but they have distinct phenotypes and 
distinct regulatory mechanisms underlying their development 
and impaired antitumor functions (29–31, 40, 41). Exhausted 
T cells highly express a panel of inhibitory receptors, including 
programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte 
antigen-4 (CTLA-4), T cell immunoglobulin and mucin domain 
containing-3 (Tim-3), lymphocyte activation gene 3 (LAG-3), 
CD244 (2B4), and CD160 (42–47), and have been identified in 
patients with chronic viral infections and various types of can-
cers. Furthermore, exhausted T cells cannot proliferate, partial-
ly because of the PD-1–mediated suppression of T cell receptor 
(TCR) signaling (48). Exhausted T cells also display an impaired 
cytotoxic ability and production of effector cytokines such as 
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clinical trials using immune checkpoint blockade to interfere 
with CTLA-4 and/or PD-1/programmed cell death ligand 1 
(PD-L1) have shown promising benefits for certain types of can-
cer patients, but overall success rates remain limited (50–52), 
suggesting that T cell exhaustion is not fully responsible for 
impaired antitumor function. Therefore, improved understand-
ing of the molecular mechanisms involved in the induction and 
functional regulations of senescent T cells within the tumor 
microenvironment should lead to novel immunotherapies.

IL-2, TNF, and IFN-γ (47). Unlike exhausted T cells, senescent 
T cells do not express increased levels of exhaustion-associated 
inhibitory molecules, but highly express senescence-associated 
β-galactosidase (SA-β-gal) and dramatically downregulate the 
costimulatory molecules CD27 and CD28 (7, 29–31, 49). Nota-
bly, senescent T cells have a unique senescence-associated 
secretory phenotype (SASP), producing high amounts of proin-
flammatory cytokines, which also is distinct from exhausted T 
cells (discussed in the following sections) (29–31, 33). Current 

Table 1. Senescent T cells in the tumor microenvironments

Tumor type Cell subsets Sites Key results References
Lung cancer CD8+CD28– 1.) Peripheral blood.  

2.) Satellite lymph 
nodes and tumor 
lesions.

1.) Lung cancer patients show an expansion of the CD8+CD28– T cell subset in the peripheral blood, 
and these cells express high levels of Foxp3 and release IL-10 and TGF-β, exhibiting as CD8+ Treg 
phenotypes.

22

2.) The percentage of CD8+CD28– Tregs is increased in NSCLC patients and correlated with the 
pathological stages and tumor burden in patients.

54

3.) CD8+CD28– T lymphocytes constantly present in human tumors and inhibit effector T cell 
proliferative and cytotoxic functions.

53

Breast cancer CD8+CD28–, 
CD4+CD28–,  

CD28–CD57+CD8+,  
CD28–CD3+

1.) Peripheral blood.  
2.) Sentinel nodes.  
3.) TILs.  
4.) Satellite lymph 
nodes and tumor 
lesions.

1.) Peripheral CD8+ T cells show downregulation of CD28 in cancer patients. 60
2.) The expression of CD28 and CD3-ζ in sentinel lymph nodes of breast cancer patients is decreased. 28
3.) The proportion of CD28–CD57+CD8+ T cells remains high among patients with cancer even after 
chemotherapy.

61

4.) Progressive elevated levels of CD8+CD28– suppressor T cells in metastatic breast cancer patients 
are a significant predictor for outcomes.

62

5.) CD3+ TILs derived from patients downregulate CD28 expression. 33
6.) CD8+CD28– T lymphocytes with suppressive activities exist in human tumors. 53

Ovarian cancer CD8+CD103+CD28–, 
CD8+CD28–

1.) Malignant ascites.  
2.) Peripheral blood.  
3.) Satellite lymph 
nodes and tumor 
lesions.

1.) Patients with advanced serous ovarian cancer have elevated frequencies of CD8+CD103+CD28– T 
cells.

57

2.) The levels of CD8+CD28– T cells are high in patients and are correlated with the tumor burden and 
pathological stages.

58

3.) CD8+CD28– T cells in tumors suppress effector T cell proliferative and cytotoxic functions. 53
Head and neck cancer CD8+CD28– 1.) Peripheral blood.  

2.) Satellite lymph 
nodes and tumor 
lesions.

1.) In patients with head and neck cancer, the frequency of the effector CD8+CD28– T cell population 
is increased while that of naive CD8+CD28+ CD45RO– cells is decreased; and CD8+CD28– T cells are the 
apoptosis-sensitive subset and are terminally differentiated effector cells.

23

2.) CD8+CD28– T cells in tumors suppress effector T cell proliferative and cytotoxic functions. 53
Melanoma CD8+CD28–CD27–, 

CD28–CD3+,  
CD8+CD28–

1.) Peripheral blood.  
2.) TILs.  
3.) Satellite lymph 
nodes and tumor 
lesions.

1.) CD28–CD27–CD8+ T cell subset is expanded in patients, which represents terminally differentiated 
effector cells expressing CD244 and high levels of perforin.

63

2.) TILs derived from patients downregulate CD28 expression. 33
3.) CD8+CD28– T cells in tumors suppress effector T cell proliferative and cytotoxic functions. 53

Multiple myeloma CD57+CD28–CD8+,  
KLRG-1+CD57+ 

CD160+CD28–

1.) Peripheral blood.  
2.) Bone marrow.

1.) T cells in MM patients display features of senescence at the tumor site, expressing CD57 but 
lacking CD28.

64

2.) Dysfunctional clonal T cells in MM exhibit a senescence phenotype, KLRG-1+CD57+CD160+CD28–, 
but with low PD-1 and CTLA-4 expression.

65

Colorectal carcinomas CD27+CD28–CD8+, 
CD27–CD28–CD8+, 

CD8+CD28–

1.) Peripheral blood 
and TILs.  
2.) Satellite lymph 
nodes and tumor 
lesions.

1.) CD8+ TILs isolated from colorectal cancer patients are mainly CD27+CD28– or CD27–CD28– cells, 
which have low levels of perforin.

55

2.) CD8+CD28– T cell populations exist in human tumors and suppress effector T cells. 53

Endometrial carcinoma CD8+CD28– 1.) Peripheral blood.  
2.) TILs.

The CD8+ T cells from PBLs and TILs express CD28, CD45RA, and CD45RO, but most tumor-infiltrating 
CD8+ T cells are CD28–CD45RA–CD45RO+CCR7–, suggesting a good terminal differentiation.

56

Cutaneous T cell 
lymphoma

CD8+CD28– 1.) Peripheral blood.  
2.) Skin infiltrates.

Increased percentages of CD8+CD28– suppressor lymphocytes in peripheral blood and skin infiltrates 
are correlated with advanced disease in patients with cutaneous T cell lymphomas.

59

Others: gastric, 
pancreatic, kidney, 
thyroid, esophageal, 
prostate, and 
neuroendocrine cancers 

CD8+CD28– 1.) Satellite lymph 
nodes.  
2.) Peripheral blood.  
3.) Tumor lesions.

CD8+CD28– T cell populations exist in human tumors and suppress effector T cells. 53

NSCLC, non–small cell lung cancer; PBL, peripheral blood lymphocyte; TIL, tumor-infiltrating lymphocyte.
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as well as the suppressive cytokines IL-10 and TGF-β (29, 30, 33). (e) 
Senescent CD8+ T cells have defective killing abilities due to the loss 
of perforin and granzyme, or defects in granule exocytosis (7, 26). 
(f) Senescent CD8+ T cells have negative regulatory functions that 
reduce the protective effects of immunization, as well as prolong 
the survival of allografts (25, 74). (g) Senescent T cells themselves 
become suppressive cells mediating potent inhibition of prolifer-
ation and effector functions of other immune cells (29–31, 33). (h) 
Senescent T cells develop a unique transcriptional profile distinct 
from that of anergic T cells, exhausted T cells, and quiescent termi-
nally differentiated T cells (31, 75–80).

Functional roles of senescent T cells in 
tumorigenesis
Increasing evidence strongly suggests that senescent T cells are 
critical mediators and amplifiers of immune suppression with-
in the suppressive tumor microenvironment, promoting tumor 
development and progression (refs. 27, 29, 30, 33, 34 and Figure 1). 
A better understanding of the functional role of senescent T cells 
in tumor immunity is important for the development of novel can-
cer immunotherapeutic strategies.

T cell senescence is an important dysfunctional state with 
impaired antitumor capacities (12). In tumor microenvironments, 
senescent T cells are converted/differentiated from effector T cells 
and/or naive T cells. Once they become senescent, these cells are 
unable to respond to tumor antigen stimulation and recognition 
because of the downregulation of costimulatory molecules such as 
CD27 and CD28, the upregulation of inhibitory molecules includ-
ing Tim-3 (7, 29, 67–71), and decreased production of the effector 
molecules perforin and granzyme (7, 26). Senescent T cells also 
actively suppress other immune cells within the tumor microen-
vironment. Senescent T cells induced by Tregs and tumor cells 
themselves become potent suppressor cells, directly inhibiting dif-
ferent types of immune cells, including Th1, Th17, CD8+ T cells, and 
DCs (29–31, 33). Furthermore, senescent T cells also secrete large 
amounts of IL-10 and TGF-β1, inducing adaptive Tregs and increas-
ing the immunosuppressive tumor microenvironments (29–31, 33).

T cell senescence is typical in suppressive tumor 
microenvironments
Substantial accumulation of senescent CD8+ T cells has been found 
among tumor-infiltrating lymphocytes (TILs) that are associated 
with various types of cancers, including lung (22, 53, 54), colorectal 
(55), endometrial (56), ovarian (57, 58), lymphoma (59), and breast 
cancers (28, 60–62), melanoma (33, 63), and multiple myeloma 
(MM) (64, 65), as well as with tumor metastases (22, 53). Recent 
studies have demonstrated that tumor-derived Tregs can induce 
T cell senescence (29–32). Furthermore, multiple types of tumor 
cells, including breast cancer, melanoma, colon cancer, prostate 
cancer, ovarian cancer, and head and neck cancer cells, can also 
directly induce T cell senescence (33, 34). These studies explain 
why senescent T cells accumulate within suppressive tumor micro-
environments. Given that senescent T cells do not mediate antitu-
mor activities, these observations strongly suggest that induction 
of T cell senescence is a key strategy used by malignant tumors to 
evade immune surveillance (refs. 12, 23, 29, 30, 33, 34 and Table 1).

Characteristics of senescent T cells
Senescence is an independent cell stage with unique phenotypes 
and functions. Unlike the extensive studies already focused on cell 
senescence in fibroblasts and tumors, very limited information is 
known about senescence in T cells (12). In recent studies of senes-
cent T cells that develop during the normal aging process and in 
patients with chronic infections and cancers, senescent T cells dis-
play several specific characteristics (refs. 12, 22–30, and Table 2): (a) 
Senescent T cells highly express SA-β-gal (29, 30, 49). (b) Senescent 
T cells dramatically downregulate the costimulatory molecules 
CD27 and CD28 (7, 29, 66) and highly express other senescence- 
associated markers, including Tim-3, CD57, and killer cell lectin-like 
receptor subfamily G member 1 (KLRG-1) (67–71). (c) Senescent T 
cells upregulate cell cycle regulatory genes including p16, p21, and 
p53; are in a state of cell cycle arrest; and do not proliferate after 
TCR stimulation (29, 30, 33). (d) Senescent T cells remain metabol-
ically active with a unique SASP (72, 73), producing high amounts of 
proinflammatory cytokines such as IL-2, IL-6, IL-8, TNF, and IFN-γ, 

Table 2. Characteristics of senescent T cells

Markers Molecular features References
The specific marker SA-β-gal High expression 29, 30, 49
Costimulatory molecules CD27, CD28 Downregulation or loss of expression 29–31
Other associated molecules Tim-3, CD57, KLRG-1 High expression 67–69, 71
Cell cycle arrest Proliferation; p16, p21,  

and p53
Display cell cycle arrest and cannot proliferate with T cell receptor stimulation;  

high expression of p16, p21, and p53
29, 30, 33

Metabolic activation SASP Metabolically active; secrete high amounts of proinflammatory cytokines  
(IL-2, IL-6, IL-8, TNF, and IFN-γ) and suppressive cytokines IL-10 and TGF-β

29, 30, 33, 72,  
73, 76, 77

Unique transcriptional profile Transcriptional profile Unique transcriptional profile distinct from that of anergic T cells, exhausted T cells,  
and quiescent terminally differentiated T cells

75–80

DNA damage ATM, γH2AX, p53BP Upregulation of DNA damage response molecules 31, 32
Functional alterations Killing abilities; negative 

regulatory functions
Defective killing abilities; negative regulatory functions; potent suppressive activity 25, 26, 74

ATM, ataxia-telangiectasia mutated; γH2AX, phosphorylated H2AX; KLRG-1, killer cell lectin-like receptor subfamily G member 1; p53BP, p53-binding 
protein; SA-β-gal, senescence-associated β-galactosidase; SASP, senescence-associated secretory phenotype; Tim-3, T cell immunoglobulin and mucin 
domain containing-3. 

https://www.jci.org
https://www.jci.org
https://www.jci.org/130/3


The Journal of Clinical Investigation   R E V I E W

1 0 7 6 jci.org   Volume 130   Number 3   March 2020

replicative senescence (telomere-dependent senescence), which 
occurs due to telomere shortening and/or dysfunctional telomer-
ase that trigger a classical DNA-damage response (91, 92), con-
tributes to aging and age-related pathologies in vivo (93). Further-
more, replicative senescence in T cells (CD8+CD28null T cells) also 
occurs in patients with chronic infections, such as cytomegalovi-
rus, Epstein-Barr virus, hepatitis C virus, and HIV infections (4–7). 
Repeated antigenic stimulation during chronic inflammation and 
persistent infection (viral, bacterial, or parasitic) induces exten-
sive pathogen-specific T cell proliferation and prolonged activa-
tion, resulting in loss of telomerase activity, telomere shortening 
and/or telomere erosion, and replicative senescence (94, 95). 
Recent studies have demonstrated that TILs have short telomeres, 
suggesting that reintroduction of telomerase into T cells could 
be a novel strategy for tumor immunotherapy (96–98). How-
ever, a potential causal relationship between chronic exposure to 
tumor-specific antigens and accumulated senescent T cells within 
the tumor microenvironment remains unclear.

Increasing evidence indicates that development of T cell 
senescence in cancer patients is induced by tumor microenvi-
ronmental factors and extrinsic forms of stress, such as oxida-
tive stress, DNA damage, activation of certain oncogenes, and 
production of inflammatory cytokines and chemokines (10, 99–
101). Metabolic reprogramming is one of the important causes 
of T cell premature senescence in the tumor microenvironment. 
Tumor-derived Tregs can promote the conversion of responder T 
cells into senescent T cells (29–31, 33, 34). Mechanistically, Tregs 
exhibit heightened glucose uptake, increased glycolysis, and 
accelerated glucose consumption, which reduce glucose available 

In contrast to the functional defects in antitumor immunity, 
senescent T cells are metabolically active and have a unique SASP, 
which influences both immune cells and tumor cells in the tumor 
microenvironment. Recent studies clearly indicate that senescent 
T cells induced by tumor cells and Tregs can secrete large amounts 
of the cytokines IL-6, IL-8, and TNF (29, 30, 33, 34). These proin-
flammatory cytokines are critical inducers of premature senes-
cence via autocrine or paracrine mechanisms (73, 81–83), which 
could induce more senescent T cells within suppressive tumor 
microenvironments. Furthermore, SASP can induce expansion 
of FoxP3+ Tregs and CD11b+Ly6Ghi cell populations and enhance 
their suppressive activity on tumor immunity (84, 85). In addi-
tion to establishment of a suppressive tumor microenvironment, 
the senescent cell–mediated SASP can directly favor malignant 
tumor progression through various effects, including disruption 
of normal mammary differentiation (86), inducing malignant 
transformation (87, 88), enhancing proliferation and invasiveness 
of neoplastic epithelial cells, promoting epithelial-mesenchymal 
transition, and increasing aggressiveness of metastatic cancers 
(Figure 1 and refs. 84, 86, 88–90). Sustained tumor growth can, in 
turn, eventually overwhelm the host’s ability to eliminate cancer 
cells, tipping the balance in favor of malignant cancer progression.

Metabolic alterations drive T cell senescence 
within tumor microenvironments
Although increased senescent T cells have been observed in vari-
ous types of cancer patients, the mechanisms and factors respon-
sible for the induction of T cell senescence in the tumor microen-
vironment are still under investigation (Figure 2). It is clear that 

Figure 1. Effects of senescent T cells on tumorigenesis and cancer progression. (i) Senescent T cells have unique phenotypes with impaired antitumor 
activities. They downregulate the costimulatory molecules CD27 and CD28 as well as the effector molecules perforin and granzyme, and decrease prolifer-
ation, but promote cell cycle arrest and expression of molecules that inhibit proliferation. (ii) Senescent T cells can actively influence other immune cells 
within the tumor microenvironment. In addition to inducing adaptive Tregs, they can become potent suppressor cells themselves, performing direct inhi-
bition on DCs and effector T cells. (iii) Senescent T cells have a unique SASP, secreting large amounts of cytokines that can induce premature senescence 
in T cells (IL-6, IL-8, TNF) and suppress effector immune cells (IL-10, TGF-β), as well as disrupt normal mammary differentiation and promote malignant 
phenotypes and tumor cell growth. (iv) Senescent T cells with potent suppressive activity can directly suppress effector T cell proliferation and function. 
(v) Senescent T cells can promote tumor growth, invasion, metastasis, and epithelial-to-mesenchyme transition via SASP or cell-cell direct contact.
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addition to tumor-derived Tregs, tumor cells themselves display 
heightened glucose and glutamine consumption, resulting in the 
depletion of nutrients and the accumulation of metabolites (110–
112). More evidence suggested that tumor cells and TILs both 
compete for glucose within the suppressive tumor microenviron-
ment, leading to cancer progression (113–115).

In addition to the direct competition for nutrients with effec-
tor T cells, accumulated metabolic end products, including cyclic 
adenosine monophosphate (cAMP), IDO, adenosine, and lactate, 
in the tumor microenvironment produced by tumor cells and 
Tregs are important inducers of T cell senescence (12, 32, 110–
112, 116). cAMP is a potent inhibitor of effective tumor-specific T 
cells within the tumor microenvironment (111, 117). Furthermore, 
cAMP is also involved in Treg-mediated suppression (118). Studies 
have demonstrated that different types of tumor cells can direct-
ly induce conversion from naive/effector T cells into senescent T 
cells with potent suppressive activity (33, 34). High concentrations 
of endogenous cAMP exist in both tumor cells and tumor-induced 
senescent T cells and have been mechanistically implicated as 
responsible for the induction of T cell senescence. Tumor cells can 
transfer cAMP to targeted naive/effector T cells via gap junctions, 
resulting in markedly increased cAMP levels in senescent T cells. 
cAMP-induced T cell senescence is mechanistically dependent on 
the triggering of the ATM-associated DNA damage response in T 
cells (33, 119, 120). Unlike direct transfer of cAMP between cells, 
adenosine triggers immunosuppressive signaling via intracellular 
cAMP-elevating A2A adenosine receptors on T cells (121). Chronic 
exposure of CD8+ T cells to exogenous adenosine can accelerate 
the process of cell senescence, causing reductions in overall pro-
liferative potential and telomerase activity, and blunted IL-2 gene 
transcription (122). In addition, the loss of CD28 expression by 
senescent T cells is accelerated as a result of suppression of the 
CD28 promoter by adenosine-induced increases of caspase-3 
(122). Notably, recent studies suggest that tumor-derived exo-
somes carrying numerous cargos, such as RNA and DNA, lipids, 
proteins, and metabolites, are also critical to regulate both tumor 

for effector T cells. These interactions initiate activation of the 
AMP-activated protein kinase (AMPK) in responder T cells and 
eventually result in the DNA damage response associated with the 
nuclear kinase ataxia-telangiectasia mutated protein (ATM), and 
senescence in T cells (31, 32). It has been shown that low concen-
trations of glucose alone can significantly induce both CD4+ and 
CD8+ T cell senescence (31). In contrast, high concentrations of 
glucose (25 mM) dramatically prevent responder T cell senescence 
mediated by nTregs and tumor-derived Tregs (31, 32). Activation 
of AMPK, an important nutrient and energy sensor that is activat-
ed by reactive oxygen species and DNA-damaging agents, is the 
key step for T cell senescence (102–104). Activated AMPK can 
regulate cell cycle progression through increased phosphorylation 
of p53 and accumulation of p21WAF1 and p27 expression (105, 106). 
A recent study has shown that AMPK is activated in CD27–CD28– 
senescent T cells, leading to autophosphorylation of p38 and inhi-
bition of telomerase activity, as well as reduced T cell proliferation 
and expression of key components of the TCR signalosome (107). 
Furthermore, AMPK agonists can induce senescence characteris-
tics in nonsenescent T cells (107). Interestingly, tumor-infiltrating 
Tregs are highly activated and proliferative, and are not prone 
to senescence in the suppressive tumor microenvironment (31, 
32, 108, 109). As discussed above, heightened glucose and lipid 
metabolism distinguishes both nTregs and tumor-derived Tregs 
from effector T cells (31, 32). Therefore, Tregs’ energy demands, 
a combination of glycolysis and fatty acid synthesis and oxidation, 
confer a metabolic advantage that preferentially promotes prolif-
eration and expansion in the tumor microenvironment (108). In 
addition, recent studies showed that Treg division and suppres-
sive function are unaffected in the metabolically abnormal tumor 
microenvironment with low glucose and high lactate (109). Spe-
cifically, the transcription factor FoxP3 reprograms metabolism in 
Tregs, driving Treg resistance to the intracellular NAD depletion 
that results from the oxidation of l-lactate to pyruvate by lactate 
dehydrogenase; in contrast, intracellular NAD depletion dramat-
ically impairs effector T cell function and proliferation (109). In 

Figure 2. Potential signaling/mechanisms responsi-
ble for the development of senescent T cells within 
the suppressive tumor microenvironment. (i) Tregs’ 
accelerated glucose consumption creates glucose 
competition in the tumor microenvironment, which 
can induce cell senescence in responder T cells during 
their crosstalk. (ii) Accumulation of metabolic end 
products, including cAMP, adenosine, and lactate, in 
the tumor microenvironment suppresses effector T 
cells and/or promotes induction of T cell senescence. 
(iii) Continuous and repeated stimulation from tumor 
antigens in T cells may induce loss of telomerase 
activity and result in replicative senescence of T cells. 
(iv) Tumor-derived microenvironmental inflammatory 
cytokines enhance tumor proliferation, inflammation, 
angiogenesis, and metastasis, and can also promote 
the development of senescent T cells. All these 
signaling pathways may potentially initiate the ATM- 
associated DNA damage response and activate MAPK 
and STAT1/3 signaling, resulting in T cell senescence 
in the tumor microenvironment.
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cells and immune cells and to maintain a hypoxic and suppressive 
tumor microenvironment (123–126). These exosomes directly sup-
press antitumor activity and memory formation in effector T cells, 
as well as promote expansion and activation of Tregs (124, 127, 
128). However, whether the tumor-derived exosomes also involve 
the development of T cell senescence in the tumor microenviron-
ment remains unknown. A better understanding of the mechanis-
tic links between tumor immunosuppression, hypoxia, metabolic 
dysregulation, and induction of T cell senescence should lead to 
novel strategies for cancer immunotherapy.

MAPK and STAT signaling critically control T cell 
senescence
It is well established that mitogen-activated protein kinase 
(MAPK) signaling is involved in controlling cellular senescence. 
However, the importance of MAPK signaling in T cell senescence 
was not explored until recently (12, 29, 31, 129, 130). ERK1/2 
and p38 activation can induce p21-dependent G1 cell cycle arrest 
as well as activate both the p53 and the pRb/p16 growth arrest 
pathways (131, 132). In addition, MAPK signaling pathways con-
trol oncogenic Ras-induced senescence (133–135). Furthermore, 
p38 MAPK is involved in regulation of many SASP cytokines and 
chemokines in senescent cells (136, 137). Constitutive p38 MAPK 
activation is sufficient to induce SASP, while inhibition of p38 
MAPK signaling markedly reduces secretion of most SASP fac-
tors (138). More recent studies have shown that the CD27–CD28– 
subset of CD4+ T cells exhibited elevated phosphorylation of p38, 
and that activation of p38 by AMPK and scaffold TAB1 induces 
human T cell senescence (129). Furthermore, the sestrin-de-
pendent ERK–JNK–p38 MAPK activation complex controls T cell 
senescence (130). To identify the signaling pathways responsible 
for T cell senescence in the suppressive tumor microenviron-
ment, recent studies have demonstrated that the cell cycle reg-
ulatory molecules p53, p21, and p16 are significantly increased 
in senescent T cells induced by both Tregs and tumor cells (29, 
31, 33). Furthermore, ERK1/2 and p38 are selectively phosphor-
ylated and activated during T cell senescence processes required 
for induction of responder T cell senescence mediated by human 
Tregs. In addition, STAT1 and STAT3 signaling mediates cellu-
lar senescence induced by H2O2, stress, and radiation (90, 139, 
140). STAT1 and STAT3 signaling also involves T cell senescence 
mediated by both nTregs and tumor-derived Tregs (31). Collec-
tively, ATM-associated DNA damage response, MAPK signaling, 
and STAT1 and STAT3 signaling cooperate to control T cell dif-
ferentiation and development of senescence during the crosstalk 
with Tregs (Figure 2 and ref. 31). The studies discussed here and 
below identify the unique molecular signaling that controls and 
maintains T cell senescence in the tumor microenvironment, 
which should provide insights for the development of therapies 
designed to block T cell senescence and restore effector functions 
for tumor immunotherapy.

Senescence reversal and functional rejuvenation 
of tumor-specific T cells
All of these studies strongly indicate that malignant tumors use 
the induction of T cell senescence, which impairs antitumor 
capacities, as a strategy to escape the immune system (27, 29–34). 

Therefore, developing strategies to prevent the generation of 
senescence and control the fate and function of tumor-specific T 
cells is critical for antitumor immunity.

Blocking molecular signaling important for senescent T cell differ-
entiation. Inhibition of key signaling pathways controlling senes-
cence induction in tumor-specific T cells could be a critical check-
point for effective and enhanced antitumor immunity. Growth 
arrest in fibroblasts that are at an early stage of senescence can be 
reversed by blocking key cell cycle regulatory genes (p53, p38, and 
p21) and/or DNA damage response proteins (ATM or the cell cycle 
arrest protein CHK2) (92, 141–144). These studies have already 
provided critical insights for how to control the development of 
cell senescence. Recent studies have demonstrated that ATM 
signaling, MAPKs ERK1/2 and p38 signaling, and STAT1/STAT3 
signaling are selectively activated during senescent T cell devel-
opment induced by human Tregs and tumor cells (29, 31–33). Fur-
thermore, blockage of ATM, ERK1/2, and p38 as well as STAT sig-
naling pathways can considerably prevent the induction of T cell 
senescence in vitro and in vivo in animal models (29–31, 33, 34).

MAPK signaling is also critical for T cell activation and effec-
tor functions (144, 145). Therefore, selection of optimal MAPK 
inhibitors for preventing senescence induction without affecting 
proliferation and effector function in tumor-reactive T cells is 
urgently needed (12). MAPK inhibitors have been widely used in 
clinical trials for the treatment of melanoma patients (146–148), 
and some selective MAPK inhibitors have already shown signif-
icant enhancement of T cell recognition of melanoma without 
affecting lymphocyte function (149, 150). ATM inhibitors also 
have been used in clinical trials for cancer patients (151, 152). 
Those selective MAPK and ATM inhibitors already available for 
clinical use should be priority candidates for exploring the effi-
cacy of T cell senescence inhibition in cancer patients (149, 150, 
153, 154). In addition, recent studies have suggested that AMPK 
can trigger autophosphorylation of p38 and metabolic regulation 
of human T cell senescence during aging and interaction with 
Tregs (31, 107). Therefore, knockdown of AMPK by shRNA results 
in enhanced telomerase activity and proliferation of senescent 
T cells (107). Furthermore, sestrins bind to and coordinate ERK, 
JNK, and p38 MAPK activation in CD27–CD28–CD4+ T cells, and 
sestrin deficiency enhances T cell responsiveness and expansion 
in vivo during aging (130). Identification of more specific signal-
ing pathways responsible for the generation of senescent T cells in 
the tumor microenvironment should lead to effective therapeutic 
targets for cancer immunotherapy.

Reprogramming Treg and tumor metabolism via TLR8 signal-
ing. Both nTregs and tumor-derived Tregs can strongly suppress 
naive/effector T cells through the induction of responder T cell 
senescence, which mechanistically depends on glucose compe-
tition with responder T cells during their interaction (29, 30, 32). 
Toll-like receptors (TLRs) are very important for regulating Treg 
function (32, 155–158). TLR8 signaling reverses the suppressive 
functions of tumor-derived CD4+, CD8+, and γδ Tregs, resulting 
in enhanced antitumor immunity mediated by tumor-specif-
ic CD8+ T cells in adoptive transfer tumor models (29, 30, 156, 
157). Furthermore, TLR8 signaling in human Tregs can prevent 
their induction of senescence in responder T cells and DCs and 
can reverse the suppressor function of senescent T cells (29, 30). 
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Cellular energy metabolism also directs T cell survival, prolifera-
tion, and function (159–162), and both glucose and lipid metab-
olism is required for Treg suppression (32, 163). Recent studies 
suggest that TLR signaling directly regulates energy metabolism 
in immune cells, including in Tregs (164–166). TLR1 and TLR2 
signaling activation in mouse Tregs increases Treg glycolysis and 
proliferation and reduces their suppressive capacity (167). Unlike 
TLR1/2 signaling in murine Tregs, TLR8 signaling activation can 
suppress both glucose uptake and transport as well as glycolysis 
in human Tregs, but does not alter glucose metabolism in naive 
and effector T cells, resulting in prevention of responder T cell 
senescence (31, 32). In addition to tumor-derived Tregs, tumor 
cells convert normal immune cells into senescent T cells via the 
metabolite cAMP, resulting in impaired antitumor immunity (27, 
33, 34). Increasing evidence suggests that TLRs directly regulate 
metabolism, affecting tumor behavior and function in melanoma, 
prostate cancer, head and neck carcinoma, and breast cancer (33, 
34, 158, 168). Human TLR8 signaling also directly targets multi-
ple types of tumor cells and modulates the levels of endogenous 
metabolite cAMP in tumor cells, preventing their ability to induce 
T cell senescence (33, 34). Importantly, these in vitro studies were 
further confirmed in vivo for tumor immunotherapy, showing that 
TLR8 signaling can enhance antitumor immunity by preventing 
Treg- and tumor-induced senescence in tumor-specific effector 
T cells in vivo in the adoptive transfer therapy melanoma models 
(32, 33, 156, 157). These studies collectively indicate that human 
TLR8 signaling can reprogram glucose metabolism in both Tregs 
and tumor cells, resulting in suppression of their abilities to induce 
senescence in effector T cells. Therefore, TLR8 ligands could be 
effective tumor immunotherapeutic agents and/or adjuvants for 
tumor immunotherapy.

Concluding remarks and future perspectives
Current immunotherapies, including immune checkpoint block-
ade therapy and adoptive T cell therapy, have led to promising 
results in certain types of cancer patients, but the overall effec-
tive rates remain limited and vary among tumor types (51, 169). 
Exploration of alternative novel strategies targeting more specif-
ic checkpoint molecules or interrupting tolerogenic pathways is 
urgently needed. One of the key determinants of therapeutic effi-
cacy is the functional state of the transferred/preexisting T cells 
in the suppressive tumor microenvironment (170, 171). Increas-
ing evidence suggests that development of T cell senescence is a 
general feature and an important T cell dysfunctional state in the 
tumor microenvironment, which should be an emerging target for 
tumor immunotherapy (29–33). Therefore, preventing tumor-spe-
cific T cell senescence and rejuvenating effector T cell functions 
could become successful cancer immunotherapeutic strategies.

Cellular senescence has been recognized as a biological process 
over the past 50 years. However, the role and function of senescent 
T cells in tumor immunity remain unclear. Precisely dissecting 
the molecular mechanisms responsible for the development of T 
cell senescence will not only facilitate a better understanding of 
how malignant tumors escape immunity and sustain a suppres-
sive tumor microenvironment, but also should provide emerging 
targets for tumor immunotherapy. Recent studies have identified 
MAPK and STAT3 signaling pathways as critical for controlling the 

development of T cell senescence (29, 31). Furthermore, TLR8 sig-
naling can reprogram metabolism in Tregs and tumor cells, reverse 
their suppressive effects, and prevent induction of T cell senes-
cence mediated by tumors and Tregs (32, 33). Therefore, inhibition 
of MAPK signaling and/or TLR8 signaling activation should be 
effective strategies to control tumor-specific T cell senescence and 
dysfunction for tumor immunotherapy in the future.

It is now well recognized that the immune system can have both 
immune surveillance and tumor promotion effects during cancer 
development (172, 173). Furthermore, the functional role and sub-
sets of T cells in the tumor microenvironment are dynamic during 
tumor progression (174). More efforts are needed to elucidate the 
alterations and plasticity among different states of T cells in the 
immunoediting processes within the tumor microenvironment 
during cancer progression. In addition, different types of tumors 
are highly heterogeneous, associated with distinct escape mech-
anisms and clinical outcomes within T cell–inflamed and –non-
inflamed tumor microenvironments (175, 176). T cell exhaustion 
and senescence are important dysfunctional states in cancers that 
are utilized by malignant tumors to escape antitumor immunity 
(29–31, 38–41). Therefore, a comprehensive understanding of the 
dynamic states and functions of T cells, including senescent and/or 
exhausted T cells in diverse tumor microenvironments, is essential 
for the development of novel therapeutic strategies to treat cancer 
patients. Recently, advancements in single-cell-based technolo-
gies and tissue imaging have made this possible (8, 177, 178).

Increasing evidence indicates that targeting T cell senescence 
is an emerging concept for enhancing tumor immunity and immu-
notherapy. Although great progress has been made in this specific 
area of cancer research, gaps in our understanding of the role of 
senescent T cells in different types of cancer patients remain. First, 
although induction of T cell senescence is a general feature within 
the suppressive tumor microenvironment, the causative mecha-
nisms responsible for the senescent T cell development mediated 
by malignant tumors remain unclear. Cellular energy metabolism 
directs the fates and functions of T cells (159–162). However, the 
metabolic alterations involved in the induction and functions of 
these senescent immune cells in the tumor microenvironment are 
unknown. Therefore, improved understanding of metabolic regu-
lations involved in the generation and development of senescent T 
cells mediated by different types of malignant tumors is urgently 
needed. These studies should lead to potential therapeutic targets 
for metabolic reprogramming to block senescence in tumor-spe-
cific T cells for cancer immunotherapy. Second, it is now recog-
nized that senescent T cells are not exhausted and/or anergic T 
cells (31). Although senescent T cells are defective in antitumor 
immune functions, they are active and possess a unique SASP 
phenotype. SASP compositions include cytokines, lipids, metab-
olites, and extracellular vesicles and are complicated and highly 
heterogeneous, depending on duration of T cell senescence in the 
tumor progression (8, 179). However, the functional fractions of 
senescent T cell–derived SASP and its role in regulating effector 
immune cell functions and tumor development within the tumor 
microenvironment are unknown. Thus, further characterization 
of the unique molecular signatures and functional roles of SASP 
derived from senescent T cells during tumor development is need-
ed to develop an effective and specific antitumor immunothera-
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hensively and precisely understanding these critical issues will 
provide insights for the development of promising clinical treat-
ments against cancers in the future.
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py. In addition, current clinical trials targeting CTLA-4 or PD-1/
PD-L1 have yielded only limited success rates (51, 169). More 
recent studies have shown that PD-1–mediated suppression of T 
cell function results from dephosphorylation and inactivation of 
CD28 (180), and the CD28/B7 costimulatory pathway is required 
for effective anti–PD-1 therapy in cancer and chronic viral infec-
tion (181). Efficacy of anti–PD-1 therapy in cancer patients is 
related to PD-1+CD8+ T cell proliferation and the activation and 
expression of CD28 in PD-1+CD8+ T cells (181). One of the import-
ant characteristics of senescent T cells is downregulation or loss 
of CD28 expression (29–31). Therefore, it is difficult to activate 
senescent T cells in the tumor microenvironment.

Given that accumulated senescent T cells exist in cancer 
patients, the causative relationship between T cell senescence and 
unresponsiveness to current immunotherapies is another import-
ant but challenging issue that needs to be investigated. Compre-
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