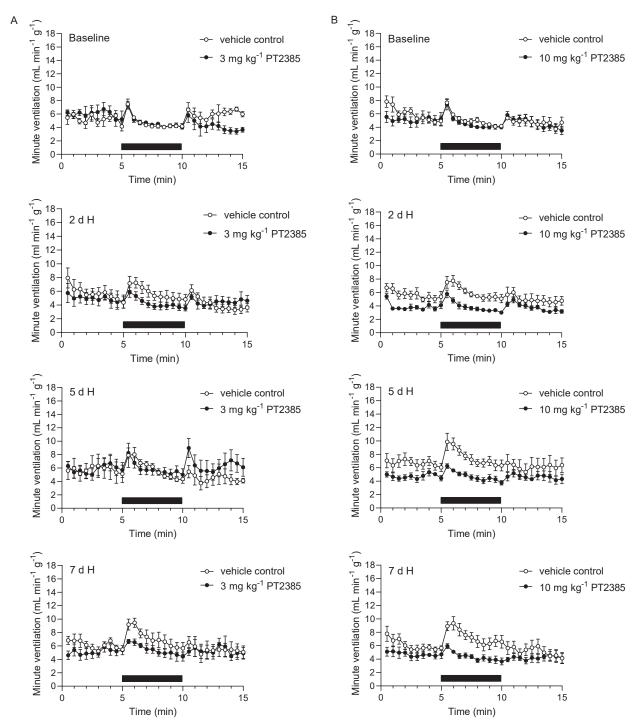
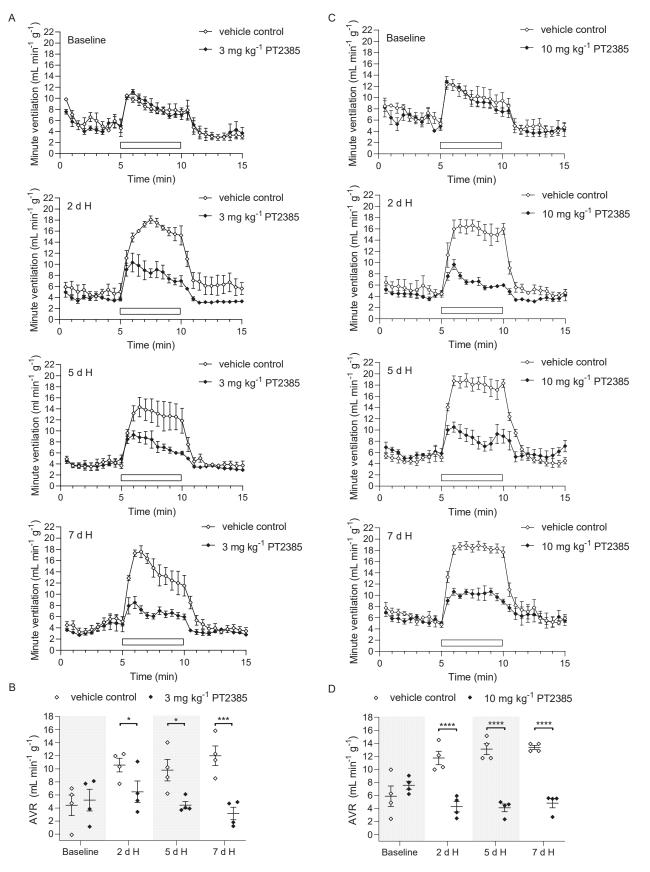
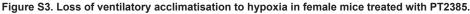
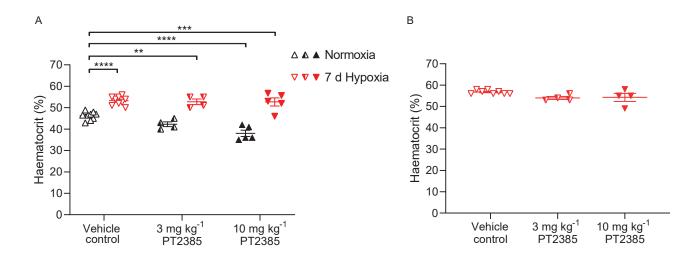


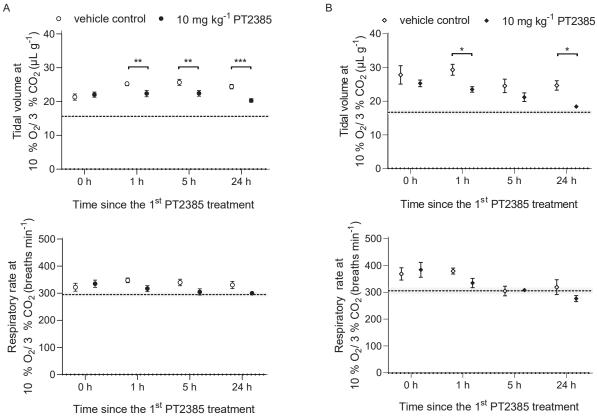
Figure S1. Loss of ventilatory acclimatisation to hypoxia in male mice treated with 3 mg kg⁻¹ PT2385.

(**A**) Graphs show changes in minute ventilation in response to an acute (5 min) challenge with 10 % $O_2/3$ % CO_2 (open bars) in mice before (Baseline) and following twice daily treatment with 3 mg kg⁻¹ PT2385 (or vehicle), beginning 24 h before 7 d exposure to hypoxia (H, 10 % oxygen) and continuing throughout (to a total of 8 days treatment)(n = 4). (**B**) Graph shows acute ventilatory responses (AVRs) to challenges with 10 % $O_2/3$ % CO_2 , quantified from the minute ventilation data shown in (**A**). Data were analysed by a two-way repeated measures ANOVA with Baseline recordings removed from statistical analysis (*P* values shown in Table 1); followed by Holm-Sidak's multiple comparisons two-tailed test for which the significance is reported in the graph, * *P* < 0.05.

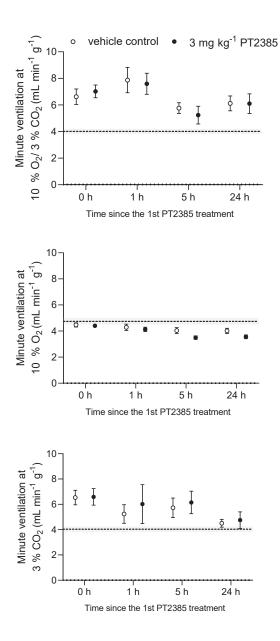





Figure S2. Effects of PT2385 on enhanced ventilatory sensitivity to hypoxia in male mice as measured by acute challenge with 10 % oxygen.

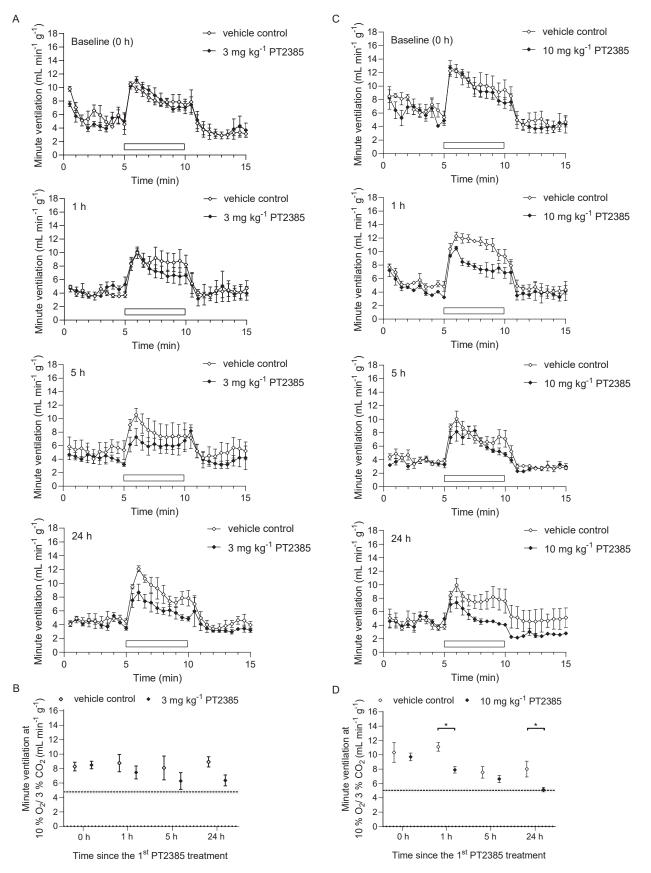
Graphs show changes in minute ventilation in response to an acute (5 min) challenge with 10 % O_2 (black bars) in mice before (Baseline) and following twice daily treatment with (**A**) 3 or (**B**) 10 mg kg⁻¹ PT2385 (or vehicle), beginning 24 h before 7 d exposure to hypoxia (H, 10 % oxygen) and continuing throughout (to a total of 8 days treatment)(n = 4, 3 mg kg⁻¹; n = 6, 10 mg kg⁻¹).



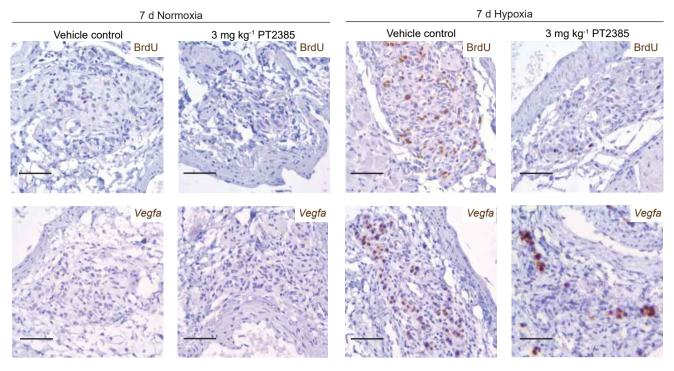
Graphs show changes in minute ventilation in response to an acute (5 min) challenge with 10 % $O_2/3$ % CO_2 (open bars) in mice before (Baseline) and following twice daily treatment with (**A**) 3 or (**C**) 10 mg kg⁻¹ PT2385 (or vehicle), beginning 24 h before 7 d exposure to hypoxia (H, 10 % oxygen) and continuing throughout (to a total of 8 d treatment)(n = 4). (**B**, **D**) Graphs show acute ventilatory responses (AVRs) to challenges with 10 % $O_2/3$ % CO_2 , quantified from the minute ventilation data shown in (**A**, **C**). Data analysed by a two-way ANOVA matched by the time factor and with Baseline recordings removed from statistical analysis (*P* values shown in Table S1); followed by Holm-Sidak's multiple comparisons two-tailed tests for which the significance is reported in the graph, * *P* < 0.05, *** *P* < 0.001, **** *P* < 0.0001.


Figure S4. Changes in haematocrit in wild-type mice treated with 3 or 10 mg kg⁻¹ PT2385 and maintained in normoxia or exposed to sustained hypoxia.

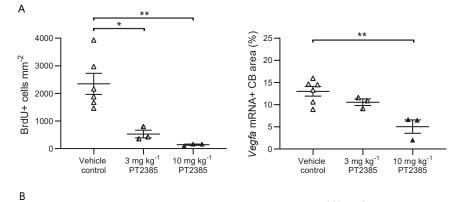
Graphs show % haematocrit in the blood of wild-type (**A**) male and (**B**) female mice treated with 3 or 10 mg kg⁻¹ PT2385 beginning 24 h before, and continuing throughout, 7 d exposure to hypoxia (10 % oxygen), or normoxia (to a total of 8 d treatment). Data were analysed by a two-way (males) or one-way (females) ANOVA; followed by Holm-Sidak's multiple comparisons two-tailed tests, ** P < 0.01, *** P < 0.001.


Figure S5. Changes in tidal volume and respiratory rate in unacclimatised PT2385-treated mice.

Graphs show average tidal volume (top panels) and respiratory rate (bottom panels) during 5 min challenges with 10 % O₂/ 3 % CO₂. Measurements were made before (0 h) and 1, 5 and 24 h after the first 10 mg kg⁻¹ PT2385 (or vehicle) dose in (A) male (n = 15) and (B) female mice (n = 4); second dose of PT2385 was given immediately after the 5 h measurements. Data were analysed by Holm-Sidak's multiple comparisons two-tailed tests, * P < 0.05, ** P < 0.01, *** P < 0.001. Dotted line shows average resting tidal volume or respiratory rate in air across all time-points and treatment groups, ± SEM (shaded area).


Figure S6. Effects of 3 mg kg⁻¹ PT2385 on ventilatory sensitivity in unacclimatised male mice.

Graphs show average minute ventilation during 5 min challenges with 10 % $O_2/3$ % CO_2 (upper panel), 10 % O_2 (middle panel) or 3 % CO_2 (lower panel). Measurements were made before (0 h) and 1, 5 and 24 h after the first 3 mg kg⁻¹ PT2385 (or vehicle) dose (*n* = 8); second dose of PT2385 was given immediately after the 5 h measurements. Data were analysed by Holm-Sidak's multiple comparisons two-tailed tests with no significant effects detected. Dotted lines show the average resting minute ventilation in air prior to the acute gas challenge, across all time-points and treatment groups depicted in that graph, ± SEM (shaded area).



Graphs show changes in minute ventilation in response to an acute (5 min) challenge with 10 % $O_2/3$ % CO_2 (open bars). Measurements were made before (Baseline, 0 h) and 1, 5 and 24 h after the first (**A**) 3 or (**C**) 10 mg kg⁻¹ PT2385 (or vehicle) dose (*n* = 4); second dose of PT2385 was given immediately after the 5 h measurements. (**B**, **D**) Graphs show average minute ventilation during 5 min challenges with 10 % $O_2/3$ % CO_2 (calculated from data in **A**, **C**). Data were analysed by Holm-Sidak's multiple comparisons two-tailed tests, * *P* < 0.05. Dotted lines show the average resting minute ventilation in air prior to the acute gas challenge, across all time-points and treatment groups depicted in that graph, ± SEM (shaded area).

Figure S8. Responses to hypoxia in carotid bodies of male mice treated with 3 mg kg⁻¹ PT2385.

Representative images of immunostaining for BrdU and in situ hybridisation for *Vegfa* mRNA in carotid bodies of mice treated twice daily with 3 mg kg⁻¹ PT2385 (or vehicle) beginning 24 h before, and continuing throughout, 7 d exposure to hypoxia (10 % oxygen) or normoxia (to a total of 8 d treatment). Number of BrdU+ cells/ CB area and *Vegfa* mRNA+ CB area quantified in Figure 4A. Scale bars represent 50 µm.

7 d Hypoxia

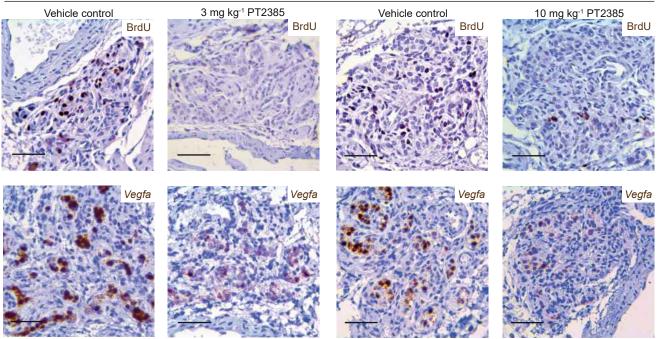


Figure S9. Effects of PT2385 on cellular responses to hypoxia in the carotid bodies of female mice.

(A) Morphometry and (B) representative images of carotid bodies (CBs) from wild-type female mice exposed to 7 d hypoxia (10 % oxygen) and treated twice daily with 3 or 10 mg kg⁻¹ PT2385 (or vehicle) for 8 d. (A) Quantification of BrdU+ cells per mm² (left panel) and *Vegfa* mRNA+ CB area of the CB (right panel). Data were analysed by one-way ANOVAs followed by Holm-Sidak's multiple comparisons two-tailed tests, for which significance is reported in the graphs, * P < 0.05, ** P < 0.01. (B) Immunostaining for BrdU and *Vegfa* mRNA in situ hybridisation. Scale bars represent 50 µm.

Table S1. Effect of PT2385 on ventilatory acclimatisation to hypoxia in wild-type female

mice.

		AVR (mL min ⁻¹ kg ⁻¹)					
		3 r	ng kg ⁻¹ PT2385		10 r		
		Vehicle 3 mg kg ⁻¹			Vehicle 10 mg kg ⁻¹		
10% O ₂	-	control	PT2385	ANOVA	control	PT2385	ANOVA
	Time-point	Mean SEM	Mean SEM	P value	Mean SEM	Mean SEM	P value
	Baseline	-0.35 ± 0.31	0.34 ± 0.99	_	-0.52 ± 1.00	-0.25 ± 0.77	-
	2 d H	1.85 ± 0.60	0.72 ± 0.38		1.34 ± 0.53	-0.10 ± 0.66	
	5 d H	2.74 ± 0.91	0.19 ± 0.65	0.976	3.33 ± 1.35	-1.90 ± 0.34	0.370
	7 d H	3.51 ± 1.41	-1.01 ± 1.21		3.88 ± 0.74	-0.74 ± 0.39	
	ANOVA	0.002		0.301	0.001		0.043
	P value			0.301			0.045
10% O2 / 3% CO2	Baseline	4.42 ± 1.58	5.22 ± 1.66		5.89 ± 1.58	7.57 ± 0.61	
		10.58 ± 1.04	6.49 ± 1.65	-	<u>11.75 ± 1.03</u>	4.29 ± 0.80	_
				0 564			0.240
	5 d H		4.44 ± 0.56	0.564	13.12 ± 0.84	4.12 ± 0.59	0.342
		12.01 ± 1.51	3.16 ± 0.96		13.38 ± 0.31	4.84 ± 0.71	
	ANOVA	0.001		0.212	<0.	<0.001	
Ę	P value						0.553
3% CO2	Baseline	6.97 ± 1.04	6.83 ± 1.66		5.29 ± 0.62	5.79 ± 0.88	
	2 d H	2.92 ± 0.30	2.41 ± 0.24	-	4.63 ± 0.79	2.94 ± 0.87	_
	5 d H	5.01 ± 0.80	2.47 ± 0.68	0.125	6.63 ± 0.89	3.95 ± 0.24	0.287
	7 d H	4.80 ± 0.87	2.65 ± 0.56		4.98 ± 0.71	3.71 ± 1.40	
	ANOVA <i>P</i> value	0.030		0.193	0.	032	0.736

Acute ventilatory responses (AVRs) of wild-type female mice before (Baseline) and following twice daily treatment with 3 mg kg⁻¹ or 10 mg kg⁻¹ PT2385 (or vehicle), beginning 24 h before 7 d hypoxia (H, 10 % oxygen) and continuing throughout (to a total of 8 d treatment). Two-way repeated measures ANOVAs (right hand column *P* value = time factor; bottom row *P* value = drug factor; right column, bottom row *P* value = time/ drug interaction factor), matched by the time factor, with the Baseline (prior to PT2385) recordings excluded from statistical analysis; *n* = 4. *P* < 0.05 comparisons are highlighted in bold.