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based controls (n = 212) to explore the relationship between serum sphingolipids and CAD, using unbiased machine learning to identify
sphingolipid species positively associated with CAD.

Nearly every sphingolipid measured (n = 30 of 32) was significantly elevated in subjects with CAD compared with measurements in
population controls. We generated a novel sphingolipid-inclusive CAD risk score, termed SIC, that demarcates patients with CAD
independently and more effectively than conventional clinical CVD biomarkers including serum LDL cholesterol and triglycerides. This new
metric comprises several minor lipids that likely serve as measures of flux through the ceramide biosynthesis pathway rather than the
abundant deleterious ceramide species that are included in other ceramide-based scores.

This study validates serum ceramides as candidate biomarkers of CVD and suggests that comprehensive sphingolipid panels should be
considered as measures of CVD.
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BACKGROUND. Ceramides are sphingolipids that play causative roles in diabetes and heart disease, with their serum levels
measured clinically as biomarkers of cardiovascular disease (CVD).

METHODS. We performed targeted lipidomics on serum samples from individuals with familial coronary artery disease (CAD)
(n = 462) and population-based controls (n = 212) to explore the relationship between serum sphingolipids and CAD, using
unbiased machine learning to identify sphingolipid species positively associated with CAD.

RESULTS. Nearly every sphingolipid measured (n = 30 of 32) was significantly elevated in subjects with CAD compared

with measurements in population controls. We generated a novel sphingolipid-inclusive CAD risk score, termed SIC, that
demarcates patients with CAD independently and more effectively than conventional clinical CVD biomarkers including
serum LDL cholesterol and triglycerides. This new metric comprises several minor lipids that likely serve as measures of flux
through the ceramide biosynthesis pathway rather than the abundant deleterious ceramide species that are included in other
ceramide-based scores.

CONCLUSION. This study validates serum ceramides as candidate biomarkers of CVD and suggests that comprehensive
sphingolipid panels should be considered as measures of CVD.

FUNDING. The NIH (DK112826, DK108833, DK115824, DK116888, and DK116450); the Juvenile Diabetes Research Foundation
(JDRF 3-SRA-2019-768-A-B); the American Diabetes Association; the American Heart Association; the Margolis Foundation;

(P30CA040214).

Introduction

Coronary artery disease (CAD) is the most common type of car-
diovascular disease (CVD) worldwide and the leading cause of
death in the Western Hemisphere (1). The condition gives rise to
atherosclerosis and ischemia, which contribute to arrhythmia,
myocardial infarction (MI), heart failure, and sudden death (2).
A family history of CAD is an independent risk factor for MI, and
once a MI occurs, the patient is at greatly increased risk for sub-
sequent adverse cardiac events. In addition to incurring a sub-
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stantial individual health burden, CVD is the costliest disease in
the United States, producing an economic toll that is projected to
grow substantially over the coming decades (3). The combination
of personal and financial costs necessitates improved means for
identifying at-risk individuals in order to enhance patient care and
optimize resource management.

CAD is multifactorial by nature, with obesity, diet, hyperten-
sion, type 2 diabetes mellitus, and family history of CVD estab-
lished as risk factors (3). Traditional serum lipid biomarkers of
CV health include triglycerides (TGs) and cholesterol, 2 abundant
and easily quantifiable circulating factors. Recent technological
advances now allow for the detection of less plentiful lipids, such
as sphingolipids, enabling substantially more diverse lipidomic
screenings at relatively high throughput. In leveraging these tech-
nological developments, researchers have identified a small sub-
set of serum ceramides as biomarkers of CVD risk (4). Moreover,
a substantial body of literature in rodent models of CVD indicates
that these sphingolipids play causative roles in diabetes and car-
diometabolic disorders (5).
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Figure 1. Schematic depicting the sphingolipid biosynthesis pathway. Fatty acyl-CoAs have 3 primary fates: entering the mitochondria to be used for
energy via oxidation, to form glycerolipids for use in storage or membrane formation, or to be coupled to an amino acid and enter the sphingolipid biosyn-
thesis pathway. Sphingolipids are a diverse class of lipids that represent a minor subset of the lipidome but play critical roles in signaling events. DAGs,
diacylglycerols; PC, phosphocholine; PE, phosphoethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; TAGs, triacylglycerols.

Sphingolipids constitute a class of lipids that have diverse
structural and signaling functions and discrete biological roles
and tissue distributions. Their excessive accumulation occurs
when the delivery of fatty acids exceeds the storage capacity or
energy needs of a cell (Figure 1 and ref. 5), with the primary steps
of de novo synthesis occurring in the ER (6). Tissue inflammation
further increases ceramide biosynthesis rates (7). In the third step
of the sphingolipid biosynthesis pathway, a family of (dihydro)cer-
amide synthases add variable acyl chains to a sphingoid scaffold
to produce the dihydroceramides and, subsequently, ceramides,
which are the key foundational unit of predominant sphingolipids
(8). The dihydroceramides and ceramides can be further modified
in the Golgi apparatus by the addition of various head groups, gen-
erating complex sphingolipids such as sphingomyelins and gluco-
sylceramides. Ceramides, but not dihydroceramides, containing
either C16:0 or C18:0 acyl chains drive insulin resistance and
hepatic steatosis (7, 9-14). Other deleterious effects of ceramides
that are relevant to CVD include the retention of lipoproteins in
the vascular wall, impaired vasodilation, and induction of cardio-
myocyte apoptosis (15).

Prior profiling studies have identified 3 ceramide species [i.e.,
cer(d18:1/16:0), cer(d18:1/18:0), and cer(d18:1/24:0)] that are pos-
itively associated with CVD incidence (16), secondary CVD events
(17), and mortality (18-20). Cer(d18:1/24:0) has been reported to
be negatively associated with CV death (18-20), but its relationship
with CVD incidence is less clear. We reasoned that less abundant
sphingolipids may serve as strong markers of flux through the bio-
synthesis pathway. Therefore, we performed an inclusive sphin-
golipid screen (32 sphingolipids) in individuals with CAD and in

population-based control subjects (Table 1). By applying variable
selection techniques, we used these data to develop a superior
sphingolipid-based score that demarcated individuals with CAD.

Results

Individual ceramides and CAD. We quantified 32 sphingolipids
including the major ceramides [cer(d18:1)], dihydroceramides
[dihydro-cer(d18:0)], glucosylceramides [(glucosyl-cer(d18:1)],
dihydrosphingomyelins [dihydro-SM(d18:0)], sphingomyelins
[SM(d18:1)], sphinganine, and sphingosine (Figure 2). All sphingo-
lipids measured, except for 2 glucosylceramides, were elevated in
patients with CAD compared with levels in control subjects (Table
2). Sphingosine (P < 2 x 107), dihydro-cer(d18:0/ 16:0) (P < 2 x
107%), dihydro-cer(d18:0/ 18:0) (P <2 x107), and cer(d18:1/ 24:1)
(P < 2 x 107%%) were most strongly associated with CAD (ORPer .
3.47,95% CI: 2.63-4.69; OR (| 2.54,95% CI: 2.06-3.18; OR
2.82,95% CI: 2.24-3.60; OR _ 2.30, 95% CI: 2.24-3.60; OR _
2.29,95% CI:1.86, 2.85, respectively). Figure 3 depicts the ORs for
CAD for all sphingolipid species measured, including the unad-
justed model, a parsimonious model (i.e., a minimally adjusted
model that includes the covariates age, sex, and BMI), and a fully
adjusted model (i.e., a model that includes the covariates age, sex,
BMI, total cholesterol [total-C], LDL cholesterol [LDL-C], HDL
cholesterol [HDL-C], VLDL cholesterol [VLDL-C], TGs, hyper-
tension, diabetes, and smoking).

Ceramide risk score and CAD. For each subject, we calculated
the ceramide risk score (i.e., cardiac event risk test 1 [CERT1]) that
was developed by Zora Biosciences and is in operation at the Mayo
Clinic as a means of predicting 5-year risk of CV mortality (4, 21,

SD

jci.org


https://www.jci.org
https://www.jci.org

The Journal of Clinical Investigation

Table 1. Baseline characteristics of patient and control
participants in the Utah CAD study

Controls Patients Pvalue

No. of subjects 212 462

Sex
Male, 1 (%) 91(43%) 356 (77%)

Age (yr) 53.5+6.9 55.6 +75 0.004

BMI* 283+57 29152 0.040
NA, 1 (%) 16 (3.5%)

Smoking <0.001
Yes, 1 (%) 43 (20%) 208 (45%)

No, 1 (%) 169 (80%) 254 (55%)

Diabetes <0.001
Yes, 1 (%) 11(5%) 108 (23%)

No, 1 (%) 201(95%) 354 (77%)

Hypertension <0.001
Yes, 1 (%) 54 (26%) 262 (57%)

No, 7 (%) 158 (74%) 200 (43%)

Lipid-lowering medication 0187
Yes, n (%) 13 (6%) 44 (10%)

No, 1 (%) 199 (94%) 418 (90%)

Total-C (mg/dL)* 189.5+£33 2092+ 46 <0.001
HDL (mg/dL) 46.7+12.8 409112 <0.001
LDL (mg/dL) 103.1+2.8 128742 <0.001
VLDL (mg/dL) 373+£225 393+3 0326

Serum TGs (mg/dL)* 178 +9.5 2027 +14 0.008

Clinical characteristics of Utah CAD study patients (n = 212) and controls
(n = 462). Variables were compared between patients and controls using
a 2-tailed t test for continuous variables and a y? test for categorical
variables, with a P value of less than 0.05 considered significant. Mean +
SD. NA, data not available.

22). CERT1 performed well in this cohort, as subjects with CAD
had significantly higher CERT1risk scores than did the control par-
ticipants (ORper s 218, 95% CI1.77-2.71) (Figure 3). Interestingly,
the CERT1 score, which comprises the individual ceramide
species cer(d18:1/16:0), cer(d18:1/18:0), and cer(d18:1/24:1)
as well as the ratio of these lipids to cer(d18:1/24:0), did not
provide better predictive power than the individual ceramide
species included in the score [cer(d18:1/16:0); OR _ ¢, 2.30,
95% CI:1.87-2.6; cer(d18:1/18:0); OR __ , 2.30, 95% CI: 1.87-
2.85; cer(d18:1/24:1); OR _  2.29, 95% CI: 1.86-2.85] (Fig-
ure 3). Since cer(d18:1/24:0) was also elevated in individuals
with CAD (ORper o 212, 95% CI: 1.73-2.61), its inclusion in
the denominator of CERT1 diminished the score’s predictive
power in our sample (Figure 4).

Probing the role of specific ceramide species in CAD. To dis-

cern how the chemical composition of sphingolipids influ-

sphingolipid-based

CLINICAL MEDICINE

a sphingolipid class (e.g., ceramides, dihydroceramides, sphingo-
myelins, etc.), independent of acyl chain length. In a second cat-
egory, we summed all sphingolipids that had certain acyl chains
attached to the sphingoid base (e.g., all species with C16:0, C18:0,
C20:0,C24.1:0, 0r C24:0 acyl chains), independent of sphingolipid
class. We found that total C24:1-containing sphingolipids (OR
2.66,95% CI: 2.12-3.38) and /or total dihydroceramides, indepen-
dent of chain length (OR _ ¢, 2.46, 95% CI: 1.99-3.10), were most
strongly associated with CAD (Figure 5).

Ceramide correlations with cholesterol and other conventional
biomarkers. In order to explore the relationship between cera-
mides and other common biomarkers of CVD risk, we generat-
ed a Gaussian graphical model (GGM) between ceramides, TGs,
LDL-C, HDL-C, and VLDL-C (Figure 6). The GGM measured the
correlation of sphingolipids with each other and with traditional
lipid biomarkers. All correlations were conditioned on the pres-
ence of the other analytes (r 2 0.20), thus representing direct rela-
tionships that are uninfluenced by other components. The GGM
demonstrated that ceramide species correlated with each other in
a single, interconnected network but that their associations with
classic CVD risk biomarkers were weak (i.e., 7 < 0.20). In Figure 6,
the strength of the correlations is depicted by the thickness of the
lines connecting lipid nodes. The strongest positive correlations
(red lines) were between cer(d18:1/20:0) and cer(d18:1/18:0);
dihydro-cer(d18:0/24:0) and dihydro-cer(d18:0/22:0); and dihy-
dro-SM(d18:0/24:0) and dihydro-SM(d18.0.22.0) (Figure 6). As
expected, VLDL-C positively correlated with TGs (23). Ceramides
did not correlate with VLDL-C, TGs, or other lipid markers of CVD
risk. These findings indicate that sphingolipids are largely inde-
pendent of traditional CVD lipid biomarkers and therefore pro-
vide new information about disease status, a critical consideration
when developing novel biomarkers.

Generating novel CAD predictive ceramide risk scorves using
machine learning. We used machine learning, a branch of artificial
intelligence, to reduce our large set of sphingolipids to a small set
of predictive biomarkers. Machine learning incorporates pattern
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Table 2. Means and interquartile ranges for LC-MS/MS measured sphingolipids in and

control groups of the Utah CAD study

Lipid

Dihydro-cer d18:0,16:0
Dihydro-cer d18:0,18:0
Dihydro-cer d18:0,20:0
Dihydro-cer d18:0,22:0
Dihydro-cer d18:0,24:0
Dihydro-cer d18:0,24:1
Cer d18:1,16:0

Cer d18:1,18:0

Cer d18:1,20:0

Cer d18:1,22:0
Cerd18:1,24:0

Cer d18:1,24:1

GC-cer d18:116:0
GC-cer d18:118:0
GC-cer d18:1,20:0
GC-cer d18:1,22:0
GC-cer d18:1,24:0
GC-cer d18:124:1
Dihydro-SM d18:0,16:0
Dihydro-SM d18:0,18:0
Dihydro-SM d18:0,20:0
Dihydro-SM d18:0,22:0
Dihydro-SM d18:0,24:0
Dihydro-SM d18:0,24:1
SM d18:1,16:0

SM d18:1,18:0

SM d18:1,20:0

SM d18:1,22:0

SM d18:1,24:0

SM d18:1,24:1
Sphinganine
Sphingosine

Controls
0.1(0.8-0.2)
0.09 (0.06-0.1)
0.05 (0.03-0.07)
0.2(01-03)
04(03-0.7)
0.2(0.1-04)
1313 (87.8-201.3)
48 (29.9-76.7)
441 (30.6-65.6)
2644 (185.9-436.7)
98 (54.5-148.3)
264.7 (173.5-411.8)
364.7 (293.8-466.3)
64.4 (45.4-89)
66.3 (45.1-95.6)
494.7 (367.7-705)
456.9 (3211-591.1)
3975 (2874-5471)
45 (30.9-64.1)
14 (7.5-25.2)
28.3(12.9-48.2)
4.8(2.2-10.2)
0.9 (0.4-15)
21.7 (10.7-42.)
592 (437.7-818.5)
155.1(108.3-217.6)
183 (78.7-354.3)
3594 (150.9-740)
154.2 (70.4-283.4)
432.8 (200.5-879.1)
0.03 (0.02-0.04)
0.08 (0.05-0.1)

Patients
0.2(0.2-0.3)
0.1(0.09-0.2)

0.07 (0.05-0.1)
0.3(0.2-0.5)
0.7(0.4-1.2)
04(0.2-0.7)

217.2 (150.3-324.9)
86 (53.9-138.3)
68.1(43.8-102.3)
399.1(278.8-631.3)
157.6 (106.8-245.1)
4376 (306.2-669.2)
366.3 (295-454.3)
70.7 (52.8-94.7)
94 (65.1-138.2)
713.5 (446.5-1022.2)
585.5 (408.2-879.4)
575.7 (399.9-866.1)
611(45.9-88.9)
26.37 (14.3-49.6)
484 (25-91.2)
10.2 (5.9-214)
1.5(0.9-2.8)
476 (26.3-92.2)
779.3 (595-1066.3)
186.7 (136.4-268.6)
354.7 (183.3-698.6
718.7 (365.1-1462.2
293.8 (174.2-640.8
913.1(478.2-19074

0.04 (0.03-0.06)

0.15(0.1-0.3)

)
)
)
)
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model fit, RF accuracy improves; if not, accu-
racy is diluted by meaningless variables. We
therefore ran 2 RF models. For the first, our

Pvalue input included sphingolipid variables only.
<2 x 107 For the second, our input included sphingo-
<2 x 107 lipid variables in concert with classical CVD
236 %10 risk markers (LDL-C, HDL-C, VLDL-C, and
13910 TGs). For our LASSO approach, the input
129 <10 included all sphingolipids and the aforemen-
4.26x10° tioned conventional CVD lipid markers. We
583 %10 evaluated the biomarker score classification
540 x 107 using both ORs and receiver operator char-
612 10__1:1 acteristic-area under the curve (ROC-AUC)
?:213:110045 analysis (Figure 7 and Table 4). For both RF
<2 %105 and LASSO approaches, the 5 lipids most
0.98 positively associated with CAD were used to
030 generate a score.

334 x 10 An RF-generated sphingolipid-inclusive
2.87 x 10 CAD (RF-SIC) risk score (AUC = 0.75) out-
814 x 10-8 performed CERT1 (AUC = 0.67) and conven-
511x 100 tional CVD risk biomarkers including LDL-C
1.22%10°° (AUC = 0.69) and total-C (AUC = 0.63) (Fig-
272x10° ure 7 and Supplemental Figure 1; supplemen-
125107 tal material available online with this article;
9.08 x 107 https://doi.org/10.1172/JCI131838DS1). An
157107 RF model generated from the sphingolip-
140 %107 ids plus CVD risk markers (denoted with a
CL 10:12 superscript plus sign, RF-SIC*, AUC = 0.78)
i;g::& included LDL-C and displayed a more pre-
428 x10° cise classification of CAD patients versus
144 x10° controls, as compared with the RF-SIC score
185 x10° that excluded LDL-C (Figure 7). When eval-
492 x10° uated by OR, RF-SIC* (OR 5.03, 95% CI:
<) x10°% 3.69-7.07) outperformed the RF-SIC score

A 2-tailed t test was used to compare concentrations of sphingolipids measured by LC-MS/MS
for patients (n = 212) and controls (n = 462). P values are for the parsimonious age-, sex-, BMI-

adjusted model and were considered significant at a FDR of less than 0.05. Lipid concentrations are

represented here as the mean (IQR). The fully adjusted model (i.e., age, sex, BMI, total-C, LDL-C,
VLDL-C, TGs, hypertension, diabetes, smoking) was also run, but the results were not materially

different from those of the parsimonious model, so only data from the minimally adjusted model are

presented here. Cer, ceramide; GC-cer, glucosylceramide. Units are pmol lipid/mL serum.

(OR 3.49,95% CI: 2.71-4.58) (Figure 7).

The LASSO-generated SIC (LASSO-
SIC) performed similarly to the RF-gener-
ated score (AUC for LASSO-SIC = 0.74; OR
2.86, 95% CI: 2.67, 3.66). We conducted
an exploratory analysis, adding a term that
was the ratio of the lipid with the highest
positive CAD association versus the lipid
that had the most negative association. This
resulted in a slight increase in predictability

:

recognition within complex data sets and has been used previously
to develop CVD risk prediction models. In comparison with classi-
cal statistical methods, machine-learning techniques can identify
algorithms that predict health outcomes, even when relationships
are complex and nonlinear (24, 25). Moreover, machine-learning-
generated models tend to be more generalizable (24, 25).

We created these new sphingolipid-based risk scores using ran-
dom forest (RF) and least absolute shrinkage and selection operator
(LASSO) regression approaches for variable reduction and selec-
tion (Table 3). The RF method develops algorithms that can pre-
cisely classify observations into groups (i.e., CAD patients versus
controls). With this method, the number of variables incorporated
has a strong impact on model accuracy: if variables improve the

(LASSO-SIC2, AUC = 0.75; OR 3.06, 95% CI: 2.42, 3.94) (Figure
7, Table 4, and Supplemental Figure 2). Adding in another ratio
(i.e., the second-highest, positively associated lipid versus the
second-highest, negatively associated lipid variables) enhanced
performance further (LASSO-SIC3, AUC = 0.77; OR 3.91, 95% CI:
2.98,5.24) (Figure 7, Table 4, and Supplemental Figure 2).

On the basis of this information, we generated a final SIC
score that included the highest-performing sphingolipid RF- and
LASSO-generated components and yielded increased discrimi-
natory ability (AUC = 0.79; OR 4.67, 95% CI: 3.47, 6.43) (Figure 7
and Table 4). Only sphingolipids, and not LDL-C, were included
in the final SIC score, so that comparisons of an inclusive sphin-
golipid measurement with conventional CVD lipid markers could
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Multivariable-adjusted OR

A Unadjusted OR (95% Cl) B (95% Cl) C Age-, sex-, BMI-adjusted OR
Dihydro-cer(d18:0/ 16:0) —e— —_ e 2.54[2.06, 3.18]
Dihydro-cer(d18:0/ 18:0) — — i 2.82[2.24,3.60]
Dihydro-cer(d18:0/ 20:0) — - — 1.99[1.62, 2.46]
Dihydro-cer(d18:0/ 22:0) —— - —— 213[1.73,2.64]
Dihydro-cer(d18:0/ 24:0) —— — —— 223[1.82, 278
Dihydro-cer(d18:0/ 24:1) e — —— 2.39[1.93, 2.99]
Cer(d18:1/ 16:0) —— —— —— 2.30[1.87, 2.86]
Cer(d18:1/ 18:0) —— — —— 2.30[1.87, 2.85]
Cer(d18:1/ 20:0) —a— — —— 2.04[1.67, 2.85]
Cer(d18:1/ 22:0) e B i 1.81[1.49, 2.22]
Cer(d18:1/ 24:0) —— - —— 212[1.73,2.61]
Cer(d18:1/ 24:1) — — —— 2.29[1.86, 2.85]
Glucosyl-cer (d18:1/ 16:0) b e sl 0.97[0.81, 1.16]
Glucosyl-cer (d18:1/ 18:0) e ! e 1.33[1.11, 1.60]
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Figure 3. Forest plot of OR (95% Cl) for CAD per SD of sphingolipid species in the Utah CAD study. (A) Unadjusted OR. (B) Fully adjusted OR (age, sex,
BMI, total-C, LDL-C, VLDL-C, TGs, hypertension, diabetes, smoking). (C) Minimally adjusted OR (age, sex, BMI) model. The numerically presented ORs (95%

Cl) represent the minimally adjusted age, sex, and BMI model.

be performed. A list of the lipid components in each novel score is
provided in Table 3.

Comparison of machine-learning-generated scorves with con-
ventional markers of CAD. We next compared the ability of SIC,
CERT1, and standard clinical biomarkers (TGs, LDL-C, etc.) to
classify CAD patients compared with controls (Figure 8A and
Table 4). We provide the following ROC curves (with the AUC) for
comparison (Figure 8, B-G): clinical factors alone (age, sex, BMI,
diabetes, hypertension, smoking; AUC = 0.63); clinical factors plus
CERT1 (AUC = 0.66); clinical factors plus SIC (AUC = 0.72); clini-
cal factors plus standard clinical lipids (AUC = 0.64); CERT1 plus
clinical factors and clinical lipids (AUC = 0.64); and SIC plus clin-
ical factors and clinical lipids (AUC = 0.65). Since the AUC can be
an insensitive measure of model performance, particularly when
the initial model (i.e., American Heart Association/American Col-
lege of Cardiology [AHA/ACC] risk factors) performs strongly, we
also calculated a continuous net reclassification index (NRI) and
an integrated discrimination index (IDI) (26). These scores pro-
vide a more comprehensive picture of model performance and a
means to assess the value of including SIC or CERT1 in addition
to standard clinical biomarkers. For SIC, the NRI was 0.67 (95%
CI: 0.52-0.81, P < 0.0001) and the IDI was 0.10 (95% CI: 0.08-
0.11, P < 0.0001) (Supplemental Table 1). As a frame of reference,
an NRI exceeding 0.6 is considered strong and 0.4 is considered
intermediate (27). The SIC was superior to CERT1, which had an
NRI of 0.48 (95% CI: 0.32-0.64, P < 0.0001) and an IDI of 0.04
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(95% CI: 0.03-0.06, P < 0.0001) (Supplemental Table 1). The
SIC improved the ROC C-statistic, NRI, and IDI compared with
AHA/ACC guideline risk factors alone, underscoring the power of
including sphingolipids as biomarkers of CAD.

Many of the lipids extracted by our variable reduction tech-
niques [i.e., SM(d18:0/24:1), SM(d18:0/22:0), SM(d18:0/18:0),
sphingosine, cer(d18:0/18:0), and cer(d18:0/16:0)] are transient
intermediate lipid species and therefore reflect pathway activity
and flux (for a full list of selected lipids, see Table 3). This finding
suggests that although abundant ceramide species are implicated
in driving disease states, these causal lipid species may not be the
most sensitive clinical markers.

Stratification by CAD presentation. To further probe the clinical
utility of the SIC score, we evaluated it in patients with CAD who
were stratified into 3 subgroups: (a) patients having had a MI only;
(b) patients who had a surgical intervention only (coronary artery
bypass grafting [CABG] or percutaneous transluminal coronary
angioplasty [PTCA]); or, (c) patients who had an MI in combina-
tion with a surgical intervention. Patients undergoing a surgical
intervention only are considered to have a more tightly controlled
disease state, whereas those with both surgical intervention and
MI are likely to be in a more severe or uncontrolled disease state
(28). Patients with an MI only are considered intermediate. As
compared with the control population (i.e., all non-cases), the
CERT1 and SIC scores were highest in the individuals with the

more severe disease presentation (ORper o > 1.80, P <5 x 107
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Figure 4. OR (95% Cl) of CAD per SD of previously reported lipid markers of CVD in the Utah CAD study. (A) Unadjusted OR. (B) Fully adjusted OR (age,
sex, BMI, hypertension, diabetes, smoking). (C) Minimally adjusted OR (age, sex, BMI). The numerically presented ORs (35% Cl) represent the minimally
adjusted age, sex, and BMI model. Since we compared clinical lipid markers (LDL, VLDL, HDL, TGs) with ceramide ratios and scores, they were not included
in the fully adjusted model. CERT1, cardiac event risk test (12-point scale). HDL-C, LDL-C, VLDL-C, and TG values are given in mg/dL.

P heterogeneity < 2 x 107¢) (Figure 9). By comparison, standard
clinical markers including LDL-C, total-C, and TGs did not show a
preferential increase for individuals in this, as opposed to any oth-
er, category (Table 5). These findings suggest that ceramide-based
scores may have utility for risk stratification, which is in line with
previous studies that demonstrated the capacity of ceramides, but
not LDL-C, to predict secondary cardiac events (17).

Discussion
We applied a highly quantitative, targeted mass spectroscopy plat-
form to measure 32 sphingolipids in serum samples from patients

with CAD compared with samples from healthy controls. Thirty
of the 32 sphingolipids assayed were elevated among the dis-
eased subjects, displaying a robust positive association with CAD
after controlling for multiple comparisons. We applied unbiased
machine-learning variable reduction techniques to generate a
novel sphingolipid score we have termed the sphingolipid-inclu-
sive CAD (SIC) risk score, which includes the following compo-
nents: dihydro-cer(d18:0/18:0), cer(d18:1/18:0), cer(d18:1/22:0),
cer(d18:1/24:0),  dihydro-SM(d18:0/24:1),  SM(d18:1/24:0),
SM(d18:1/18:0), and sphingosine. Novel scores were calculated
by summing raw lipid values multiplied by their B coefficients

A Unadjusted OR B Multivariable-adjusted OR € Age-, sex-, BMl-adjusted OR
(95% ClI) (95% ClI) (95% ClI)

Total dihyroceramides L — —————— —e———— | 7.93[4.45,15.10]
Total ceramides e —e—oi ————— 5.39[3.32,9.23]
Total glucosylceramides —— —— — . 5.95[3.5, 10.67]
Total dihydro-SM e —— — 4.94[2.99, 8.60]
Total SM e e o 2.71[2.01, 3.73]
Total C16 lag) e Ho— 2.7412.05, 3.76]
Total C18 e —— ———————— 7.42[4.04, 14.6]
Total C20 e —— ———— 6.59 [3.80, 12.14]
Total C22 e Ll o 2.03[1.58, 2.68]
Total C24 —a—i e —e—i 3.31[2.37,4.75]
Total C24:1 = —— —e— 4.12[2.85, 6.35]
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Figure 5. OR (95% Cl) of CAD per SD of summed sphingolipid variables in the Utah CAD study. (A) Unadjusted OR. (B) Fully adjusted OR (age, sex, BMI,
total-C, LDL-C, VLDL-C, TGs, hypertension, diabetes, smoking). (C) Minimally adjusted OR (age, sex, BMI). The numerically presented ORs (95% Cl) represent
the minimally adjusted age, sex, and BMI model. Total SM, total sphingomyelin; Total C16, sum of all C16 acyl chains; Total C18, sum of all C18 acyl chains;
Total C20, sum of all C20 acyl chains; Total C22, sum of all C22 acyl chains; Total C24, sum of all C24 acyl chains; Total C24:1, sum of all C24:1 acyl chains.
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Figure 6. GGM of correlations between ceramide species and conventional lipid markers in patients with CAD. Conditioned on the presence of all other
analytes (r > 0.20). Analytes are represented by nodes (gray hexagons) and conditional correlations by edges (lines). Pink lines indicate positive correla-
tions and blue lines indicate the inverse. Line width represents the strength of the conditional correlation, and the lack of a line indicates no detectable

relationship above the threshold. GlcCer, glucosylceramide.

from the regression output and then log transformed. This score
approached a strong C-statistic of 0.79 and an OR__ , of 4.67
(95% CI: 3.46-6.43) for risk of CAD, outperforming other serum
indices of CVD risk including LDL-C alone and the CERT1 cera-
mide risk score. Serum ceramides were also associated with dis-
ease severity, as they were highest among individuals with the
most severe CAD manifestations. These findings support the idea
that serum sphingolipids are strong biomarkers of CAD that could
have clinical utility for improving risk stratification.

These data are consistent with several other studies using
untargeted lipidomic platforms, which frequently identified sphin-
golipids as candidate biomarkers of CVD (17, 18, 20, 22, 29-31).
Ceramide concentrations and scores were shown to be elevated
among individuals with acute MI (16), CAD (22, 29, 32), acute cor-
onary syndrome (22), and recurrent major adverse cardiac events
(20). The concentrations were also increased in individuals with
insulin resistance or type 2 diabetes (33-35), two underlying driv-
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ers of CV morbidity (33, 34). These studies implicate ceramides as
markers of disease pathology, disease risk, and mortality and as
a tool for improved risk stratification. The best-characterized cer-
amide score is CERT]1, originally developed by Zora Biosciences
and validated in multiple prospective clinical studies (17, 18, 20,
22,29-31). Though most of the ceramide species contained within
CERT1 were individually predictive of CAD, they were not iden-
tified as the most strongly CAD-associated lipids using our unbi-
ased variable selection methods. Furthermore, the CERT1 inclu-
sion of cer(18:1/24:0) in the denominator was counterproductive;
cer(18:1/24:0) was itself a good marker of CAD. Nonetheless,
CERT!1 still performed similarly in this data set as compared with
previous prospective cohort studies, thus endorsing its validity as
arobust index of CVD risk.

The most widely used biomarker of CV pathophysiology,
LDL-C, also performed well in this data set. However, SIC and
CERT1 showed stronger discriminatory power than did LDL-C as
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Table 3. Novel sphingolipid scores for CAD generated through the application of machine-learning techniques

Score Components

RF-SIC Sphingosine, cer(d18:0/18:0), cer(d18:0/16:0), SM(d18:0/24:1), SM(d18:0/22:0)

RF-SIC* LDL-C, sphingosine, cer(d18:0/18:0), cer(d18:0/16:0), SM(d18:1/24:0)

LASSO-SIC SM(d18:0/24:1), cer(d18:1/18:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0)

LASSO-SIC2 SM(d18:0/24:1) / SM(d18:1/18:0), cer(d18:1/18:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0)

LASSO-SIC3 SM(d18:0/24:1) / SM(d18:1/18:0), cer(d18:1/18:0) / cer(d18:1/22:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0)

SIC SM(d18:0/24:1) / SM(d18:1/18:0), cer(d18:1/18:0) / cer(d18:1/22:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0), sphingosine

RF and LASSO regression were applied for variable reduction and selection.

assessed by ROC-AUC. Interestingly, ceramides were not strongly
correlated with LDL-C (<0.20), though LDL-C was strongly cor-
related with other conventional lipid markers such as serum TGs.
The independence of these biomarkers is consistent with the idea
that they lie in different biosynthetic pathways, both of which con-
tribute to disease progression.

National screening and therapeutic guidelines focus on cho-
lesterol as the primary biomarker of CV health, even though it
shows only modest predictive utility for risk assessment and lacks
the sensitivity to discriminate between patients at risk for second-
ary cardiac events (17). Current guidelines dictate that patients
diagnosed with CAD belong to a high-risk population, even
though this classification may be inaccurate for most individuals
(17). By combining LDL-C with novel sphingolipid risk scores, a
more complete risk assessment may be performed. Such a tool will
enhance patient classification accuracy and help the clinician to
coordinate disease surveillance or prescribe clinical interventions.

Ceramides are not only biomarkers of CV health but are
probably causative agents in disease progression (15). Studies in
rodent models revealed that pharmacological inhibition of cera-
mide synthesis prevents ischemic cardiomyopathy-related heart

failure, while simultaneously diminishing ventricular remodeling,
fibrosis, and macrophage infiltration following MI (36-39). More-
over, such ceramide-lowering interventions resolve dyslipidemia,
insulin resistance, hypertension, atherosclerosis, and hepatic ste-
atosis (7, 40-49), conditions that underlie CVD. Manipulations of
the de novo ceramide synthesis pathway further suggest that cer-
tain ceramide species are deleterious, whereas others are benign
or beneficial (11-14); those containing the C16 or C18 acyl chain
(11-13) and include the double bond (i.e., ceramides, not dihy-
droceramides) (7) in the sphingolipid backbone are particularly
harmful. Last, studies in rodents revealed that ceramide degra-
dation is a primary means by which adiponectin receptors, which
are ligand-activated ceramidases (50), exert their antidiabetic,
cardioprotective, and insulin-sensitizing actions (50-52). Cumu-
latively, these data identify ceramides as some of the more toxic
metabolites accumulating in states of metabolic distress.

Our machine-learning variable reduction approaches (RF,
LASSO) for score generation extracted sphingosine, dihydro-
cer(d18:0/16:0), dihydro-cer(d18:0/18:1), dihydro-SM(d18:0/
24:1), dihydro-SM(d18:0/22:0), SM(d18:1/18:0), cer(d18:1/18:0),
and cer(d18:1/24:0) as the lipid species most positively associat-

A B Multivariable-adjusted OR C
Unadjusted OR (95% CI) (95% CI) Minimally adjusted OR (95% CI)
3.91[2.98, 5.24]
LASSO-SIC3 —— e [ —
3.06 [2.42, 3.94]
LASSO-SIC2 —e— —e— i
LASSO-SIC —— ot 2.86[2.67, 3.66]
RF-SIC* . —e—i — 5.03 [3.69, 7.07]
RF-SIC —— —e— e 3.49[2.71, 4.58]
sIC —— —— " 4.67[3.47,6.43]
| | | | | | | | [ |
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
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Figure 7. OR (95% Cl) of CAD per SD of novel scores generated through the application of machine-learning approaches in the Utah CAD study. (A)
Unadjusted OR. (B) Multivariable-adjusted OR (age, sex, BMI, diabetes, hypertension, smoking). (C) Minimally adjusted OR (age, sex, BMI). The multivari-
able models for this analysis do not include HDL-C, LDL-C, VLDL-C, total-C, or TGs, as they were included as input variables.
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Table 4. AUC of ROC plots for lipid-based clinical indices

Clinical index C-statistic
TGs 0.54
LDL-C 0.69
CERT1 0.67
RF-SIC 0.75
RF-SIC* 0.78
LASSO-SIC 0.74
LASS0-SIC2 0.75
LASS0-SIC3 0.76
SIC 0.79

ROC curves were generated and C-statistics were calculated for each
clinical index.

ed with CAD. This finding suggests that the more abundant cer-
amides, including those that have been established as drivers of
tissue and metabolic dysfunction, may not be the most sensitive
biomarkers for CAD. Rather, less-abundant lipids that serve as
markers of increased ceramide biosynthetic flux may provide a
more accurate and comprehensive readout of disease status.

Though some prior studies have described associations
between a subset of ceramides and CVD and related comorbidi-
ties, we believe that several aspects of this study are novel. First,
we conducted a comprehensive ceramide assessment using a well-
validated, targeted lipidomic platform that included less-abundant
lipid species, leading to the production of a more robust sphingolip-
id score (i.e., SIC). We note that such targeted platforms are more
quantitatively sound than shotgun lipidomic assessments. Second,
we focused on patients with early-onset CAD (average age of onset
= 47.8 years), thus enhancing the power of our study and limiting
the influence of factors associated with aging. Third, we applied
machine learning to develop new ceramide-based scores that out-
performed prior measures, including LDL-C and CERT1. Machine
learning allowed us to enhance the accuracy of models and reduce
the dimensionality of data sets (53).

Despite these advances, our study has some limitations. First,
it is limited by its case-control design and by the racial homoge-
neity of our sample population, limiting generalizability. Second,
our target lipid class, sphingolipids, includes highly diverse and
lowly abundant lipid species; this diversity can lead to increased
variability, as seen by our high coefficients of variation (median:
11.76, IQR: 6.85-20.53). Although these coefficients of variation
are notideal, they are comparable to those of previous sphingolip-
idomic studies. Third, this study lacks a validation cohort for the
novel SIC score. We note, however, that this cohort recapitulated
the findings relating to the CERT1 score, which was generated
using alternative patient data sets. And fourth, some biospeci-
mens were collected as far back as the 1990s; diet and lifestyle
have changed since this study was initiated, and prolonged stor-
age could negatively impact sample quality. Nonetheless, sam-
ples from patients and controls were collected and handled in
the same manner, so relative differences (and calculated ORs for
CAD) should be sustained. Moreover, prior studies have shown
that sphingolipids remain stable over storage periods as long as
16 years after sample collection and through multiple freeze-thaw
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cycles (54, 55). We emphasize the exciting fact that sphingolipids
appear to serve as strong biomarkers across generations, as any
robust clinical index should (56).

In conclusion, sphingolipids have emerged as robust, cho-
lesterol-independent markers of CVD risk. Their inclusion in a
clinician’s armamentarium has the potential to greatly improve
the ability to identify at-risk patients. Moreover, our findings sup-
port the development of therapeutics targeting sphingolipids as a
means of ameliorating CVD. Nonetheless, our data suggest that
further refinement of sphingolipid-based scores may be neces-
sary. Expanding the diversity of sphingolipid entities included in
prospective patient studies will provide a more complete picture
of the sphingolipidome for the prediction CVD risk.

Methods

Study design. We evaluated the association of serum sphingolipids with
CAD using existing samples and clinical and demographic informa-
tion obtained from a case-control study conducted in Utah, USA (n =
462 patients; n = 212 controls) (57).

Study population. Patients were recruited between 1990 and
2000 from Intermountain Healthcare discharge records or the Family
Health Tree Program in Utah (58). The patients were aged 30-75 years
and had a diagnosis of CAD, defined by the original study recruitment
criteria as MI, PTCA, or CABG. A large proportion of patients were
male (77%), probably because premature CAD incidence rates are
higher for men than women (59). The patients had an age of onset sim-
ilar to that of at least 1 first-degree relative (parent, sibling, or child)
(Table 1). To limit artifactual effects of the acute cardiac event on lipid
levels, samples were collected at least 6 months following the event.

Control subjects representative of the Utah population (57, 60, 61)
were randomly sampled from 1980-1986 from (a) the parents of stu-
dents participating in the Family Health Tree Program (58), a study
of family health among Utah high schools; and (b) spouse pairs par-
ticipating in a study on psychological factors concerning CAD (61).
The control participants were aged 30-75 years and had no clinical
diagnosis of CAD, but they could have a family history of CAD. Con-
trol subjects taking vasoconstrictive drugs (i.e., beta blockers, calcium
channel blockers, and other antianginal medications) were excluded.

Both patient and control populations were selected from the same
source population of Salt Lake City, Utah. The number of patients
(n = 462) was larger than that of control subjects (n = 212) because of
the nature of the available biospecimens, though no significant differ-
ences between this subset of specimens available for analysis and the
original study sample were noted (Supplemental Table 2).

Clinical and demographic characteristics. Demographic informa-
tion (including age and sex) and medical and family history data were
obtained by trained interviewers. Covariates considered in the analy-
ses included age (years); sex (male or female); BMI (kg/m?), smoking
(“ever” or “never” to smoking daily for 1 year or more); total-C (mg/
dL), LDL-C (mg/dL); VLDL-C (mg/dL); HDL-C (mg/dL); TGs (mg/
dL); lipid medication (statins, fibrates, and other hyperlipidemia-man-
aging drugs taken at the time of the blood draw, yes/no); diabetes (pri-
or physician diagnosis or fasting glucose 2126 mg/dL); and hyperten-
sion (prior physician diagnosis or blood pressure 2140/90 mmHg).

Blood sample collection, processing, and storage. Blood samples
were collected in the morning following a 12- to 16-hour overnight
fast and prepared according to the guidelines of the Lipid Research
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A ROC Figure 8. Comparison of conventional CAD risk markers with novel sphin-
1.24 golipid scores in the Utah CAD study. (A) ROC curve for novel SIC score and
conventional risk markers. (B) ROC curve for AHA/ACC-based clinical risk fac-
tors (age, sex, BMI, diabetes, hypertension, smoking). (C) The same AHA/ACC
1.0 guidelines in addition to the CERT1 score and (D) the SIC score. ROC curves for
(E) the aforementioned AHA/ACC clinical markers in addition to lipid markers
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Clinic’s program Manual of Laboratory Operations (62). Lipoprotein
concentrations were measured using a microscale ultracentrifugation
method (63, 64). Serum samples were aliquoted and stored at -80°C.
The collection laboratory participates in the Centers for Disease Con-
trol Lipid Standardization Program (65). Of note, blood sphingolip-
ids have been shown to be highly stable over relevant preanalytical
conditions including multiple freeze-thaw cycles, temperature, long-
term storage, and centrifugation time/speed (54, 55).

Lipid extraction. The method for conducting high-throughput
lipid extraction from serum samples was modified from a method
described previously (20). The internal standard (IS) stock solution
containing sphingomyelin (d18:1/17:0) (2502 pmol/sample), dihydro-
cer (d18:0/18:1) (5 pmol/sample), d7-ceramide (d18:1-d7/16:0) (6
pmol/sample), d7-ceramide (d18:1-d7/18:0) (2 pmol/sample), d7-cer-
amide (d18:1/24:0) (152 pmol/sample), d7-ceramide (d18:1/24:1) (20
pmol/sample), and glucosylceramide (d18:1/17:0) (50 pmol/sample)
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Minimally adjusted OR (95% CI)

Ml alone

CERT1 - 1.23[0.97, 1.56]

SIC H—o— 1.32[1.05, 1.66]

Surgery alone

0.79[0.61, 1.03]

CERT1 e
sic . 1.26 [0.99, 1.59]
MI + surgery
CERT1 —e— 1.83[1.54,2.19]
SIC —— 1.87 [1.56, 2.26]
|
0 1 2 3

Odds ratio for CAD (per SD)

Figure 9. Association of sphingolipid scores with CAD, stratified by
disease presentation (MI alone, surgery alone, MI plus surgery). OR (95%
Cl) for CAD per SD of sphingolipid species in the Utah CAD study, adjusted
for age, sex, and BMI.

was prepared in methanol. Serum samples were thawed at 4°C for 12
hours before proceeding with lipid extraction. Samples were extracted
in a 96-well format with 3 columns of controls: a 600-uL isopropanol
double blank (DB), a process blank (PB) with 50 uL PBS, and a pooled
control human serum sample (quality control [QC]) (MilliporeSig-
ma). Serum (50 pL) was transferred into the remaining 72 wells of the
96-deep-well plate (USA Scientific). The IS mix (550 pL) and protein
precipitation (PPT) solvent (ethyl acetate/isopropanol, 2:8, v/v) were
added to each sample (with the exception of the DB) for a final volume
of 600 uL per well. The plate was sealed using a silicone cap mat (Ana-
lytical Sales and Products). Samples were placed on a shaker at room
temperature for 10 minutes followed by a 10-minute centrifugation at
3000 xg. The supernatant was then transferred onto a 96-well plate
(USA Scientific) and sealed with heat-sealing foil (Beckman Coulter),
and plates were stored at 4°C preceding liquid chromatography tan-
dem mass spectrometry (LC-MS/MS) analysis.

Lipid standards and other chemicals and reagents. Sphingomyelin
(d18:1/17:0), dihydro-cer (d18:0/18:1), d7-ceramide (d18:1-d7/16:0),
d7-ceramide (d18:1-d7/18:0), d7-ceramide (d18:1-d7/24:0), d7-ce-
ramide (d18:1-d7/24:1), and glucosylceramide (d18:1/17:0) were
obtained from Avanti Polar Lipids. An Acquity CSH C18, 1.7-um Van-
Guard Pre-Column and an Acquity CSH C18, 2.1 x 50 mm 1.7-um
column were obtained from Waters Corporation. 2-propanol, acetoni-
trile, and formic acid (all LC-MS grade) were obtained from Honey-
well, Burdick & Jackson. HPLC-grade ethyl acetate was obtained from
MilliporeSigma. Ammonium acetate was acquired from MPBio

LC-MS/MS analysis. Lipid extracts were separated on an Acqui-
ty CSH C18 1.7 pum 2.1 x 50 mm column with a 1.7 uM VanGuard
Pre-Column (Waters Corporation) maintained at 60°C and connected
to an Agilent HiP 1290 Sampler and an Agilent 1290 Infinity Pump,
equipped with an Agilent 1290 Flex Cube and an Agilent 6490 triple
quadrupole (QqQ) mass spectrometer. Sphingolipids were detected
using dynamic multiple reaction monitoring (AIMRM) in positive ion
mode. The source gas temperature was set to 210°C, with a gas (N,)
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flow of 11 L/min and a nebulizer pressure of 30 psi. The sheath gas
temperature was 400°C, the sheath gas (N,) flow was 12 L/min, the
capillary voltage was 4000 V, the nozzle voltage was 500 V, high-pres-
sure radiofrequency was 190 V, and low-pressure radiofrequency was
120 V. The injection volume was 2 uL, and the samples were analyzed
in a randomized order, with the pooled QC sample injected 8 times
throughout the sample queue. With 8 controls per plate, there were
80 QC injections in totality. Mobile phase A consisted of ACN/H,O
(60:40 v/v), and mobile phase B consisted of IPA/ACN/H,0 (90:9:1
v/V), both of which contained 10 mM ammonium formate and 0.1%
formic acid. The chromatography gradient started at 15% mobile
phase B, increased to 30% B over 1 minute, increased to 70% B from
1.0-1.1 minutes, was held at 70% B until 4.5 minutes, and increased to
99% B from 4.5-4.51 minutes, at which point it was held until 5 min-
utes, and then returned to the starting conditions at 5.1 minutes. Post-
time was 1.5 minutes, and the flow rate was 0.5 mL/min throughout.
Collision energies and cell accelerator voltages were optimized using
sphingolipid standards with dMRM transitions as [M+H]*—[m/z =
266.3 or 284.4] for dihydroceramides; [M-H,O+H|*—[m/z = 264.2]
for ceramides; and [M-H,0+H]*—[m/z = 271.3] for isotope-labeled
ceramides. Sphingomyelins were monitored with dMRM transitions
as [M+H]*—[m/z = 184.4]. Sphingolipids without available standards
were identified on the basis of high-resolution LC-MS, quasi-molec-
ular ions, and characteristic product ions. Results from the LC-MS
experiments were collected using an Agilent Mass Hunter Worksta-
tion and analyzed with Agilent Mass Hunter Quant B.07.00 software.
Sphingolipids were quantitated on the basis of peak area ratios to the
internal standards.

Lipid species. A total of 32 lipids were quantified including dihy-
droceramides [dihydro-cer(d18:0)]; ceramides [cer(d18:1)]; glucosyl-
ceramides [glucosyl-cer(d18:1)]; dihydrosphingomyelins [dihydro-
SM(d18:0)]; sphingomyelins [SM(d18:1)]; sphinganine; and sphin-
gosine. For each of these, except for sphinganine and sphingosine,
acyl chain lengths 0f 16, 18, 20, 22, and 24 and a carbon length of 24:1
were reported. The median (IQR) coefficient of variation (11.76, 6.85-
20.53) was comparable to previously published sphingolipid data (66).

To calculate the CERT1 score that is in clinical use (50), we calcu-
lated C16:0, C18:0, and C24:1 concentrations and their ratio to C24:0,
assigning 2 points to those with levels in the fourth quartile, 1 point
to the third quartile, and O points to the bottom 2 quartiles, with total
CERT1 scores ranging from 0-12 (22).

Table 5. Stratification of Utah CAD participants by disease
severity

Controls Surgery alone Mi alone MI + surgery
n (%) 212 (100%) 75 (16%) 82 (18%) 305 (66%)
CERT1 324+27 39425 5+33 54+32
SIC 55+24 10.7+93 10.8 +75 1224125
LDL-C 1031+ 28 124374 1429 + 476 128.9 + 402
Total-C 189.9 £33 192 + 434 220.6 + 491 210.2 £ 444
TGs 178 +9.5 193 +133.2 175.8 +89.3 2122 £152.3

Clinical lipid marker serum concentrations were stratified by disease
severity and are presented as concentration (mg/dL) + SD. Surgery denotes
PTCA or CABC.
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Statistics. Participant characteristics were summarized as the mean
+ 8D for continuous variables or N (percentage) for categorical variables
(Table 1). Differences between patients and controls were compared
using a 2-tailed Student’s ¢ test for continuous variables and a y? test for
categorical variables. P values of less than 0.05 were considered signif-
icant. Lipid species were summarized as medians and IQRs using the
original scale (Table 2) and were log,  transformed for analysis, owing to
non-normal distribution. When assessing the effect of summed molec-
ular lipid species or acyl chains on CAD, the variables were summed pre-
ceding log transformation.

Multivariable-adjusted and unadjusted ORs and 95% CIs were
estimated using logistic regression and reported per the SD (of lipid
species). A priori-defined covariates based on current ACC and AHA
guidelines were considered in stepwise variable selection modeling
(Supplemental Table 3). These covariates included the following: age,
sex, BM], total-C, LDL-C, HDL-C, VLDL-C, TGs, hypertension, dia-
betes, and smoking. We calculated the percentage of change in the OR
from the parsimonious age-, sex-, and BMI-adjusted model with the
addition of each covariate, though no covariate affected all sphingo-
lipids. Our final parsimonious model included age, sex, and BMI, but
we also show results for a fully adjusted model including all AHA/
ACC guideline-based risk factors in the main figures for comparison.
In addition to testing whether AHA/ACC-based risk factors were con-
founders of the sphingolipid-CAD relationship, we evaluated some of
these variables for potential effect modification through the inclusion
of a variable by lipid interaction term in the logistic regression models
and evaluation of the significance of the interaction term using a likeli-
hood ratio test (Supplemental Table 4 and ref. 67). Where effect mod-
ification was present (P for the interaction term < 0.05; Supplemental
Table 4), we ran the analyses separately according to levels of the effect
modifier (e.g., hypertensive or normotensive) to determine whether
the relationships between sphingolipids and CAD differed according to
subgroups of the effect modifier variable (Supplemental Table 4).

We applied machine learning (24, 25) to identify the most predic-
tive biomarkers. To compare classical variable reduction techniques
with our machine-learning approaches, we performed a stepwise
(forward and backward) regression (Supplemental Table 5). We then
performed LASSO regression (Supplemental Table 6 and ref. 68) and
RF analysis (Supplemental Table 7 and ref. 69). AHA/ACC lipid risk
factor variables (LDL-C, etc.) were included along with the sphingo-
lipids as input variables to allow the machine-learning algorithm to
determine the most predictive lipid biomarkers. Data were split into
training (80%) and testing (20%) data sets. For LASSO analysis, the
optimal value for the tuning parameter A was selected to maximize the
percentage of correctly identified cases/controls with 10-fold cross
validation on the training set before using the remaining 20% of the
data to test the predictability of the model. We determined the quality
of prediction via the percentage of correctly identified cases/controls,
averaging the percentages across 10 training and testing splits. There
were 2 data input approaches for RF analysis. For a sphingolipid-only
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input, 32 sphingolipid variables were used, with a default of 500 deci-
sion trees to generate an optimal number of variables per tree deter-
mined for each of 5 cross-validation training sets. Variable importance
scores were assigned through permutation testing, and the top 5 vari-
ables averaged across validation sets were placed into a single model.
A second input included the 32 sphingolipid variables and classical
CAD markers (i.e., cholesterol, TGs, etc.). To examine conditional cor-
relations (r = 0.20) between ceramides and conventional biomarkers
in CAD cases, we generated a GGM with visualization in Cytoscape
(70-75). GGMs model conditional dependencies among continuous
variables with multivariate Gaussian distributions. Recent studies
have demonstrated how GGMs, which are data driven, can reconstruct
biological pathway reactions (76). We generated a GGM to determine
whether our sphingolipid panel was redundant in the presence of tra-
ditional clinical lipid biomarkers (i.e., whether they were highly cor-
related, conditioned on the presence of all other lipids).

For comparison of the ability of different clinical markers and
scores to distinguish between true cases and controls, we applied
ROC-AUC analysis and calculated the NRI and IDI (Supplemental
Table 1 and ref. 77). The ROC curves and C-statistics are presented in
Supplemental Figure 1.

All analyses were performed in R 3.5.1 (78). Associations were
considered statistically significant at a FDR below 0.05 to control for
multiple statistical tests (Supplemental Table 8).

Study approval. Lipid quantification and secondary data analysis
of these patient samples were approved by the IRB of the University of
Utah, and all patients provided written informed consent.

Author contributions

AMP, BJH, MCP, WLH, and SAS conceived the project, designed
the experiments, processed the ceramide data, and wrote the
manuscript. AMP, JAM, and JEC conducted the lipidomic analy-
ses. PNH and SCH developed the CAD cohort including recruit-
ment of patients, collection of clinical and demographic data, and
storing of samples.

Acknowledgments

We are grateful for the support from the Metabolomics Core
at the Health Sciences Center of the University of Utah. The
authors received research support from the NIH (DK112826 and
DK108833, to WLH, and DK115824, DK116888, and DK116450,
to SAS); the JDRF (3-SRA-2019-768-A-B, to WLH); the Amer-
ican Diabetes Association (to SAS); the AHA (to SAS); the
Margolis Foundation (to SAS); the National Cancer Institute
(5RO0CA218694-03, to MCP); and the Huntsman Cancer Insti-
tute Cancer Center (P30CA040214, to MCP).

Address correspondence to: Scott Summers, 15N 2030E, Salt
Lake City, Utah 84112, USA. Phone: 801.585.9552; Email: scott.a.
summers@health.utah.edu.

1. Rautou P-E, et al. Microparticles, vascular
function, and atherothrombosis. Circ Res.
2011;109(5):593-606.

2. Bergman BC, et al. Serum sphingolipids: relation-
ships to insulin sensitivity and changes with exer-
cise in humans. Am J Physiol Endocrinol Metab.

2015;309(4):E398-E408.

3. AHA. Cardiovascular Disease Burden Report. Car-
diovascular disease: a costly burden for America.
http://www.heart.org/en/get-involved /advocate/
federal-priorities/cardiovascular-disease-
burden-report. Accessed December 4, 2019.

4. Summers SA. Could ceramides become the new
cholesterol? Cell Metab. 2018;27(2):276-280.

5. Summers SA, Chaurasia B, Holland WL. Met-
abolic messengers: ceramides. Nat Metab.
2019;1:1051-1058.

6. Merrill AH. De novo sphingolipid biosynthesis: a

jci.org


https://www.jci.org
https://www.jci.org
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
mailto://summers@health.utah.edu
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
https://www.jci.org/articles/view/131838#sd
https://doi.org/10.1161/CIRCRESAHA.110.233163
https://doi.org/10.1161/CIRCRESAHA.110.233163
https://doi.org/10.1161/CIRCRESAHA.110.233163
https://doi.org/10.1152/ajpendo.00134.2015
https://doi.org/10.1152/ajpendo.00134.2015
https://doi.org/10.1152/ajpendo.00134.2015
https://doi.org/10.1152/ajpendo.00134.2015
https://doi.org/10.1016/j.cmet.2017.12.003
https://doi.org/10.1016/j.cmet.2017.12.003
https://doi.org/10.1038/s42255-019-0134-8
https://doi.org/10.1038/s42255-019-0134-8
https://doi.org/10.1038/s42255-019-0134-8
https://doi.org/10.1074/jbc.R200009200

The Journal of Clinical Investigation

~

o

hel

10.

1

-

12.

13.

14.

15.

16.

1

18.

19.

20.

2

—_

22.

23.

24.

. Turpin-Nolan SM, et al. CerS1-derived C

=~

necessary, but dangerous, pathway. J Biol Chem.
2002;277(29):25843-25846.

. Chaurasia B, et al. Targeting a ceramide double

bond improves insulin resistance and hepatic
steatosis. Science. 2019;365(6451):386-392.
Zelnik ID, Rozman B, Rosenfeld-Gur E, Ben-Dor
S, Futerman AH. A stroll down the CerS lane. Adv
Exp Med Biol. 2019;1159:49-63.
Hammerschmidt P, et al. CerS6-derived
sphingolipids interact with Mff and promote
mitochondrial fragmentation in obesity. Cell.
2019;177(6):1536-1552.€23.

Raichur S, et al. The role of C16:0 ceramide in
the development of obesity and type 2 diabetes:
CerS6 inhibition as a novel therapeutic approach.
Mol Metab. 2019;21:36-50.

150 CETA-
mide in skeletal muscle promotes obesity-induced
insulin resistance. Cell Rep. 2019;26(1):1-10.¢7.
Turpin SM, et al. Obesity-induced CerS6-
dependent C16:0 ceramide production promotes
weight gain and glucose intolerance. Cell Metab.
2014;20(4):678-686.

Hla T, Kolesnick R. C16:0-ceramide signals insu-
lin resistance. Cell Metab. 2014;20(5):703-705.
Raichur S, et al. CerS2 haploinsufficiency inhibits
B-oxidation and confers susceptibility to diet-
induced steatohepatitis and insulin resistance.
Cell Metab. 2014;20(4):687-695.

Chaurasia B, Summers SA. Ceramides — lipotoxic
inducers of metabolic disorders. Trends Endocri-
nol Metab. 2015;26(10):538-550.

de Carvalho LP, et al. Plasma ceramides as prog-
nostic biomarkers and their arterial and myocar-
dial tissue correlates in acute myocardialinfarc-
tion. JACC Basic Transl Sci. 2018;3(2):163-175.
Hilvo M, et al. Development validation of a
ceramide- phospholipid-based cardiovascular
risk estimation score for coronary artery disease
patients [published online ahead of print June
18,2019]. Eur Heart J. https://doi.org/10.1093/
eurheartj/ehz387.

Laaksonen R, et al. Plasma ceramides predict
cardiovascular death in patients with stable
coronary artery disease and acute coronary
syndromes beyond LDL-cholesterol. Eur Heart J.
2016;37(25):1967-1976.

Peterson LR, et al. Ceramide remodeling and
risk of cardiovascular events and mortality. JAm
Heart Assoc. 2018;7(10):e007931.

Havulinna AS, et al. Circulating ceramides
predict cardiovascular outcomes in the popula-
tion-based FINRISK 2002 cohort. Arterioscler
Thromb Vasc Biol. 2016;36(12):2424-2430.

. Kaasenbrood L, et al. Distribution of estimated

10-year risk of recurrent vascular events and
residual risk in a secondary prevention popula-
tion. Circulation. 2016;134(19):1419-1429.
Kauhanen D, Sysi-Aho M, Koistinen KM, Laak-
sonen R, Sinisalo J, Ekroos K. Development and
validation of a high-throughput LC-MS/MS assay
for routine measurement of molecular ceramides.
Anal Bioanal Chem.2016;408(13):3475-3483.
Gotto AM. Interrelationship of triglycerides with
lipoproteins and high-density lipoproteins. Am |
Cardiol. 1990;66(6):20A-23A.

Bzdok D, Altman N, Krzywinski M. Statis-

tics versus machine learning. Nat Methods.

25

26.

2

28.

29.

30.

3

pury

33.

34.

35.

36.

3

38.

39.

40.

4

—_

42.

~N

N

2018;15(4):233-234.

. Song X, Mitnitski A, Cox J, Rockwood K.

Comparison of machine learning techniques
with classical statistical models in predicting
health outcomes. Stud Health Technol Inform.
2004;107(Pt 1):736-740.

Massey KJ, Hong NJ, Garvin JL. Angiotensin I
stimulates superoxide production in the thick
ascending limb by activating NOX4. Am J Physiol,
Cell Physiol. 2012;303(7):C781-C789.

Pencina MJ, D’Agostino RB, Pencina KM, Jans-
sens AC, Greenland P. Interpreting incremental
value of markers added to risk prediction models.
Am ] Epidemiol. 2012;176(6):473-481.

Hall SL, Lorenc T. Secondary prevention of
coronary artery disease. Am Fam Physician.
2010;81(3):289-296.

Anroedh S, et al. Plasma concentrations of molec-
ular lipid species predict long-term clinical out-
come in coronary artery disease patients. J Lipid
Res. 2018;59(9):1729-1737.

Mantovani A, et al. Association of plasma cer-
amides with myocardial perfusion in patients
with coronary artery disease undergoing stress
myocardial perfusion scintigraphy. Arterioscler
Thromb Vasc Biol. 2018;38(12):2854-2861.

. Hilvo M, et al. PCSK9 inhibition alters the lipi-

dome of plasma and lipoprotein fractions. Ath-
erosclerosis. 2018;269:159-165.

. Meeusen JW, Donato L], Bryant SC, Baudhuin

LM, Berger PB, Jaffe AS. Plasma ceramides. Arte-
rioscler Thromb Vasc Biol. 2018;38(8):1933-1939.
Lemaitre RN, et al. Circulating sphingolipids, insu-
lin, HOMA-IR, and HOMA-B: The Strong Heart
Family Study. Diabetes. 2018;67(8):1663-1672.
Wigger L, et al. Plasma dihydroceramides are dia-
betes susceptibility biomarker candidates in mice
and humans. Cell Rep. 2017;18(9):2269-2279.
Jensen PN, et al. Circulating sphingolipids,
fasting glucose, and impaired fasting glucose:
The Strong Heart Family Study. EBioMedicine.
2019;41:44-49.

Lee SY, et al. Cardiomyocyte specific deficiency
of serine palmitoyltransferase subunit 2 reduces
ceramide but leads to cardiac dysfunction. ] Biol
Chem. 2012;287(22):18429-18439.

Park TS, Goldberg IJ. Sphingolipids, lipotoxic car-
diomyopathy, and cardiac failure. Heart Fail Clin.
2012;8(4):633-641.

Park TS, et al. Ceramide is a cardiotoxin

in lipotoxic cardiomyopathy. J Lipid Res.
2008;49(10):2101-2112.

Ussher JR, et al. Inhibition of de novo ceramide
synthesis reverses diet-induced insulin resis-
tance and enhances whole-body oxygen con-
sumption. Diabetes. 2010;59(10):2453-2464.
Glaros EN, Kim WS, Quinn CM, Jessup W, Rye
KA, Garner B. Myriocin slows the progression

of established atherosclerotic lesions in apo-
lipoprotein E gene knockout mice. J Lipid Res.
2008;49(2):324-331.

. Glaros EN, et al. Inhibition of atherosclerosis by

the serine palmitoyl transferase inhibitor myrio-
cinis associated with reduced plasma glyco-
sphingolipid concentration. Biochem Pharmacol.
2007;73(9):1340-1346.

Hojjati MR, et al. Effect of myriocin on plasma
sphingolipid metabolism and atheroscle-

jci.org

CLINICAL MEDICINE

rosis in apoE-deficient mice. J Biol Chem.
2005;280(11):10284-10289.

43. Park TS, Rosebury W, Kindt EK, Kowala MC,

Panek RL. Serine palmitoyltransferase inhibitor
myriocin induces the regression of atheroscle-
rotic plaques in hyperlipidemic ApoE-deficient
mice. Pharmacol Res. 2008;58(1):45-51.

44. Holland WL, et al. Inhibition of ceramide synthe-

sis ameliorates glucocorticoid-, saturated-fat-,
and obesity-induced insulin resistance. Cell
Metab.2007;5(3):167-179.

45, Park TS, et al. Modulation of lipoprotein metab-

olism by inhibition of sphingomyelin synthe-
sis in ApoE knockout mice. Atherosclerosis.
2006;189(2):264-272.

46. Bharath LD, et al. Ceramide-initiated protein phos-

phatase 2A activation contributes to arterial dys-
function in vivo. Diabetes. 2015;64(11):3914-3926.

47. Zhang QJ, et al. Ceramide mediates vascular

dysfunction in diet-induced obesity by PP2A-
mediated dephosphorylation of the eNOS-Akt
complex. Diabetes. 2012;61(7):1848-1859.

48. Bikman BT, et al. Fenretinide prevents lipid-in-

duced insulin resistance by blocking ceramide bio-
synthesis. ] Biol Chem. 2012;287(21):17426-17437.

49. Holland WL, et al. Lipid-induced insulin resis-

tance mediated by the proinflammatory receptor
TLR4 requires saturated fatty acid-induced
ceramide biosynthesis in mice. J Clin Invest.
2011;121(5):1858-1870.

50. Vasiliauskaité-Brooks I, et al. Structural insights

into adiponectin receptors suggest ceramidase
activity. Nature. 2017;544(7648):120-123.

51. Holland WL, et al. Receptor-mediated activation

of ceramidase activity initiates the pleiotropic
actions of adiponectin. Nat Med. 2011;17(1):55-63.

52. Holland WL, et al. An FGF21-adiponectin-cera-

mide axis controls energy expenditure and insulin
action in mice. Cell Metab. 2013;17(5):790-797.

53. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N.

Can machine-learning improve cardiovascular
risk prediction using routine clinical data? PLoS
ONE. 2017;12(4):e0174944.

54. Wagner-Golbs A, et al. Effects of long-term stor-

age at -80°C on the human plasma metabolome.
Metabolites. 2019;9(5):E99.

55. Brunkhorst R, et al. Preanalytical biases in the

measurement of human blood Sphingolipids. Int
J Mol Sci. 2018;19(5):E1390.

56. Aronson JK, Ferner RE. Biomarkers —a

general review. Curr Protoc Pharmacol.
2017;76:9.23.1-9.23.17.

57. Hopkins PN, Wu LL, Hunt SC, Brinton EA. Plas-

ma triglycerides and type III hyperlipidemia are
independently associated with premature famil-
ial coronary artery disease. ] Am Coll Cardiol.
2005;45(7):1003-1012.

58. Hunt SC, Williams RR, Barlow GK. A compar-

ison of positive family history definitions for
defining risk of future disease. ] Chronic Dis.
1986;39(10):809-821.

59. Vikulova DN, et al. Premature atherosclerotic

cardiovascular disease: trends in incidence, risk
factors, and sex-related differences, 2000 to
2016. ] Am Heart Assoc. 2019;8(14):e012178.

60. Higgins M, et al. NHLBI Family Heart Study:

objectives and design. Am J Epidemiol.
1996;143(12):1219-1228.

13



https://www.jci.org
https://www.jci.org
https://doi.org/10.1074/jbc.R200009200
https://doi.org/10.1074/jbc.R200009200
https://doi.org/10.1126/science.aav3722
https://doi.org/10.1126/science.aav3722
https://doi.org/10.1126/science.aav3722
https://doi.org/10.1007/978-3-030-21162-2_4
https://doi.org/10.1007/978-3-030-21162-2_4
https://doi.org/10.1007/978-3-030-21162-2_4
https://doi.org/10.1016/j.cell.2019.05.008
https://doi.org/10.1016/j.cell.2019.05.008
https://doi.org/10.1016/j.cell.2019.05.008
https://doi.org/10.1016/j.cell.2019.05.008
https://doi.org/10.1016/j.molmet.2018.12.008
https://doi.org/10.1016/j.molmet.2018.12.008
https://doi.org/10.1016/j.molmet.2018.12.008
https://doi.org/10.1016/j.molmet.2018.12.008
https://doi.org/10.1016/j.celrep.2018.12.031
https://doi.org/10.1016/j.celrep.2018.12.031
https://doi.org/10.1016/j.celrep.2018.12.031
https://doi.org/10.1016/j.cmet.2014.08.002
https://doi.org/10.1016/j.cmet.2014.08.002
https://doi.org/10.1016/j.cmet.2014.08.002
https://doi.org/10.1016/j.cmet.2014.08.002
https://doi.org/10.1016/j.cmet.2014.10.017
https://doi.org/10.1016/j.cmet.2014.10.017
https://doi.org/10.1016/j.cmet.2014.09.015
https://doi.org/10.1016/j.cmet.2014.09.015
https://doi.org/10.1016/j.cmet.2014.09.015
https://doi.org/10.1016/j.cmet.2014.09.015
https://doi.org/10.1016/j.tem.2015.07.006
https://doi.org/10.1016/j.tem.2015.07.006
https://doi.org/10.1016/j.tem.2015.07.006
https://doi.org/10.1016/j.jacbts.2017.12.005
https://doi.org/10.1016/j.jacbts.2017.12.005
https://doi.org/10.1016/j.jacbts.2017.12.005
https://doi.org/10.1016/j.jacbts.2017.12.005
https://doi.org/10.1093/eurheartj/ehz387
https://doi.org/10.1093/eurheartj/ehz387
https://doi.org/10.1093/eurheartj/ehw148
https://doi.org/10.1093/eurheartj/ehw148
https://doi.org/10.1093/eurheartj/ehw148
https://doi.org/10.1093/eurheartj/ehw148
https://doi.org/10.1093/eurheartj/ehw148
https://doi.org/10.1161/ATVBAHA.116.307497
https://doi.org/10.1161/ATVBAHA.116.307497
https://doi.org/10.1161/ATVBAHA.116.307497
https://doi.org/10.1161/ATVBAHA.116.307497
https://doi.org/10.1161/CIRCULATIONAHA.116.021314
https://doi.org/10.1161/CIRCULATIONAHA.116.021314
https://doi.org/10.1161/CIRCULATIONAHA.116.021314
https://doi.org/10.1161/CIRCULATIONAHA.116.021314
https://doi.org/10.1007/s00216-016-9425-z
https://doi.org/10.1007/s00216-016-9425-z
https://doi.org/10.1007/s00216-016-9425-z
https://doi.org/10.1007/s00216-016-9425-z
https://doi.org/10.1007/s00216-016-9425-z
https://doi.org/10.1016/0002-9149(90)90565-I
https://doi.org/10.1016/0002-9149(90)90565-I
https://doi.org/10.1016/0002-9149(90)90565-I
https://doi.org/10.1038/nmeth.4642
https://doi.org/10.1038/nmeth.4642
https://doi.org/10.1038/nmeth.4642
https://doi.org/10.1152/ajpcell.00457.2011
https://doi.org/10.1152/ajpcell.00457.2011
https://doi.org/10.1152/ajpcell.00457.2011
https://doi.org/10.1152/ajpcell.00457.2011
https://doi.org/10.1093/aje/kws207
https://doi.org/10.1093/aje/kws207
https://doi.org/10.1093/aje/kws207
https://doi.org/10.1093/aje/kws207
https://doi.org/10.1194/jlr.P081281
https://doi.org/10.1194/jlr.P081281
https://doi.org/10.1194/jlr.P081281
https://doi.org/10.1194/jlr.P081281
https://doi.org/10.1161/ATVBAHA.118.311927
https://doi.org/10.1161/ATVBAHA.118.311927
https://doi.org/10.1161/ATVBAHA.118.311927
https://doi.org/10.1161/ATVBAHA.118.311927
https://doi.org/10.1161/ATVBAHA.118.311927
https://doi.org/10.1016/j.atherosclerosis.2018.01.004
https://doi.org/10.1016/j.atherosclerosis.2018.01.004
https://doi.org/10.1016/j.atherosclerosis.2018.01.004
https://doi.org/10.1161/ATVBAHA.118.311199
https://doi.org/10.1161/ATVBAHA.118.311199
https://doi.org/10.1161/ATVBAHA.118.311199
https://doi.org/10.2337/db17-1449
https://doi.org/10.2337/db17-1449
https://doi.org/10.2337/db17-1449
https://doi.org/10.1016/j.celrep.2017.02.019
https://doi.org/10.1016/j.celrep.2017.02.019
https://doi.org/10.1016/j.celrep.2017.02.019
https://doi.org/10.1016/j.ebiom.2018.12.046
https://doi.org/10.1016/j.ebiom.2018.12.046
https://doi.org/10.1016/j.ebiom.2018.12.046
https://doi.org/10.1016/j.ebiom.2018.12.046
https://doi.org/10.1074/jbc.M111.296947
https://doi.org/10.1074/jbc.M111.296947
https://doi.org/10.1074/jbc.M111.296947
https://doi.org/10.1074/jbc.M111.296947
https://doi.org/10.1016/j.hfc.2012.06.003
https://doi.org/10.1016/j.hfc.2012.06.003
https://doi.org/10.1016/j.hfc.2012.06.003
https://doi.org/10.1194/jlr.M800147-JLR200
https://doi.org/10.1194/jlr.M800147-JLR200
https://doi.org/10.1194/jlr.M800147-JLR200
https://doi.org/10.2337/db09-1293
https://doi.org/10.2337/db09-1293
https://doi.org/10.2337/db09-1293
https://doi.org/10.2337/db09-1293
https://doi.org/10.1194/jlr.M700261-JLR200
https://doi.org/10.1194/jlr.M700261-JLR200
https://doi.org/10.1194/jlr.M700261-JLR200
https://doi.org/10.1194/jlr.M700261-JLR200
https://doi.org/10.1194/jlr.M700261-JLR200
https://doi.org/10.1016/j.bcp.2006.12.023
https://doi.org/10.1016/j.bcp.2006.12.023
https://doi.org/10.1016/j.bcp.2006.12.023
https://doi.org/10.1016/j.bcp.2006.12.023
https://doi.org/10.1016/j.bcp.2006.12.023
https://doi.org/10.1074/jbc.M412348200
https://doi.org/10.1074/jbc.M412348200
https://doi.org/10.1074/jbc.M412348200
https://doi.org/10.1074/jbc.M412348200
https://doi.org/10.1016/j.phrs.2008.06.005
https://doi.org/10.1016/j.phrs.2008.06.005
https://doi.org/10.1016/j.phrs.2008.06.005
https://doi.org/10.1016/j.phrs.2008.06.005
https://doi.org/10.1016/j.phrs.2008.06.005
https://doi.org/10.1016/j.cmet.2007.01.002
https://doi.org/10.1016/j.cmet.2007.01.002
https://doi.org/10.1016/j.cmet.2007.01.002
https://doi.org/10.1016/j.cmet.2007.01.002
https://doi.org/10.1016/j.atherosclerosis.2005.12.029
https://doi.org/10.1016/j.atherosclerosis.2005.12.029
https://doi.org/10.1016/j.atherosclerosis.2005.12.029
https://doi.org/10.1016/j.atherosclerosis.2005.12.029
https://doi.org/10.2337/db15-0244
https://doi.org/10.2337/db15-0244
https://doi.org/10.2337/db15-0244
https://doi.org/10.2337/db11-1399
https://doi.org/10.2337/db11-1399
https://doi.org/10.2337/db11-1399
https://doi.org/10.2337/db11-1399
https://doi.org/10.1074/jbc.M112.359950
https://doi.org/10.1074/jbc.M112.359950
https://doi.org/10.1074/jbc.M112.359950
https://doi.org/10.1172/JCI43378
https://doi.org/10.1172/JCI43378
https://doi.org/10.1172/JCI43378
https://doi.org/10.1172/JCI43378
https://doi.org/10.1172/JCI43378
https://doi.org/10.1038/nature21714
https://doi.org/10.1038/nature21714
https://doi.org/10.1038/nature21714
https://doi.org/10.1038/nm.2277
https://doi.org/10.1038/nm.2277
https://doi.org/10.1038/nm.2277
https://doi.org/10.1016/j.cmet.2013.03.019
https://doi.org/10.1016/j.cmet.2013.03.019
https://doi.org/10.1016/j.cmet.2013.03.019
https://doi.org/10.1371/journal.pone.0174944
https://doi.org/10.1371/journal.pone.0174944
https://doi.org/10.1371/journal.pone.0174944
https://doi.org/10.1371/journal.pone.0174944
https://doi.org/10.1002/cpph.19
https://doi.org/10.1002/cpph.19
https://doi.org/10.1002/cpph.19
https://doi.org/10.1016/j.jacc.2004.11.062
https://doi.org/10.1016/j.jacc.2004.11.062
https://doi.org/10.1016/j.jacc.2004.11.062
https://doi.org/10.1016/j.jacc.2004.11.062
https://doi.org/10.1016/j.jacc.2004.11.062
https://doi.org/10.1016/0021-9681(86)90083-4
https://doi.org/10.1016/0021-9681(86)90083-4
https://doi.org/10.1016/0021-9681(86)90083-4
https://doi.org/10.1016/0021-9681(86)90083-4
https://doi.org/10.1093/oxfordjournals.aje.a008709
https://doi.org/10.1093/oxfordjournals.aje.a008709
https://doi.org/10.1093/oxfordjournals.aje.a008709

CLINICAL MEDICINE

61. Hopkins PN, et al. Altered composition of cere-

ride-rich lipoproteins and coronary artery dis-
ease in a large case-control study. Atherosclerosis.
2009;207(2):559-566.

62. National Heart and Lung Institute (US), Lipid

Research Clinics Program. Manual of Laboratory
Operations, Lipid and Lipoprotein Analysis, vol.
1. National Heart and Lung Institute, National

Institutes of Health, Washington, DC, USA; 1974.
63. Warnick GR, Benderson J, Albers JJ. Dextran sul-

fate-Mg2* precipitation procedure for quantita-
tion of high-density-lipoprotein cholesterol. Clin
Chem.1982;28(6):1379-1388.

64. Wu LL, Warnick GR, Wu JT, Williams RR,

Lalouel JM. A rapid micro-scale procedure for
determination of the total lipid profile. Clin
Chem.1989;35(7):1486-1491.

65. Stratford S, Hoehn KL, Liu F, Summers SA. Regu-

lation of insulin action by ceramide: dual mech-
anisms linking ceramide accumulation to the
inhibition of Akt/protein kinase B. ] Biol Chem.

__JCI ¥

66.

6

68.

69.

70.

71.

72.

J

2004;279(35):36608-36615.

Sullards MC, Liu Y, Chen Y, Merrill AH. Analysis
of mammalian sphingolipids by liquid chromatog-
raphy tandem mass spectrometry (LC-MS/MS)
and tissue imaging mass spectrometry (TIMS).
Biochim Biophys Acta.2011;1811(11):838-853.
Zeileis A, Hothorn T. Diagnostic checking in
regression relationships. R News. 2002;2(3):7-10.
Friedman J, Hastie T, Tibshirani R. Regulariza-
tion paths for generalized linear models via coor-
dinate descent. J Stat Softw. 2010;33(1):1-22.
Liaw A, Weiner M. Classification and regression
by random forest. R News. 2002;2(3):18-22.
Shannon P, et al. Cytoscape: a software
environment for integrated models of bio-
molecular interaction networks. Genome Res.
2003;13(11):2498-2504.

Butts CT. Network: classes for relational data.
https://cran.r-project.org/package=network.
Accessed December 4, 2019.

Butts CT. Network: a package for managing rela-

jci.org

The Journal of Clinical Investigation

73.

74.

75.

76.

7

78

~N

tional data in R. ] Stat Softw. 2008;24(2):1-36.
Genz A, Bretz F. Computation of Multivariate
Normal and T Probabilities. Berlin, Heidelberg,
Germany: Springer Verlag; 2009.

Genz A, et al. mvtnorm: multivariable normal
and t distributions. http://mvtnorm.r-forge.
r-project.org. Updated: June 19, 2019. Accessed
December 4, 2019.

Friedman J, Hastie T, Tibshirani J. Glasso: graph-
ical LASSO: estimation of Gaussian graphical
models. https://cran.r-project.org/package=
glasso. Accessed December 4, 2019.

Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ.
Gaussian graphical modeling reconstructs path-
way reactions from high-throughput metabolom-
ics data. BMC Syst Biol. 2011;5:21.

Robin X, et al. pROC: an open-source package for
R and S+ to analyze and compare ROC curves.
BMC Bioinformatics. 2011;12:77.

. R Software. R Development Core Team. R Foun-

dation for Statistical Computing. 2018.


https://www.jci.org
https://www.jci.org
https://doi.org/10.1016/j.atherosclerosis.2009.05.016
https://doi.org/10.1016/j.atherosclerosis.2009.05.016
https://doi.org/10.1016/j.atherosclerosis.2009.05.016
https://doi.org/10.1016/j.atherosclerosis.2009.05.016
https://doi.org/10.1093/clinchem/28.6.1379
https://doi.org/10.1093/clinchem/28.6.1379
https://doi.org/10.1093/clinchem/28.6.1379
https://doi.org/10.1093/clinchem/28.6.1379
https://doi.org/10.1093/clinchem/35.7.1486
https://doi.org/10.1093/clinchem/35.7.1486
https://doi.org/10.1093/clinchem/35.7.1486
https://doi.org/10.1093/clinchem/35.7.1486
https://doi.org/10.1074/jbc.M406499200
https://doi.org/10.1074/jbc.M406499200
https://doi.org/10.1074/jbc.M406499200
https://doi.org/10.1074/jbc.M406499200
https://doi.org/10.1074/jbc.M406499200
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303

