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Supplemental Table 1. Characteristics of the study population of the Utah CAD study, (A) the total case-control study 
(Total CAD); (B) For participants with available biospecimens used for the current analysis (MS-CAD). Variables were 
compared between the two control groups using t-tests for continuous variables and chi-square tests for categorical 
variables. (B) describes data missing from the sample used for the current analysis. We conducted multiple imputation 
of these variables but it did not change the results. 
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Supplemental Table 2. To test the effect of including conventional lipid markers in the primary logistic regression model, we calculated ORs 
for sphingolipid associations with CAD using multivariable logistic regression. The following variables were included in the model, one at a 
time: (age (years), sex (male or female), body mass index (BMI, Kg/m2), smoking (“ever” or “never” to smoking daily for a year or more), 
LDL-cholesterol (mg/dL), VLDL-cholesterol (mg/dL), HDL-cholesterol (mg/dL), triglycerides (mg/dL), lipid medication (statins, fibrates, and 
other hyperlipidemia managing drugs taken at time of blood draw, yes/no), diabetes (prior physician diagnosis or fasting glucose >100 
mg/dL), and hypertension (prior physician diagnosis or blood pressure  >140/90 mm Hg)). If inclusion of the variable in the model changed 
the OR >10% and/or the variable significantly improved model fit according to likelihood ratio test, it was retained. (A) The top row denotes 
the covariates included in the model, with + indicating an addition to age, sex, BMI. The values are percent changes of ORs from age, sex, 
BMI adjusted regression model. (B) Due to changes in OR  >10%, we show the individual ORs (95% CI) with lower confidence interval 
(LCI) and upper confidence interval (UCI) for smoking, diabetes mellitus (DM), hypertension, LDL-C, total-C, and all of the variables. 

(A) Percent change in risk in comparison to the age, sex, BMI adjusted model

(B) Odds ratio and 95%CI for variables changed more than 10% in the above analysis



Supplemental Table 3. Effect modification of results from the logistic regression analyses of lipid markers on coronary artery disease (CAD).  
(A) We generated an interaction term between the lipid marker (left) and the variable (top) to generate p-heterogeneity values. If the 
interaction term was significant in the model, we conducted analyses stratified by the effect modifier. (B) normotensive and (C) hypertensive, 
showing unadjusted OR (95%CI) (UA OR) and minimally-adjusted OR (95% CI) (age, sex, BMI) (A OR) with lower (LCI) and upper (UCI) CI 
displayed as well.  DM, diabetes mellitus, MI, myocardial infarction, CERT1, ceramide risk score, SIC, sphingolipid inclusive CAD risk score, 
LDL-C, low density lipoprotein cholesterol.

(A) Table of lipid by variable interaction terms showing p-heterogeneity with significance denoted by an asterisk

(B) OR and 95% CI for CAD for normotensive participants (C) OR and 95% CI for CAD for hypertensive participants



Supplemental Table 4. To compare machine learning variable reduction techniques to classical variable reduction techniques, 
we performed a stepwise (forwards and backwards) logistic regression. The input included age, sex, BMI, diabetes, 
hypertension, smoking, LDL-C, VLDL-C, HDL-C, total-C, triglycerides, and the 32 sphingolipid species. The table below 
depicts the variables retained in the model in addition to their standard errors and p-values. 



Supplemental Table 5. Least Absolute Shrinkage and Selection Operator (LASSO) regression performed on 
sphingolipids and conventional coronary artery disease (CAD) lipid markers. (A) LASSO selected variables (Lipid 
variable) with their average coefficient (Coefficient) and frequency of selection (Frequency) over the 10 iterations. The 
average accuracy of case and control detection across all 10 iterations was 84.6%.  Accuracy is defined as the 
percentage of cases and controls correctly identified.

(A)



Supplemental Table 6. Random Forest (RF) performed on sphingolipids and sphingolipids with conventional coronary artery disease 
(CAD) lipid markers. For the input including only sphingolipids, (A) the top ten RF selected variables (Lipid variable) for each iteration with 
their  frequency of selection (Frequency) over the 5 iterations are displayed. The average accuracy of case and control detection across 
the 5 RF runs for the sphingolipid only input was 81.5%.  (B) is the shows the same data as (A) but for the sphingolipid and standard 
clinical lipid (Total-C, LDL-C, VLDL-C, HDL-C, triglyceride) input. The average accuracy of case and control detection across the 5 RF 
runs for the sphingolipids and standard clinical lipid input was 82.33%. For RF analysis the default was 500 decision trees.

(A) (B)



(A) AHA/ACC model versus AHA/ACC + CERT1

(B) AHA/ACC model versus AHA/ACC + SIC

Supplemental Table 7. Net reclassification index (NRI) and integrative discriminatory index (IDI) to compare the American 
Heart Association (AHA) and American College of Cardiology (ACC) based guidelines (age, sex, BMI, diabetes, hyperten-
sion, smoking, LDL-C, HDL-C, VLDL-C, total-C, triglycerides) to an AHA/ACC guideline model with the addition of (A) the 
cardiac event risk test (CERT1) and (B) the sphingolipid inclusive CAD (SIC) score. Continuous NRI and IDI are displayed 
with 95% confidence intervals (CI). NRI values above 0.6 should be conisdered strong, those above 0.4 intermediate, and 
those below 0.2 weak. A reclassification table showing upward and downward movement with the new model. 



Supplemental Table 8. Results from the primary logistic regression of coronary artery disease (CAD) on sphingolipid 
species. (A) minimally-adjusted model (age, sex, BMI); (B) multivariable-adjusted model including age, sex, BMI, 
total-C, LDL-C, VLDL-C, triglycerides, hypertension, diabetes, smoking. Associations considered significant at a 
false discovery rate (FDR) of 0.05. BH, Benjamini Hochberg.

(A) Minimally-adjusted (B) Multivariate-adjusted model



Supplemental Figure 1. Receiver operating characteristic (ROC) curves for discrimination between coronary artery 
disease (CAD) cases and controls by lipids in the Utah CAD study. (A) high density lipoprotein (HDL) Cholesterol, (B) low 
density lipoprotein (LDL) Cholesterol, (C) very low density lipoprotein (VLDL) cholesterol, (D) total cholesterol, (E) 
triglycerides, (F) Cer(d18:1/16:0), (G) Cer(d18:1/18:0), (H) Cer(d18:1/24:0), (I) Cer(d18:1/24:1)

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)



(M) (N) (O)

(P) (Q) (R)

(S) (T)

Supplemental Figure 2. ROC curves for (J) Cer(d18:1/16:0) / Cer(d18:1/24:0) ratio, (K) Cer(d18:1/18:0) / 
Cer(d18:1/24:0) ratio (L) Cer(d18:1/24:1) / Cer(d18:1/24:0) ratio, (M) CERT1 score, (N)RF-SIC score, (O) RF-SIC+, (P) 
LASSO-SIC score, (Q) LASSO-SIC2 score, (R) LASSO-SIC3 score, (S) SIC score. (T) shows all the C-statistics for each ROC 
curve.
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Supporting Materials for 131838-JCI-CMED-DN-2 
 
This is an observational study, as the assignment of the medical intervention was not at the 
discretion of the investigators. We opted not to conduct a new trial registration for this already 
closed study. We provide the following supportive information. 
 
STROBE Statement—checklist of items  
 

 Item 
No Recommendation 

Title and abstract 1 (a) Title: Machine Learning Reveals Serum Sphingolipids as Cholesterol-
Independent Biomarkers of Coronary Artery Disease 
(b) Background: Ceramides are sphingolipids that play causative roles in diabetes 
and heart disease, with their serum levels measured clinically as biomarkers of 
cardiovascular disease (CVD).  
 
Methods: We performed targeted lipidomics on serum samples of individuals with 
familial coronary artery disease (CAD) (n=462) and population-based controls 
(n=212) to explore the relationship between serum sphingolipids and CAD, 
employing unbiased machine learning to identify sphingolipid species positively 
associated with CAD. 
 
Results: Nearly every sphingolipid measured (n=30 of 32) was significantly 
elevated in subjects with CAD compared with population controls. We generated a 
novel Sphingolipid Inclusive CAD risk score, termed SIC, that demarcates CAD 
patients independently and more effectively than conventional clinical CVD 
biomarkers including LDL-cholesterol and serum triglycerides. This new metric 
comprises several minor lipids which likely serve as measures of flux through the 
ceramide biosynthesis pathway, rather than the abundant deleterious ceramide 
species that are incorporated in other ceramide-based scores. 
 
Conclusion: This study validates serum ceramides as candidate biomarkers of 
cardiovascular disease and suggests that comprehensive sphingolipid panels be 
considered as measures of CVD.  
 

Introduction 
Background/rationale 2 Coronary artery disease (CAD) is the most common type of cardiovascular disease 

(CVD) worldwide and the leading cause of death in the western hemisphere (1). 
The condition gives rise to atherosclerosis and ischemia which contribute to 
arrhythmia, myocardial infarction (MI), heart failure, and sudden death. Family 
history of CAD is an independent risk factor for MI, and once a patient has 
undergone an MI they are at greatly increased risk for subsequent adverse cardiac 
events. In addition to incurring a substantial individual health burden, CVD is the 
United States’ costliest disease, producing an economic toll that is projected to 
grow substantially over the coming decades.  The combination of personal and 
financial costs necessitates development of improved means for identifying at-risk 
individuals in order to enhance patient care and optimize resource management. 
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Objectives 3 The goals of this study were to identify environmental and genetic determinants of 
early onset familial coronary artery disease. The study has been ongoing since 
1977, but is now closed to additional recruitment. The mechanisms for recruitment 
and screening of participants changed little during its course. Probands and their 
relatives were invited to our screening clinic, completed medical history 
questionnaires, had blood drawn, and underwent clinical measurements. Blood and 
DNA samples were stored. Current efforts are directed at conducting lipidomic 
assessments of the samples to identify new correlates of disease.  
  

Methods 
Study design 4 We evaluated the association of serum sphingolipids with CAD using existing 

samples and clinical and demographic information obtained from a case-control 
study in Utah, USA (n=462 cases and n=212 controls). 

Setting 5 Cases were recruited between 1977 and 2000 from Intermountain Healthcare 
discharge records or the Family Health Tree Program in Utah (58). Both case and 
control populations were selected from the same source population of Salt Lake 
City, Utah. 

Participants 6 Cases were aged 30-75 years with a diagnosis of CAD, defined by the original 
study recruitment criteria as myocardial infarction (MI), percutaneous transluminal 
coronary angioplasty (PCTA), or coronary artery bypass grafting (CABG). A large 
proportion of cases were male (77%), likely because premature CAD incidence 
rates are higher for men than women. Cases had similar age of onset to at least one 
first degree relative (parent, sibling, or child.  
 
Controls representative of the Utah population were randomly sampled from 1980-
1986 from (i) the parents of students participating in the Family Health Tree 
Program, a study of family health among Utah high schools; and (ii) spouse pairs 
participating in a study on psychological factors concerning CAD. Control 
participants were aged 30-75 years and had no clinical diagnosis of CAD, but they 
could have a family history of CAD. Controls taking vasoconstrictive drugs (i.e. 
beta blockers, calcium channel blockers, and other anti-anginal medications) were 
excluded. 

Variables 7 As noted above, cases were defined by the original study recruitment criteria as 
myocardial infarction (MI), percutaneous transluminal coronary angioplasty 
(PCTA), or coronary artery bypass grafting (CABG). Measured endpoints included 
available clinical data and new sphingolipidomic assessments. 

Data sources/ 
measurement 

8 Demographic information (including age and sex) and medical and family history 
data were obtained by trained interviewers. Covariates considered in analyses 
included age (years), sex (male or female), body mass index (BMI, Kg/m2), 
smoking (“ever” or “never” to smoking daily for a year or more), total cholesterol 
(mg/dL), LDL-cholesterol (mg/dL), VLDL-cholesterol (mg/dL), HDL-cholesterol 
(mg/dL), triglycerides (mg/dL), lipid medication (statins, fibrates, and other 
hyperlipidemia managing drugs taken at time of blood draw, yes/no), diabetes 
(prior physician diagnosis or fasting glucose ≥126 mg/dL), and hypertension (prior 
physician diagnosis or blood pressure ≥140/90 mm Hg).   
 
Blood samples were collected in the morning following a 12-16 hour overnight fast 
and prepared according to guidelines of the Lipid Research Clinic’s program 
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Manual of Laboratory Operations. Lipoprotein concentrations were measured using 
a microscale ultracentrifugation method. Serum samples were aliquoted and stored 
at -80 °C. The collection laboratory participates in the Centers for Disease Control 
Lipid Standardization Program. Lipidomics were done by mass spectroscopy. Of 
note, blood sphingolipids have been shown to be highly stable over relevant 
preanalytical conditions including multiple freeze-thaw cycles, temperature, long-
term storage, and centrifugation time/speed. 

Bias 9 Patient recruitment occurred several decades ago and was representative of the 
Utah population at that time. We applied unbiased machine learning to identify 
sphingolipids associated with CAD.  

Study size 10 Sample size was based on available, banked samples 
Quantitative variables 11 A total of 32 lipids were quantified including dihydroceramides (dihydro-

cer(d18:0), ceramides (cer(d18:1), glucosyl ceramides (glucosyl-cer(d18:1), 
dihydrosphingomyelins (dihydro-SM(d18:0), sphingomyelins (SM(d18:1), 
sphinganine, and sphingosine. For each of these, except for sphinganine and 
sphingosine, acyl chain lengths of 16, 18, 20, 22, 24, and 24:1 carbon length were 
reported. Median (interquartile range) coefficient of variation (11.76, 6.85-20.53) 
are comparable with previously published sphingolipid data.  
To calculate the Ceramide Risk Score (CERT1) that is in clinical use, we calculated 
C16:0, C18:0 and C24:1 concentration and their ratio to C24:0, assigning 2 points 
to those with levels in the 4th quartile, 1 point to the 3rd quartile, and 0 points to the 
bottom two quartiles, with total CERT1 scores ranging from 0-12.   

Statistical methods 12 Participant characteristics were summarized as mean ± standard deviation for 
continuous variables or N (%) for categorical variables. Differences between cases 
and controls were compared using the Student t-test (two tailed) for continuous 
variables and chi-square test for categorical variables. P-values > 0.05 were 
considered significant. Lipid species were summarized as medians and interquartile 
ranges (IQR) using the original scale and were log10 transformed for analysis 
owing to non-normal distribution.  When assessing the effect of summed molecular 
lipid species or acyl chains on CAD, variables were summed preceding log 
transformation. 
 
Multivariable-adjusted and unadjusted odds ratios (ORs) and 95% confidence 
intervals (CI) were estimated using logistic regression and reported per standard 
deviation (of lipid species). A priori-defined covariates based on current American 
College of Cardiology (ACC) and American Heart Association (AHA) guidelines 
were considered in stepwise variable selection modelling. These covariates 
included the following: age, sex, BMI, total cholesterol (total-C), low density 
lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), 
very low-density lipoprotein cholesterol (VLDL cholesterol), triglycerides, 
hypertension, diabetes, and smoking. We calculated the percent change in odds 
ratio from the parsimonious age, sex, and BMI-adjusted model with the addition of 
each covariate, though no covariate affected all sphingolipids. Our final 
parsimonious model included age, sex and BMI but we also show results for a fully 
adjusted model including all AHA/ACC guideline-based risk factors in the main 
figures for comparison. In addition to testing whether AHA/ACC based risk factors 
were confounders of the sphingolipid-CAD relationship, we evaluated some of 
these variables for potential effect modification through the inclusion of a variable 
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by lipid interaction term in the logistic regression models and evaluating 
significance of the interaction term using a likelihood ratio test. Where effect 
modification was present (p-value for the interaction term<0.05), we ran the 
analyses separately according to levels of the effect modifier (e.g., hypertensive or 
normotensive) to determine whether the relationships between sphingolipids and 
CAD differed according subgroups of the effect modifier variable.  
 
We applied machine learning to identify the most predictive biomarkers. To 
compare classical variable reduction techniques to our machine learning 
approaches, we performed a stepwise (forwards and backwards) regression. We 
then performed Least Absolute Shrinkage and Selection Operator (LASSO) 
regression and Random Forest analysis. AHA/ACC lipid risk factor variables 
(LDL-cholesterol, etc.) were included along with the sphingolipids as input 
variables to allow the machine learning algorithm to determine the most predictive 
lipid biomarkers. Data were split into training (80%) and testing (20%) datasets. 
For LASSO, the optimal value for the tuning parameter lambda was selected to 
maximize the percentage of correctly identified cases/controls with 10-fold cross 
validation on the training set before using the remaining 20% of the data to test the 
predictability of the model. We determined the quality of prediction via percentage 
of correctly identified cases/controls, averaging the percentage across ten training 
and testing splits. There were two data input approaches for Random Forest 
analysis. For a sphingolipid-only input, 32 sphingolipid variables were utilized, 
with a default of 500 decision trees to generate an optimal number of variables per 
tree determined for each of 5 cross-validation training sets. Variable importance 
scores were assigned through permutation testing and the top 5 variables averaged 
across validation sets were placed into a single model. A second input included the 
32 sphingolipid variables and classical CAD markers (i.e., cholesterol, 
triglycerides, etc.). To examine conditional correlations (r ≥ 0.20) between 
ceramides and conventional biomarkers in CAD cases, we generated a gaussian 
graphical model (GGM) with visualization in Cytoscape. GGMs model conditional 
dependencies among continuous variables with multivariate Gaussian distributions. 
Recent studies have demonstrated how GGMs, which are data-driven, can 
reconstruct biological pathway reactions. We performed GGM in order to see 
whether our sphingolipid panel was redundant in the presence of traditional clinical 
lipid biomarkers (i.e. whether they are highly correlated, conditioned on the 
presence of all other lipids). 
 
To compare the ability of different clinical markers and scores to distinguish 
between true cases and controls, we employed Receiver Operating Characteristic 
(ROC) – Area under the Curve (AUC) analysis and calculated the Net 
Reclassification Index (NRI), and Integrated Discrimination Index (IDI).  
 
All analyses were performed in R 3.5.1. Associations were considered statistically 
significant at a false discovery rate (FDR) <0.05 to control for multiple statistical 
tests. 

 

Results 
Participants 13 n=462 cases and n=212 controls 
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Descriptive 
data 

14 (a) We quantified 32 sphingolipids. All sphingolipids measured, excepting two 
glucosylceramides, were elevated in CAD cases compared with controls. We provide the 
odds ratios (ORs) for CAD for all sphingolipid species measured, including the unadjusted 
model, a parsimonious model (i.e. a minimally-adjusted model that includes the covariates 
age, sex, BMI), and a fully-adjusted model (i.e. a model that includes the covariates age, sex, 
body mass index (BMI), total cholesterol, LDL cholesterol, HDL cholesterol, VLDL 
cholesterol, triglycerides, hypertension, diabetes, and smoking. 
(b) Indicate number of participants with missing data for each variable of interest: 0 

Main results 16 We applied a highly quantitative, targeted mass spectroscopy platform to measure 32 
sphingolipids in serum samples from subjects with CAD compared with healthy controls. 
Thirty of the thirty-two sphingolipids assayed were elevated among the diseased subjects, 
displaying a robust positive association with CAD after controlling for multiple comparisons. 
We applied unbiased machine learning variable reduction techniques to generate a novel 
sphingolipid score which we have termed SIC (i.e. sphingolipid inclusive CAD risk score) 
that includes the following components: dihydro-cer(d18:0/18:0), cer(d18:1/18:0), 
cer(d18:1/22:0), cer(d18:1/24:0), dihydro-SM(d18:0/24:1), SM(d18:1/24:0), SM(d18:1/18:0), 
and sphingosine. Novel scores were calculated by summing raw lipid values multiplied by 
their beta coefficients from the regression output, then log transformed. This score 
approached a strong C-statistic of 0.79 and an ORperSD of 4.67 (95% CI: 3.46-6.43) for risk 
of CAD, outperforming other serum indices of cardiovascular risk including LDL-C alone 
and the CERT1 ceramide risk score. 

Discussion 
Key results 18 Though some prior studies have described associations between a subset of ceramides and 

CVD and related comorbidities, several aspects of this study are novel. First, we conducted a 
comprehensive ceramide assessment using a well-validated, targeted lipidomic platform that 
included less abundant lipid species, leading to the production of a more robust sphingolipid 
score (i.e. SIC). We note that such targeted platforms are more quantitatively sound than 
shotgun lipidomic assessments. Second, we focused on early-onset CAD patients (average 
age of onset = 47.8), thus enhancing the power of our study and limiting the influence of 
factors associated with aging. Third, we applied machine learning to develop new ceramide-
based scores that outperformed prior measures, including LDL-C and CERT1. Machine 
learning allowed us to enhance accuracy of models and reduce dimensionality of datasets. 

Limitations 19 Despite these advances, our study has some limitations. First, it is limited by its case-control 
design and by the racial homogeneity of our sample population, limiting generalizability. 
Second, our target lipid class, sphingolipids, includes highly diverse and lowly abundant lipid 
species; this diversity can lead to increased variability, as seen by our high coefficients of 
variation (median: 11.76, IQR: 6.85-20.53). Third, this study lacks a validation cohort for the 
novel SIC score. And fourth, some biospecimens were collected as far back as the 1990s; diet 
and lifestyle have changed since this study was initiated and prolonged storage could 
negatively impact sample quality.  

Interpretation 20 Sphingolipids have emerged as robust, cholesterol-independent markers of CVD risk. Their 
inclusion in a clinician’s armamentarium has the potential to greatly improve the ability to 
identify at-risk patients. Moreover, they support the development of therapeutics targeting 
sphingolipids as a means of ameliorating cardiovascular risk. Nonetheless, our data suggest 
that further refinement of sphingolipid-based scores may be necessary. Expanding the 
diversity of sphingolipid entities included in prospective patient studies will provide a more 
complete picture of the sphingolipidome in predicting risk of cardiovascular disease.  
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Generalisability 21 Follow-up studies will be needed to determine whether these findings are broadly 
generalizable 

Other information 
Funding 22 National Institutes of Health (DK112826 and DK108833 to WLH and DK115824, 

DK116888, and DK116450 to SAS), the Juvenile Diabetes Research Foundation (JDRF 3-
SRA-2019-768-A-B to WLH), the American Diabetes Association (to SAS), the American 
Heart Association (to SAS), the Margolis Foundation (to SAS), the National Cancer Institute 
(5R00CA218694-03 to MCP), and the Huntsman Cancer Institute Cancer Center Support 
Grant (P30CA040214 to MCP). 
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