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Introduction
Coronary artery disease (CAD) is the most common type of car-
diovascular disease (CVD) worldwide and the leading cause of 
death in the Western Hemisphere (1). The condition gives rise to 
atherosclerosis and ischemia, which contribute to arrhythmia, 
myocardial infarction (MI), heart failure, and sudden death (2). 
A family history of CAD is an independent risk factor for MI, and 
once a MI occurs, the patient is at greatly increased risk for sub-
sequent adverse cardiac events. In addition to incurring a sub-

stantial individual health burden, CVD is the costliest disease in 
the United States, producing an economic toll that is projected to 
grow substantially over the coming decades (3). The combination 
of personal and financial costs necessitates improved means for 
identifying at-risk individuals in order to enhance patient care and 
optimize resource management.

CAD is multifactorial by nature, with obesity, diet, hyperten-
sion, type 2 diabetes mellitus, and family history of CVD estab-
lished as risk factors (3). Traditional serum lipid biomarkers of 
CV health include triglycerides (TGs) and cholesterol, 2 abundant 
and easily quantifiable circulating factors. Recent technological 
advances now allow for the detection of less plentiful lipids, such 
as sphingolipids, enabling substantially more diverse lipidomic 
screenings at relatively high throughput. In leveraging these tech-
nological developments, researchers have identified a small sub-
set of serum ceramides as biomarkers of CVD risk (4). Moreover, 
a substantial body of literature in rodent models of CVD indicates 
that these sphingolipids play causative roles in diabetes and car-
diometabolic disorders (5).

BACKGROUND. Ceramides are sphingolipids that play causative roles in diabetes and heart disease, with their serum levels 
measured clinically as biomarkers of cardiovascular disease (CVD).

METHODS. We performed targeted lipidomics on serum samples from individuals with familial coronary artery disease (CAD) 
(n = 462) and population-based controls (n = 212) to explore the relationship between serum sphingolipids and CAD, using 
unbiased machine learning to identify sphingolipid species positively associated with CAD.

RESULTS. Nearly every sphingolipid measured (n = 30 of 32) was significantly elevated in subjects with CAD compared 
with measurements in population controls. We generated a novel sphingolipid-inclusive CAD risk score, termed SIC, that 
demarcates patients with CAD independently and more effectively than conventional clinical CVD biomarkers including 
serum LDL cholesterol and triglycerides. This new metric comprises several minor lipids that likely serve as measures of flux 
through the ceramide biosynthesis pathway rather than the abundant deleterious ceramide species that are included in other 
ceramide-based scores.

CONCLUSION. This study validates serum ceramides as candidate biomarkers of CVD and suggests that comprehensive 
sphingolipid panels should be considered as measures of CVD.
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population-based control subjects (Table 1). By applying variable 
selection techniques, we used these data to develop a superior 
sphingolipid-based score that demarcated individuals with CAD.

Results
Individual ceramides and CAD. We quantified 32 sphingolipids 
including the major ceramides [cer(d18:1)], dihydroceramides 
[dihydro-cer(d18:0)], glucosylceramides [(glucosyl-cer(d18:1)], 
dihydrosphingomyelins [dihydro-SM(d18:0)], sphingomyelins 
[SM(d18:1)], sphinganine, and sphingosine (Figure 2). All sphingo-
lipids measured, except for 2 glucosylceramides, were elevated in 
patients with CAD compared with levels in control subjects (Table 
2). Sphingosine (P < 2 × 10–16), dihydro-cer(d18:0/ 16:0) (P < 2 × 
10–16), dihydro-cer(d18:0/ 18:0) (P < 2 × 10–16), and cer(d18:1/ 24:1) 
(P < 2 × 10–16) were most strongly associated with CAD (ORper SD  
3.47, 95% CI: 2.63–4.69; ORper SD 2.54, 95% CI: 2.06–3.18; ORper SD 
2.82, 95% CI: 2.24–3.60; ORper SD 2.30, 95% CI: 2.24–3.60; ORper SD 
2.29, 95% CI: 1.86, 2.85, respectively). Figure 3 depicts the ORs for 
CAD for all sphingolipid species measured, including the unad-
justed model, a parsimonious model (i.e., a minimally adjusted 
model that includes the covariates age, sex, and BMI), and a fully 
adjusted model (i.e., a model that includes the covariates age, sex, 
BMI, total cholesterol [total-C], LDL cholesterol [LDL-C], HDL 
cholesterol [HDL-C], VLDL cholesterol [VLDL-C], TGs, hyper-
tension, diabetes, and smoking).

Ceramide risk score and CAD. For each subject, we calculated 
the ceramide risk score (i.e., cardiac event risk test 1 [CERT1]) that 
was developed by Zora Biosciences and is in operation at the Mayo 
Clinic as a means of predicting 5-year risk of CV mortality (4, 21, 

Sphingolipids constitute a class of lipids that have diverse 
structural and signaling functions and discrete biological roles 
and tissue distributions. Their excessive accumulation occurs 
when the delivery of fatty acids exceeds the storage capacity or 
energy needs of a cell (Figure 1 and ref. 5), with the primary steps 
of de novo synthesis occurring in the ER (6). Tissue inflammation 
further increases ceramide biosynthesis rates (7). In the third step 
of the sphingolipid biosynthesis pathway, a family of (dihydro)cer-
amide synthases add variable acyl chains to a sphingoid scaffold 
to produce the dihydroceramides and, subsequently, ceramides, 
which are the key foundational unit of predominant sphingolipids 
(8). The dihydroceramides and ceramides can be further modified 
in the Golgi apparatus by the addition of various head groups, gen-
erating complex sphingolipids such as sphingomyelins and gluco-
sylceramides. Ceramides, but not dihydroceramides, containing 
either C16:0 or C18:0 acyl chains drive insulin resistance and 
hepatic steatosis (7, 9–14). Other deleterious effects of ceramides 
that are relevant to CVD include the retention of lipoproteins in 
the vascular wall, impaired vasodilation, and induction of cardio-
myocyte apoptosis (15).

Prior profiling studies have identified 3 ceramide species [i.e., 
cer(d18:1/16:0), cer(d18:1/18:0), and cer(d18:1/24:0)] that are pos-
itively associated with CVD incidence (16), secondary CVD events 
(17), and mortality (18–20). Cer(d18:1/24:0) has been reported to 
be negatively associated with CV death (18–20), but its relationship 
with CVD incidence is less clear. We reasoned that less abundant 
sphingolipids may serve as strong markers of flux through the bio-
synthesis pathway. Therefore, we performed an inclusive sphin-
golipid screen (32 sphingolipids) in individuals with CAD and in 

Figure 1. Schematic depicting the sphingolipid biosynthesis pathway. Fatty acyl-CoAs have 3 primary fates: entering the mitochondria to be used for 
energy via oxidation, to form glycerolipids for use in storage or membrane formation, or to be coupled to an amino acid and enter the sphingolipid biosyn-
thesis pathway. Sphingolipids are a diverse class of lipids that represent a minor subset of the lipidome but play critical roles in signaling events. DAGs, 
diacylglycerols; PC, phosphocholine; PE, phosphoethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; TAGs, triacylglycerols.
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a sphingolipid class (e.g., ceramides, dihydroceramides, sphingo-
myelins, etc.), independent of acyl chain length. In a second cat-
egory, we summed all sphingolipids that had certain acyl chains 
attached to the sphingoid base (e.g., all species with C16:0, C18:0, 
C20:0, C24.1:0, or C24:0 acyl chains), independent of sphingolipid 
class. We found that total C24:1-containing sphingolipids (ORper SD  
2.66, 95% CI: 2.12–3.38) and/or total dihydroceramides, indepen-
dent of chain length (ORper SD 2.46, 95% CI: 1.99–3.10), were most 
strongly associated with CAD (Figure 5).

Ceramide correlations with cholesterol and other conventional 
biomarkers. In order to explore the relationship between cera-
mides and other common biomarkers of CVD risk, we generat-
ed a Gaussian graphical model (GGM) between ceramides, TGs, 
LDL-C, HDL-C, and VLDL-C (Figure 6). The GGM measured the 
correlation of sphingolipids with each other and with traditional 
lipid biomarkers. All correlations were conditioned on the pres-
ence of the other analytes (r ≥ 0.20), thus representing direct rela-
tionships that are uninfluenced by other components. The GGM 
demonstrated that ceramide species correlated with each other in 
a single, interconnected network but that their associations with 
classic CVD risk biomarkers were weak (i.e., r < 0.20). In Figure 6, 
the strength of the correlations is depicted by the thickness of the 
lines connecting lipid nodes. The strongest positive correlations 
(red lines) were between cer(d18:1/20:0) and cer(d18:1/18:0); 
dihydro-cer(d18:0/24:0) and dihydro-cer(d18:0/22:0); and dihy-
dro-SM(d18:0/24:0) and dihydro-SM(d18.0.22.0) (Figure 6). As 
expected, VLDL-C positively correlated with TGs (23). Ceramides 
did not correlate with VLDL-C, TGs, or other lipid markers of CVD 
risk. These findings indicate that sphingolipids are largely inde-
pendent of traditional CVD lipid biomarkers and therefore pro-
vide new information about disease status, a critical consideration 
when developing novel biomarkers.

Generating novel CAD predictive ceramide risk scores using 
machine learning. We used machine learning, a branch of artificial 
intelligence, to reduce our large set of sphingolipids to a small set 
of predictive biomarkers. Machine learning incorporates pattern 

22). CERT1 performed well in this cohort, as subjects with CAD 
had significantly higher CERT1 risk scores than did the control par-
ticipants (ORper SD 2.18, 95% CI 1.77–2.71) (Figure 3). Interestingly, 
the CERT1 score, which comprises the individual ceramide 
species cer(d18:1/16:0), cer(d18:1/18:0), and cer(d18:1/24:1) 
as well as the ratio of these lipids to cer(d18:1/24:0), did not 
provide better predictive power than the individual ceramide 
species included in the score [cer(d18:1/16:0); ORper SD 2.30, 
95% CI: 1.87–2.6; cer(d18:1/18:0); ORper SD 2.30, 95% CI: 1.87–
2.85; cer(d18:1/24:1); ORper SD 2.29, 95% CI: 1.86–2.85] (Fig-
ure 3). Since cer(d18:1/24:0) was also elevated in individuals 
with CAD (ORper SD 2.12, 95% CI: 1.73–2.61), its inclusion in 
the denominator of CERT1 diminished the score’s predictive 
power in our sample (Figure 4).

Probing the role of specific ceramide species in CAD. To dis-
cern how the chemical composition of sphingolipids influ-
enced their association with CAD, we grouped them into 2 dif-
ferent categories. In 1 category, we summed all species within 

Table 1. Baseline characteristics of patient and control 
participants in the Utah CAD study

Controls Patients P value
No. of subjects 212 462
Sex
 Male, n (%) 91 (43%) 356 (77%)
Age (yr)A 53.5 ± 6.9 55.6 ± 7.5 0.004
BMIA 28.3 ± 5.7 29.1 ± 5.2 0.040
 NA, n (%) 16 (3.5%)
Smoking < 0.001
 Yes, n (%) 43 (20%) 208 (45%)
 No, n (%) 169 (80%) 254 (55%)
Diabetes < 0.001
 Yes, n (%) 11 (5%) 108 (23%)
 No, n (%) 201 (95%) 354 (77%)
Hypertension < 0.001
 Yes, n (%) 54 (26%) 262 (57%)
 No, n (%) 158 (74%) 200 (43%)
Lipid-lowering medication 0.187
 Yes, n (%) 13 (6%) 44 (10%)
 No, n (%) 199 (94%) 418 (90%)
Total-C (mg/dL)A 189.5 ± 3.3 209.2 ± 4.6 < 0.001
 HDL (mg/dL) 46.7 ± 12.8 40.9 ± 1.2 < 0.001
 LDL (mg/dL) 103.1 ± 2.8 128.7 ± 4.2 < 0.001
 VLDL (mg/dL) 37.3 ± 22.5 39.3 ± 3 0.326
Serum TGs (mg/dL)A 178 ± 9.5 202.7 ± 1.4 0.008

Clinical characteristics of Utah CAD study patients (n = 212) and controls 
(n = 462). Variables were compared between patients and controls using 
a 2-tailed t test for continuous variables and a χ2 test for categorical 
variables, with a P value of less than 0.05 considered significant. AMean ± 
SD. NA, data not available.

 

Figure 2. Schematic of the Utah CAD study design and the subset of 
available biospecimens used for LC-MS/MS sphingolipid analysis. 
Machine learning was applied to the sphingolipidomic data to develop 
novel scores that associated with CAD beyond conventional lipid 
markers, such as cholesterol (created with BioRender).
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model fit, RF accuracy improves; if not, accu-
racy is diluted by meaningless variables. We 
therefore ran 2 RF models. For the first, our 
input included sphingolipid variables only. 
For the second, our input included sphingo-
lipid variables in concert with classical CVD 
risk markers (LDL-C, HDL-C, VLDL-C, and 
TGs). For our LASSO approach, the input 
included all sphingolipids and the aforemen-
tioned conventional CVD lipid markers. We 
evaluated the biomarker score classification 
using both ORs and receiver operator char-
acteristic–area under the curve (ROC-AUC) 
analysis (Figure 7 and Table 4). For both RF 
and LASSO approaches, the 5 lipids most 
positively associated with CAD were used to 
generate a score.

An RF-generated sphingolipid-inclusive 
CAD (RF-SIC) risk score (AUC = 0.75) out-
performed CERT1 (AUC = 0.67) and conven-
tional CVD risk biomarkers including LDL-C 
(AUC = 0.69) and total-C (AUC = 0.63) (Fig-
ure 7 and Supplemental Figure 1; supplemen-
tal material available online with this article; 
https://doi.org/10.1172/JCI131838DS1). An 
RF model generated from the sphingolip-
ids plus CVD risk markers (denoted with a 
superscript plus sign, RF-SIC+, AUC = 0.78) 
included LDL-C and displayed a more pre-
cise classification of CAD patients versus 
controls, as compared with the RF-SIC score 
that excluded LDL-C (Figure 7). When eval-
uated by OR, RF-SIC+ (OR 5.03, 95% CI: 
3.69–7.07) outperformed the RF-SIC score 
(OR 3.49, 95% CI: 2.71–4.58) (Figure 7).

The LASSO-generated SIC (LASSO- 
SIC) performed similarly to the RF-gener-
ated score (AUC for LASSO-SIC = 0.74; OR 
2.86, 95% CI: 2.67, 3.66). We conducted 
an exploratory analysis, adding a term that 
was the ratio of the lipid with the highest 
positive CAD association versus the lipid 
that had the most negative association. This 
resulted in a slight increase in predictability 

(LASSO-SIC2, AUC = 0.75; OR 3.06, 95% CI: 2.42, 3.94) (Figure 
7, Table 4, and Supplemental Figure 2). Adding in another ratio 
(i.e., the second-highest, positively associated lipid versus the 
second-highest, negatively associated lipid variables) enhanced 
performance further (LASSO-SIC3, AUC = 0.77; OR 3.91, 95% CI: 
2.98, 5.24) (Figure 7, Table 4, and Supplemental Figure 2).

On the basis of this information, we generated a final SIC 
score that included the highest-performing sphingolipid RF- and 
LASSO-generated components and yielded increased discrimi-
natory ability (AUC = 0.79; OR 4.67, 95% CI: 3.47, 6.43) (Figure 7 
and Table 4). Only sphingolipids, and not LDL-C, were included 
in the final SIC score, so that comparisons of an inclusive sphin-
golipid measurement with conventional CVD lipid markers could 

recognition within complex data sets and has been used previously 
to develop CVD risk prediction models. In comparison with classi-
cal statistical methods, machine-learning techniques can identify 
algorithms that predict health outcomes, even when relationships 
are complex and nonlinear (24, 25). Moreover, machine-learning–
generated models tend to be more generalizable (24, 25).

We created these new sphingolipid-based risk scores using ran-
dom forest (RF) and least absolute shrinkage and selection operator 
(LASSO) regression approaches for variable reduction and selec-
tion (Table 3). The RF method develops algorithms that can pre-
cisely classify observations into groups (i.e., CAD patients versus 
controls). With this method, the number of variables incorporated 
has a strong impact on model accuracy: if variables improve the 

Table 2. Means and interquartile ranges for LC-MS/MS measured sphingolipids in and 
control groups of the Utah CAD study

Lipid Controls Patients P value
Dihydro-cer d18:0,16:0 0.1 (0.8–0.2) 0.2 (0.2–0.3) <2 × 10–16

Dihydro-cer d18:0,18:0 0.09 (0.06–0.1) 0.1 (0.09–0.2) <2 × 10–16

Dihydro-cer d18:0,20:0 0.05 (0.03–0.07) 0.07 (0.05–0.1) 2.36 × 10–10

Dihydro-cer d18:0,22:0 0.2 (0.1–0.3) 0.3 (0.2–0.5) 1.39 × 10–12

Dihydro-cer d18:0,24:0 0.4 (0.3–0.7) 0.7 (0.4–1.2) 1.29 × 10–14

Dihydro-cer d18:0,24:1 0.2 (0.1–0.4) 0.4 (0.2–0.7) 4.26 × 10–15

Cer d18:1,16:0 131.3 (87.8–201.3) 217.2 (150.3–324.9) 5.83 × 10–16

Cer d18:1,18:0 48 (29.9–76.7) 86 (53.9–138.3) 5.40 × 10–16

Cer d18:1,20:0 44.1 (30.6–65.6) 68.1 (43.8–102.3) 6.12 × 10–13

Cer d18:1,22:0 264.4 (185.9–436.7) 399.1 (278.8–631.3) 3.63 × 10–11

Cer d18:1,24:0 98 (64.5–148.3) 157.6 (106.8–245.1) 1.61 × 10–15

Cer d18:1,24:1 264.7 (173.5–411.8) 437.6 (306.2–669.2) <2 × 10–16

GC-cer d18:1,16:0 364.7 (293.8–466.3) 366.3 (295–454.3) 0.98
GC-cer d18:1,18:0 64.4 (45.4–89) 70.7 (52.8–94.7) 0.30
GC-cer d18:1,20:0 66.3 (45.1–95.6) 94 (65.1–138.2) 3.34 × 10–8

GC-cer d18:1,22:0 494.7 (367.7–705) 713.5 (446.5–1022.2) 2.87 × 10–8

GC-cer d18:1,24:0 456.9 (321.1–591.1) 585.5 (408.2–879.4) 8.14 × 10–8

GC-cer d18:1 24:1 397.5 (287.4–547.1) 575.7 (399.9–866.1) 5.11 × 10–10

Dihydro-SM d18:0,16:0 45 (30.9–64.1) 61.1 (45.9–88.9) 1.22 × 10–9

Dihydro-SM d18:0,18:0 14 (7.5–25.2) 26.37 (14.3–49.6) 2.72 × 10–9

Dihydro-SM d18:0,20:0 28.3 (12.9–48.2) 48.4 (25–91.2) 1.25 × 10–7

Dihydro-SM d18:0,22:0 4.8 (2.2–10.2) 10.2 (5.9–21.4) 9.08 × 10–10

Dihydro-SM d18:0,24:0 0.9 (0.4–1.5) 1.5 (0.9–2.8) 1.57 × 10–10

Dihydro-SM d18:0,24:1 21.7 (10.7–42.1) 47.6 (26.3–92.2) 1.40 × 10–10

SM d18:1,16:0 592 (437.7–818.5) 779.3 (595–1066.3) 3.77 × 10–10

SM d18:1,18:0 155.1 (108.3–217.6) 186.7 (136.4–268.6) 2.54 × 10–6

SM d18:1,20:0 183 (78.7–354.3) 354.7 (183.3–698.6) 1.03 × 10–7

SM d18:1,22:0 359.4 (150.9–740) 718.7 (365.1–1462.2) 4.28 × 10–9

SM d18:1,24:0 154.2 (70.4–283.4) 293.8 (174.2–640.8) 1.44 × 10–9

SM d18:1,24:1 432.8 (200.5–879.1) 913.1 (478.2–1907.4) 1.85 × 10–9

Sphinganine 0.03 (0.02–0.04) 0.04 (0.03–0.06) 4.92 × 10–6

Sphingosine 0.08 (0.05–0.1) 0.15 (0.1–0.3) <2 × 10–16

A 2-tailed t test was used to compare concentrations of sphingolipids measured by LC-MS/MS 
for patients (n = 212) and controls (n = 462). P values are for the parsimonious age-, sex-, BMI-
adjusted model and were considered significant at a FDR of less than 0.05. Lipid concentrations are 
represented here as the mean (IQR). The fully adjusted model (i.e., age, sex, BMI, total-C, LDL-C, 
VLDL-C, TGs, hypertension, diabetes, smoking) was also run, but the results were not materially 
different from those of the parsimonious model, so only data from the minimally adjusted model are 
presented here. Cer, ceramide; GC-cer, glucosylceramide. Units are pmol lipid/mL serum.
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(95% CI: 0.03–0.06, P < 0.0001) (Supplemental Table 1). The 
SIC improved the ROC C-statistic, NRI, and IDI compared with 
AHA/ACC guideline risk factors alone, underscoring the power of 
including sphingolipids as biomarkers of CAD.

Many of the lipids extracted by our variable reduction tech-
niques [i.e., SM(d18:0/24:1), SM(d18:0/22:0), SM(d18:0/18:0), 
sphingosine, cer(d18:0/18:0), and cer(d18:0/16:0)] are transient 
intermediate lipid species and therefore reflect pathway activity 
and flux (for a full list of selected lipids, see Table 3). This finding 
suggests that although abundant ceramide species are implicated 
in driving disease states, these causal lipid species may not be the 
most sensitive clinical markers.

Stratification by CAD presentation. To further probe the clinical 
utility of the SIC score, we evaluated it in patients with CAD who 
were stratified into 3 subgroups: (a) patients having had a MI only; 
(b) patients who had a surgical intervention only (coronary artery 
bypass grafting [CABG] or percutaneous transluminal coronary 
angioplasty [PTCA]); or, (c) patients who had an MI in combina-
tion with a surgical intervention. Patients undergoing a surgical 
intervention only are considered to have a more tightly controlled 
disease state, whereas those with both surgical intervention and 
MI are likely to be in a more severe or uncontrolled disease state 
(28). Patients with an MI only are considered intermediate. As 
compared with the control population (i.e., all non-cases), the 
CERT1 and SIC scores were highest in the individuals with the 
more severe disease presentation (ORper SD > 1.80, P < 5 × 10–11; 

be performed. A list of the lipid components in each novel score is 
provided in Table 3.

Comparison of machine-learning–generated scores with con-
ventional markers of CAD. We next compared the ability of SIC, 
CERT1, and standard clinical biomarkers (TGs, LDL-C, etc.) to 
classify CAD patients compared with controls (Figure 8A and 
Table 4). We provide the following ROC curves (with the AUC) for 
comparison (Figure 8, B–G): clinical factors alone (age, sex, BMI, 
diabetes, hypertension, smoking; AUC = 0.63); clinical factors plus 
CERT1 (AUC = 0.66); clinical factors plus SIC (AUC = 0.72); clini-
cal factors plus standard clinical lipids (AUC = 0.64); CERT1 plus 
clinical factors and clinical lipids (AUC = 0.64); and SIC plus clin-
ical factors and clinical lipids (AUC = 0.65). Since the AUC can be 
an insensitive measure of model performance, particularly when 
the initial model (i.e., American Heart Association/American Col-
lege of Cardiology [AHA/ACC] risk factors) performs strongly, we 
also calculated a continuous net reclassification index (NRI) and 
an integrated discrimination index (IDI) (26). These scores pro-
vide a more comprehensive picture of model performance and a 
means to assess the value of including SIC or CERT1 in addition 
to standard clinical biomarkers. For SIC, the NRI was 0.67 (95% 
CI: 0.52–0.81, P < 0.0001) and the IDI was 0.10 (95% CI: 0.08–
0.11, P < 0.0001) (Supplemental Table 1). As a frame of reference, 
an NRI exceeding 0.6 is considered strong and 0.4 is considered 
intermediate (27). The SIC was superior to CERT1, which had an 
NRI of 0.48 (95% CI: 0.32–0.64, P < 0.0001) and an IDI of 0.04 

Figure 3. Forest plot of OR (95% CI) for CAD per SD of sphingolipid species in the Utah CAD study. (A) Unadjusted OR. (B) Fully adjusted OR (age, sex, 
BMI, total-C, LDL-C, VLDL-C, TGs, hypertension, diabetes, smoking). (C) Minimally adjusted OR (age, sex, BMI) model. The numerically presented ORs (95% 
CI) represent the minimally adjusted age, sex, and BMI model.
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P heterogeneity < 2 × 10–16) (Figure 9). By comparison, standard 
clinical markers including LDL-C, total-C, and TGs did not show a 
preferential increase for individuals in this, as opposed to any oth-
er, category (Table 5). These findings suggest that ceramide-based 
scores may have utility for risk stratification, which is in line with 
previous studies that demonstrated the capacity of ceramides, but 
not LDL-C, to predict secondary cardiac events (17).

Discussion
We applied a highly quantitative, targeted mass spectroscopy plat-
form to measure 32 sphingolipids in serum samples from patients 

with CAD compared with samples from healthy controls. Thirty 
of the 32 sphingolipids assayed were elevated among the dis-
eased subjects, displaying a robust positive association with CAD 
after controlling for multiple comparisons. We applied unbiased 
machine-learning variable reduction techniques to generate a 
novel sphingolipid score we have termed the sphingolipid-inclu-
sive CAD (SIC) risk score, which includes the following compo-
nents: dihydro-cer(d18:0/18:0), cer(d18:1/18:0), cer(d18:1/22:0), 
cer(d18:1/24:0), dihydro-SM(d18:0/24:1), SM(d18:1/24:0), 
SM(d18:1/18:0), and sphingosine. Novel scores were calculated 
by summing raw lipid values multiplied by their β coefficients 

Figure 4. OR (95% CI) of CAD per SD of previously reported lipid markers of CVD in the Utah CAD study. (A) Unadjusted OR. (B) Fully adjusted OR (age, 
sex, BMI, hypertension, diabetes, smoking). (C) Minimally adjusted OR (age, sex, BMI). The numerically presented ORs (95% CI) represent the minimally 
adjusted age, sex, and BMI model. Since we compared clinical lipid markers (LDL, VLDL, HDL, TGs) with ceramide ratios and scores, they were not included 
in the fully adjusted model. CERT1, cardiac event risk test (12-point scale). HDL-C, LDL-C, VLDL-C, and TG values are given in mg/dL.

Figure 5. OR (95% CI) of CAD per SD of summed sphingolipid variables in the Utah CAD study. (A) Unadjusted OR. (B) Fully adjusted OR (age, sex, BMI, 
total-C, LDL-C, VLDL-C, TGs, hypertension, diabetes, smoking). (C) Minimally adjusted OR (age, sex, BMI). The numerically presented ORs (95% CI) represent 
the minimally adjusted age, sex, and BMI model. Total SM, total sphingomyelin; Total C16, sum of all C16 acyl chains; Total C18, sum of all C18 acyl chains; 
Total C20, sum of all C20 acyl chains; Total C22, sum of all C22 acyl chains; Total C24, sum of all C24 acyl chains; Total C24:1, sum of all C24:1 acyl chains.
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from the regression output and then log transformed. This score 
approached a strong C-statistic of 0.79 and an ORper SD of 4.67 
(95% CI: 3.46–6.43) for risk of CAD, outperforming other serum 
indices of CVD risk including LDL-C alone and the CERT1 cera-
mide risk score. Serum ceramides were also associated with dis-
ease severity, as they were highest among individuals with the 
most severe CAD manifestations. These findings support the idea 
that serum sphingolipids are strong biomarkers of CAD that could 
have clinical utility for improving risk stratification.

These data are consistent with several other studies using 
untargeted lipidomic platforms, which frequently identified sphin-
golipids as candidate biomarkers of CVD (17, 18, 20, 22, 29–31). 
Ceramide concentrations and scores were shown to be elevated 
among individuals with acute MI (16), CAD (22, 29, 32), acute cor-
onary syndrome (22), and recurrent major adverse cardiac events 
(20). The concentrations were also increased in individuals with 
insulin resistance or type 2 diabetes (33–35), two underlying driv-

ers of CV morbidity (33, 34). These studies implicate ceramides as 
markers of disease pathology, disease risk, and mortality and as 
a tool for improved risk stratification. The best-characterized cer-
amide score is CERT1, originally developed by Zora Biosciences 
and validated in multiple prospective clinical studies (17, 18, 20, 
22, 29–31). Though most of the ceramide species contained within 
CERT1 were individually predictive of CAD, they were not iden-
tified as the most strongly CAD-associated lipids using our unbi-
ased variable selection methods. Furthermore, the CERT1 inclu-
sion of cer(18:1/24:0) in the denominator was counterproductive; 
cer(18:1/24:0) was itself a good marker of CAD. Nonetheless, 
CERT1 still performed similarly in this data set as compared with 
previous prospective cohort studies, thus endorsing its validity as 
a robust index of CVD risk.

The most widely used biomarker of CV pathophysiology, 
LDL-C, also performed well in this data set. However, SIC and 
CERT1 showed stronger discriminatory power than did LDL-C as 

Figure 6. GGM of correlations between ceramide species and conventional lipid markers in patients with CAD. Conditioned on the presence of all other 
analytes (r ≥ 0.20). Analytes are represented by nodes (gray hexagons) and conditional correlations by edges (lines). Pink lines indicate positive correla-
tions and blue lines indicate the inverse. Line width represents the strength of the conditional correlation, and the lack of a line indicates no detectable 
relationship above the threshold. GlcCer, glucosylceramide.
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failure, while simultaneously diminishing ventricular remodeling, 
fibrosis, and macrophage infiltration following MI (36–39). More-
over, such ceramide-lowering interventions resolve dyslipidemia, 
insulin resistance, hypertension, atherosclerosis, and hepatic ste-
atosis (7, 40–49), conditions that underlie CVD. Manipulations of 
the de novo ceramide synthesis pathway further suggest that cer-
tain ceramide species are deleterious, whereas others are benign 
or beneficial (11–14); those containing the C16 or C18 acyl chain 
(11–13) and include the double bond (i.e., ceramides, not dihy-
droceramides) (7) in the sphingolipid backbone are particularly 
harmful. Last, studies in rodents revealed that ceramide degra-
dation is a primary means by which adiponectin receptors, which 
are ligand-activated ceramidases (50), exert their antidiabetic, 
cardioprotective, and insulin-sensitizing actions (50–52). Cumu-
latively, these data identify ceramides as some of the more toxic 
metabolites accumulating in states of metabolic distress.

Our machine-learning variable reduction approaches (RF, 
LASSO) for score generation extracted sphingosine, dihydro- 
cer(d18:0/16:0), dihydro-cer(d18:0/18:1), dihydro-SM(d18:0/ 
24:1), dihydro-SM(d18:0/22:0), SM(d18:1/18:0), cer(d18:1/18:0), 
and cer(d18:1/24:0) as the lipid species most positively associat-

assessed by ROC-AUC. Interestingly, ceramides were not strongly 
correlated with LDL-C (<0.20), though LDL-C was strongly cor-
related with other conventional lipid markers such as serum TGs. 
The independence of these biomarkers is consistent with the idea 
that they lie in different biosynthetic pathways, both of which con-
tribute to disease progression.

National screening and therapeutic guidelines focus on cho-
lesterol as the primary biomarker of CV health, even though it 
shows only modest predictive utility for risk assessment and lacks 
the sensitivity to discriminate between patients at risk for second-
ary cardiac events (17). Current guidelines dictate that patients 
diagnosed with CAD belong to a high-risk population, even 
though this classification may be inaccurate for most individuals 
(17). By combining LDL-C with novel sphingolipid risk scores, a 
more complete risk assessment may be performed. Such a tool will 
enhance patient classification accuracy and help the clinician to 
coordinate disease surveillance or prescribe clinical interventions.

Ceramides are not only biomarkers of CV health but are 
probably causative agents in disease progression (15). Studies in 
rodent models revealed that pharmacological inhibition of cera-
mide synthesis prevents ischemic cardiomyopathy–related heart 

Table 3. Novel sphingolipid scores for CAD generated through the application of machine-learning techniques

Score Components
RF-SIC Sphingosine, cer(d18:0/18:0), cer(d18:0/16:0), SM(d18:0/24:1), SM(d18:0/22:0)
RF-SIC+ LDL-C, sphingosine, cer(d18:0/18:0), cer(d18:0/16:0), SM(d18:1/24:0)
LASSO-SIC SM(d18:0/24:1), cer(d18:1/18:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0)
LASSO-SIC2 SM(d18:0/24:1) / SM(d18:1/18:0), cer(d18:1/18:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0)
LASSO-SIC3 SM(d18:0/24:1) / SM(d18:1/18:0), cer(d18:1/18:0) / cer(d18:1/22:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0)
SIC SM(d18:0/24:1) / SM(d18:1/18:0), cer(d18:1/18:0) / cer(d18:1/22:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0), sphingosine

RF and LASSO regression were applied for variable reduction and selection.

Figure 7. OR (95% CI) of CAD per SD of novel scores generated through the application of machine-learning approaches in the Utah CAD study. (A) 
Unadjusted OR. (B) Multivariable-adjusted OR (age, sex, BMI, diabetes, hypertension, smoking). (C) Minimally adjusted OR (age, sex, BMI). The multivari-
able models for this analysis do not include HDL-C, LDL-C, VLDL-C, total-C, or TGs, as they were included as input variables.
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cycles (54, 55). We emphasize the exciting fact that sphingolipids 
appear to serve as strong biomarkers across generations, as any 
robust clinical index should (56).

In conclusion, sphingolipids have emerged as robust, cho-
lesterol-independent markers of CVD risk. Their inclusion in a 
clinician’s armamentarium has the potential to greatly improve 
the ability to identify at-risk patients. Moreover, our findings sup-
port the development of therapeutics targeting sphingolipids as a 
means of ameliorating CVD. Nonetheless, our data suggest that 
further refinement of sphingolipid-based scores may be neces-
sary. Expanding the diversity of sphingolipid entities included in 
prospective patient studies will provide a more complete picture 
of the sphingolipidome for the prediction CVD risk.

Methods
Study design. We evaluated the association of serum sphingolipids with 
CAD using existing samples and clinical and demographic informa-
tion obtained from a case-control study conducted in Utah, USA (n = 
462 patients; n = 212 controls) (57).

Study population. Patients were recruited between 1990 and 
2000 from Intermountain Healthcare discharge records or the Family 
Health Tree Program in Utah (58). The patients were aged 30–75 years 
and had a diagnosis of CAD, defined by the original study recruitment 
criteria as MI, PTCA, or CABG. A large proportion of patients were 
male (77%), probably because premature CAD incidence rates are 
higher for men than women (59). The patients had an age of onset sim-
ilar to that of at least 1 first-degree relative (parent, sibling, or child) 
(Table 1). To limit artifactual effects of the acute cardiac event on lipid 
levels, samples were collected at least 6 months following the event.

Control subjects representative of the Utah population (57, 60, 61) 
were randomly sampled from 1980–1986 from (a) the parents of stu-
dents participating in the Family Health Tree Program (58), a study 
of family health among Utah high schools; and (b) spouse pairs par-
ticipating in a study on psychological factors concerning CAD (61). 
The control participants were aged 30–75 years and had no clinical 
diagnosis of CAD, but they could have a family history of CAD. Con-
trol subjects taking vasoconstrictive drugs (i.e., beta blockers, calcium 
channel blockers, and other antianginal medications) were excluded.

Both patient and control populations were selected from the same 
source population of Salt Lake City, Utah. The number of patients  
(n = 462) was larger than that of control subjects (n = 212) because of 
the nature of the available biospecimens, though no significant differ-
ences between this subset of specimens available for analysis and the 
original study sample were noted (Supplemental Table 2).

Clinical and demographic characteristics. Demographic informa-
tion (including age and sex) and medical and family history data were 
obtained by trained interviewers. Covariates considered in the analy-
ses included age (years); sex (male or female); BMI (kg/m2), smoking 
(“ever” or “never” to smoking daily for 1 year or more); total-C (mg/
dL), LDL-C (mg/dL); VLDL-C (mg/dL); HDL-C (mg/dL); TGs (mg/
dL); lipid medication (statins, fibrates, and other hyperlipidemia-man-
aging drugs taken at the time of the blood draw, yes/no); diabetes (pri-
or physician diagnosis or fasting glucose ≥126 mg/dL); and hyperten-
sion (prior physician diagnosis or blood pressure ≥140/90 mmHg).

Blood sample collection, processing, and storage. Blood samples 
were collected in the morning following a 12- to 16-hour overnight 
fast and prepared according to the guidelines of the Lipid Research 

ed with CAD. This finding suggests that the more abundant cer-
amides, including those that have been established as drivers of 
tissue and metabolic dysfunction, may not be the most sensitive 
biomarkers for CAD. Rather, less-abundant lipids that serve as 
markers of increased ceramide biosynthetic flux may provide a 
more accurate and comprehensive readout of disease status.

Though some prior studies have described associations 
between a subset of ceramides and CVD and related comorbidi-
ties, we believe that several aspects of this study are novel. First, 
we conducted a comprehensive ceramide assessment using a well- 
validated, targeted lipidomic platform that included less-abundant 
lipid species, leading to the production of a more robust sphingolip-
id score (i.e., SIC). We note that such targeted platforms are more 
quantitatively sound than shotgun lipidomic assessments. Second, 
we focused on patients with early-onset CAD (average age of onset 
= 47.8 years), thus enhancing the power of our study and limiting 
the influence of factors associated with aging. Third, we applied 
machine learning to develop new ceramide-based scores that out-
performed prior measures, including LDL-C and CERT1. Machine 
learning allowed us to enhance the accuracy of models and reduce 
the dimensionality of data sets (53).

Despite these advances, our study has some limitations. First, 
it is limited by its case-control design and by the racial homoge-
neity of our sample population, limiting generalizability. Second, 
our target lipid class, sphingolipids, includes highly diverse and 
lowly abundant lipid species; this diversity can lead to increased 
variability, as seen by our high coefficients of variation (median: 
11.76, IQR: 6.85–20.53). Although these coefficients of variation 
are not ideal, they are comparable to those of previous sphingolip-
idomic studies. Third, this study lacks a validation cohort for the 
novel SIC score. We note, however, that this cohort recapitulated 
the findings relating to the CERT1 score, which was generated 
using alternative patient data sets. And fourth, some biospeci-
mens were collected as far back as the 1990s; diet and lifestyle 
have changed since this study was initiated, and prolonged stor-
age could negatively impact sample quality. Nonetheless, sam-
ples from patients and controls were collected and handled in 
the same manner, so relative differences (and calculated ORs for 
CAD) should be sustained. Moreover, prior studies have shown 
that sphingolipids remain stable over storage periods as long as 
16 years after sample collection and through multiple freeze-thaw 

Table 4. AUC of ROC plots for lipid-based clinical indices

Clinical index C-statistic
TGs 0.54
LDL-C 0.69
CERT1 0.67
RF-SIC 0.75
RF-SIC+ 0.78
LASSO-SIC 0.74
LASSO-SIC2 0.75
LASSO-SIC3 0.76
SIC 0.79

ROC curves were generated and C-statistics were calculated for each 
clinical index.
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Lipid extraction. The method for conducting high-throughput 
lipid extraction from serum samples was modified from a method 
described previously (20). The internal standard (IS) stock solution 
containing sphingomyelin (d18:1/17:0) (2502 pmol/sample), dihydro- 
cer (d18:0/18:1) (5 pmol/sample), d7-ceramide (d18:1-d7/16:0) (6 
pmol/sample), d7-ceramide (d18:1-d7/18:0) (2 pmol/sample), d7-cer-
amide (d18:1/24:0) (152 pmol/sample), d7-ceramide (d18:1/24:1) (20 
pmol/sample), and glucosylceramide (d18:1/17:0) (50 pmol/sample) 

Clinic’s program Manual of Laboratory Operations (62). Lipoprotein 
concentrations were measured using a microscale ultracentrifugation 
method (63, 64). Serum samples were aliquoted and stored at –80°C. 
The collection laboratory participates in the Centers for Disease Con-
trol Lipid Standardization Program (65). Of note, blood sphingolip-
ids have been shown to be highly stable over relevant preanalytical 
conditions including multiple freeze-thaw cycles, temperature, long-
term storage, and centrifugation time/speed (54, 55).

Figure 8. Comparison of conventional CAD risk markers with novel sphin-
golipid scores in the Utah CAD study. (A) ROC curve for novel SIC score and 
conventional risk markers. (B) ROC curve for AHA/ACC-based clinical risk fac-
tors (age, sex, BMI, diabetes, hypertension, smoking). (C) The same AHA/ACC 
guidelines in addition to the CERT1 score and (D) the SIC score. ROC curves for 
(E) the aforementioned AHA/ACC clinical markers in addition to lipid markers 
(total-C, HDL-C, LDL-C, VLDL-C, TGs), (F) the clinical and lipid markers in addi-
tion to CERT1, and (G) the SIC score. For B–G, the C-statistics are indicated on 
the respective graphs by AUC.
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flow of 11 L/min and a nebulizer pressure of 30 psi. The sheath gas 
temperature was 400°C, the sheath gas (N2) flow was 12 L/min, the 
capillary voltage was 4000 V, the nozzle voltage was 500 V, high-pres-
sure radiofrequency was 190 V, and low-pressure radiofrequency was 
120 V. The injection volume was 2 μL, and the samples were analyzed 
in a randomized order, with the pooled QC sample injected 8 times 
throughout the sample queue. With 8 controls per plate, there were 
80 QC injections in totality. Mobile phase A consisted of ACN/H2O 
(60:40 v/v), and mobile phase B consisted of IPA/ACN/H2O (90:9:1 
v/v), both of which contained 10 mM ammonium formate and 0.1% 
formic acid. The chromatography gradient started at 15% mobile 
phase B, increased to 30% B over 1 minute, increased to 70% B from 
1.0–1.1 minutes, was held at 70% B until 4.5 minutes, and increased to 
99% B from 4.5–4.51 minutes, at which point it was held until 5 min-
utes, and then returned to the starting conditions at 5.1 minutes. Post-
time was 1.5 minutes, and the flow rate was 0.5 mL/min throughout. 
Collision energies and cell accelerator voltages were optimized using 
sphingolipid standards with dMRM transitions as [M+H]+→[m/z = 
266.3 or 284.4] for dihydroceramides; [M-H2O+H]+→[m/z = 264.2] 
for ceramides; and [M-H2O+H]+→[m/z = 271.3] for isotope-labeled 
ceramides. Sphingomyelins were monitored with dMRM transitions 
as [M+H]+→[m/z = 184.4]. Sphingolipids without available standards 
were identified on the basis of high-resolution LC-MS, quasi-molec-
ular ions, and characteristic product ions. Results from the LC-MS 
experiments were collected using an Agilent Mass Hunter Worksta-
tion and analyzed with Agilent Mass Hunter Quant B.07.00 software. 
Sphingolipids were quantitated on the basis of peak area ratios to the 
internal standards.

Lipid species. A total of 32 lipids were quantified including dihy-
droceramides [dihydro-cer(d18:0)]; ceramides [cer(d18:1)]; glucosyl-
ceramides [glucosyl-cer(d18:1)]; dihydrosphingomyelins [dihydro- 
SM(d18:0)]; sphingomyelins [SM(d18:1)]; sphinganine; and sphin-
gosine. For each of these, except for sphinganine and sphingosine, 
acyl chain lengths of 16, 18, 20, 22, and 24 and a carbon length of 24:1 
were reported. The median (IQR) coefficient of variation (11.76, 6.85–
20.53) was comparable to previously published sphingolipid data (66).

To calculate the CERT1 score that is in clinical use (50), we calcu-
lated C16:0, C18:0, and C24:1 concentrations and their ratio to C24:0, 
assigning 2 points to those with levels in the fourth quartile, 1 point 
to the third quartile, and 0 points to the bottom 2 quartiles, with total 
CERT1 scores ranging from 0–12 (22).

was prepared in methanol. Serum samples were thawed at 4°C for 12 
hours before proceeding with lipid extraction. Samples were extracted 
in a 96-well format with 3 columns of controls: a 600-μL isopropanol 
double blank (DB), a process blank (PB) with 50 μL PBS, and a pooled 
control human serum sample (quality control [QC]) (MilliporeSig-
ma). Serum (50 μL) was transferred into the remaining 72 wells of the 
96-deep-well plate (USA Scientific). The IS mix (550 μL) and protein 
precipitation (PPT) solvent (ethyl acetate/isopropanol, 2:8, v/v) were 
added to each sample (with the exception of the DB) for a final volume 
of 600 μL per well. The plate was sealed using a silicone cap mat (Ana-
lytical Sales and Products). Samples were placed on a shaker at room 
temperature for 10 minutes followed by a 10-minute centrifugation at 
3000 ×g. The supernatant was then transferred onto a 96-well plate 
(USA Scientific) and sealed with heat-sealing foil (Beckman Coulter), 
and plates were stored at 4°C preceding liquid chromatography tan-
dem mass spectrometry (LC-MS/MS) analysis.

Lipid standards and other chemicals and reagents. Sphingomyelin 
(d18:1/17:0), dihydro-cer (d18:0/18:1), d7-ceramide (d18:1-d7/16:0), 
d7-ceramide (d18:1-d7/18:0), d7-ceramide (d18:1-d7/24:0), d7-ce-
ramide (d18:1-d7/24:1), and glucosylceramide (d18:1/17:0) were 
obtained from Avanti Polar Lipids. An Acquity CSH C18, 1.7-μm Van-
Guard Pre-Column and an Acquity CSH C18, 2.1 × 50 mm 1.7-μm 
column were obtained from Waters Corporation. 2-propanol, acetoni-
trile, and formic acid (all LC-MS grade) were obtained from Honey-
well, Burdick & Jackson. HPLC-grade ethyl acetate was obtained from 
MilliporeSigma. Ammonium acetate was acquired from MPBio

LC-MS/MS analysis. Lipid extracts were separated on an Acqui-
ty CSH C18 1.7 μm 2.1 × 50 mm column with a 1.7 μM VanGuard 
Pre-Column (Waters Corporation) maintained at 60°C and connected 
to an Agilent HiP 1290 Sampler and an Agilent 1290 Infinity Pump, 
equipped with an Agilent 1290 Flex Cube and an Agilent 6490 triple 
quadrupole (QqQ) mass spectrometer. Sphingolipids were detected 
using dynamic multiple reaction monitoring (dMRM) in positive ion 
mode. The source gas temperature was set to 210°C, with a gas (N2) 

Table 5. Stratification of Utah CAD participants by disease 
severity

Controls Surgery alone MI alone MI + surgery
n (%) 212 (100%) 75 (16%) 82 (18%) 305 (66%)
CERT1 3.24 ± 2.7 3.9 ± 2.5 5 ± 3.3 5.4 ± 3.2
SIC 5.5 ± 2.4 10.7 ± 9.3 10.8 ± 7.5 12.2 ± 12.5
LDL-C 103.1 ± 2.8 112 ± 37.4 142.9 ± 47.6 128.9 ± 402
Total-C 189.9 ± 3.3 192 ± 43.4 220.6 ± 49.1 210.2 ± 44.4
TGs 178 ± 9.5 193 ± 133.2 175.8 ± 89.3 212.2 ± 152.3

Clinical lipid marker serum concentrations were stratified by disease 
severity and are presented as concentration (mg/dL) ± SD. Surgery denotes 
PTCA or CABG. 

Figure 9. Association of sphingolipid scores with CAD, stratified by 
disease presentation (MI alone, surgery alone, MI plus surgery). OR (95% 
CI) for CAD per SD of sphingolipid species in the Utah CAD study, adjusted 
for age, sex, and BMI.
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input, 32 sphingolipid variables were used, with a default of 500 deci-
sion trees to generate an optimal number of variables per tree deter-
mined for each of 5 cross-validation training sets. Variable importance 
scores were assigned through permutation testing, and the top 5 vari-
ables averaged across validation sets were placed into a single model. 
A second input included the 32 sphingolipid variables and classical 
CAD markers (i.e., cholesterol, TGs, etc.). To examine conditional cor-
relations (r ≥ 0.20) between ceramides and conventional biomarkers 
in CAD cases, we generated a GGM with visualization in Cytoscape 
(70–75). GGMs model conditional dependencies among continuous 
variables with multivariate Gaussian distributions. Recent studies 
have demonstrated how GGMs, which are data driven, can reconstruct 
biological pathway reactions (76). We generated a GGM to determine 
whether our sphingolipid panel was redundant in the presence of tra-
ditional clinical lipid biomarkers (i.e., whether they were highly cor-
related, conditioned on the presence of all other lipids).

For comparison of the ability of different clinical markers and 
scores to distinguish between true cases and controls, we applied 
ROC-AUC analysis and calculated the NRI and IDI (Supplemental 
Table 1 and ref. 77). The ROC curves and C-statistics are presented in 
Supplemental Figure 1.

All analyses were performed in R 3.5.1 (78). Associations were 
considered statistically significant at a FDR below 0.05 to control for 
multiple statistical tests (Supplemental Table 8).

Study approval. Lipid quantification and secondary data analysis 
of these patient samples were approved by the IRB of the University of 
Utah, and all patients provided written informed consent.
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Statistics. Participant characteristics were summarized as the mean 
± SD for continuous variables or N (percentage) for categorical variables 
(Table 1). Differences between patients and controls were compared 
using a 2-tailed Student’s t test for continuous variables and a χ2 test for 
categorical variables. P values of less than 0.05 were considered signif-
icant. Lipid species were summarized as medians and IQRs using the 
original scale (Table 2) and were log10 transformed for analysis, owing to 
non-normal distribution. When assessing the effect of summed molec-
ular lipid species or acyl chains on CAD, the variables were summed pre-
ceding log transformation.

Multivariable-adjusted and unadjusted ORs and 95% CIs were 
estimated using logistic regression and reported per the SD (of lipid 
species). A priori–defined covariates based on current ACC and AHA 
guidelines were considered in stepwise variable selection modeling 
(Supplemental Table 3). These covariates included the following: age, 
sex, BMI, total-C, LDL-C, HDL-C, VLDL-C, TGs, hypertension, dia-
betes, and smoking. We calculated the percentage of change in the OR 
from the parsimonious age-, sex-, and BMI-adjusted model with the 
addition of each covariate, though no covariate affected all sphingo-
lipids. Our final parsimonious model included age, sex, and BMI, but 
we also show results for a fully adjusted model including all AHA/
ACC guideline–based risk factors in the main figures for comparison. 
In addition to testing whether AHA/ACC-based risk factors were con-
founders of the sphingolipid-CAD relationship, we evaluated some of 
these variables for potential effect modification through the inclusion 
of a variable by lipid interaction term in the logistic regression models 
and evaluation of the significance of the interaction term using a likeli-
hood ratio test (Supplemental Table 4 and ref. 67). Where effect mod-
ification was present (P for the interaction term < 0.05; Supplemental 
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