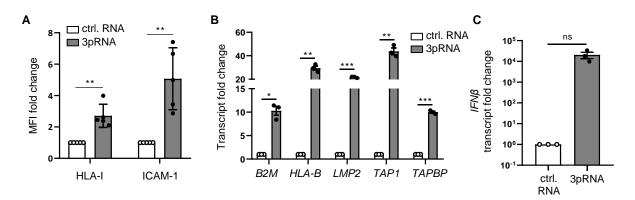

Supplemental Figure 1. RIG-I activation upregulates HLA-I expression in different melanoma patient models. (A-C) Melanoma cell lines established from metastases of patients Ma-Mel-62 (A), Ma-Mel-66b (B) and Ma-Mel-47 (C) were transfected with 3pRNA or control (ctrl.) RNA. Following an incubation of 20-24 h, cells were analyzed for HLA-I and ICAM-1 surface expression by flow cytometry. Left, representative histograms; right, relative MFI given as mean (+ SEM) of $n \ge 3$ independent experiments. Significantly different experimental groups: *p<0.05, **p<0.01, ***p<0.001, 2-tailed paired t-test.


Supplemental Figure 2. RIG-I activation in melanoma cells enhances recognition by autologous CD8+ T cells. (A) Melanoma cells Ma-Mel-66b were transfected with 3pRNA or control (ctrl.) RNA following an incubation of 20-24 h. Activation of bulk CD8+ T cells by autologous melanoma cells was determined by IFN γ ELISpot assay. w/o, incubation of T cells without tumor cells. Left, representative IFN γ ELISpot result; right, mean IFN γ spots (+ SEM) of n = 3 independent experiments. Significantly different experimental groups: *p<0.05, 2-tailed paired t-test. (B) HLA-I genotypes of indicated cell lines.(C) Ma-Mel-86c cells were treated with IFN α or IFN γ for 20-24 h. Controls were left untreated. HLA-I and ICAM-1 surface expression was measured by flow cytometry. Relative MFI given as mean (+ SEM) of n = 2 independent experiments.

Supplemental Figure 3. Mutant JAK1-G600W abrogates IFN signaling in Ma-Mel-61g and Ma-Mel-61h melanoma cells. (A) Ma-Mel-61b and Ma-Mel-61g cells, treated with IFN α -2b or IFN γ for 48 h, were analyzed for (p)STAT1 and IRF1 expression by immunoblot; GAPDH, loading control. Representative data of n = 3 independent experiments. (B) Mutant JAK1-G600W Ma-Mel-61h cells, transfected with an expression plasmid encoding wild-type JAK1 followed by treatment with IFN γ for 48 h, were analyzed for expression of the indicated proteins. Representative data from n = 3 independent experiments.

Supplemental Figure 4. RIG-I activation enhances HLA-I antigen presentation in IFN-resistant Ma-MeI-61g melanoma cells. (A-C) Ma-MeI-61g cells were transfected with 3pRNA or control (ctrl.) RNA and subjected to further analyses following an incubation of 20-24 h. (A and B) HLA-I APM (A) and $IFN\beta$ (B) mRNA expression analyzed by qPCR. Relative expression given as mean (+ SEM) of n = 3 independent experiments. Significantly different experimental groups: *p<0.05, **p<0.01, ***p<0.001, 2-tailed paired t-test. (C) Migration of CD8+ T cells towards conditioned medium from 3pRNA- or ctrl. RNA-transfected Ma-MeI-61g cells measured in transwell-assays after an incubation of 4 h. Representative results of n = 3 independent experiments. ns, not significant; 2-tailed paired t-test. (D) Chemokine-induced CD8+ T cell migration. Migration of CD8+ T cells towards medium supplemented with recombinant CCL5 or CXCL10 was determined in transwell-assays after 4 h of incubation. Representative results of n = 2 independent experiments.

Supplemental Figure 5. RIG-I activation enhances HLA-I antigen presentation in 3pRNA-treated UKE-MeI-154c cells. (A-C) UKE-MeI-154c cells were transfected with 3pRNA or control (ctrl.) RNA and subjected to further analyses following an incubation of 20-24 h. (A) HLA-I and ICAM-1 surface expression measured by flow cytometry. Relative MFI given as mean (+ SEM) of n \geq 3 independent experiments. (B and C) HLA-I APM component (B) and $IFN\beta$ (C) mRNA expression was quantified by qPCR. Relative expression given as mean (+ SEM) of n = 3 independent experiments. Significantly different experimental groups: *p<0.05, **p<0.01, ***p<0.001; ns, not significant; 2-tailed paired t-test.

Supplemental Table 1: Differential expression analysis results for HLA-I APM genes in the anti-CTLA-4-treated cohort. Mann-Whitney U test p-values and FDR-corrected q-values are shown for the comparison of individual HLA-I APM gene expression in clinical responders vs. non-responders.

Gene	P-value	Q-value
HLA-A	0.284	0.365
HLA-B	0.231	0.347
HLA-C	0.344	0.387
TAP1	0.036	0.148
TAP2	0.231	0.347
TAPBP	0.486	0.486
B2M	0.020	0.148
PSMB9	0.049	0.148
PSMB8	0.082	0.185

Supplemental Table 2: Differential expression analysis results for HLA-I APM genes in the anti-PD-1-treated cohort. Mann-Whitney U test p-values and FDR-corrected q-values are shown for the comparison of individual HLA-I APM gene expression in clinical responders vs. non-responders.

Gene	P-value	Q-value
HLA-A	0.038	0.172
HLA-B	0.195	0.339
HLA-C	0.111	0.333
TAP1	0.458	0.515
TAP2	0.186	0.339
TAPBP	0.226	0.339
B2M	0.034	0.172
PSMB9	0.441	0.515
PSMB8	0.604	0.604