С

D







Supplemental Figure 1: Cyclin A2-deficiency in colonic epithelial cells induces architectural changes in the mucosa and inflammation. (A). HE staining illustrating the subdivision of the colon in 3 parts for the histological analysis, i.e. the distal part close to the rectum, transverse and proximal part, close to the caecum.(B). Representative HE staining of irregular formed crypts from a constitutive and inducible (day8 following tamoxifen injection) knockout mouse by comparison to a control. Please note the immune cell infiltration indicated by arrowheads. Scale bar:  $100\mu$ m. (C). Quantification of the F4/80 staining in control (n=3), constitutive (n=3) and inducible cyclin A2-deficient mice (n=4; expressed as mean  $\pm$  SEM, \* p<0.05; two-tailed unpaired t-test) expressed as number of F4/80 positive cells per mm<sup>2</sup> of colon tissue (D) Representative images of serial sections from *VilCreERT2Ccna2fl/fl* colons (day8) immunostained for F4/80, YM1 and TGF- $\beta$ . Scale bar: 100µm.



Supplemental Figure 2: RNA-seq analysis of altered expression of genes involved in cell cycle regulation and DNA double-strand break repair in cyclin A2 deficient colonic epithelial cells (CEC). (A). Sashimi plot of *Ccna2* reads for each mouse-derived CEC sample analyzed by RNA-seq. Plots show deletion of exons 2 to 7 in transcripts of CEC from *VilCreCcna2fl/fl* mice compared to controls. The coverage for each alignment track is plotted as a bar graph. Arcs representing splice junctions connect exons. Arcs display the number of reads split across the junction (junction depth). Genomic coordinates and the gene annotation track are shown below the junction tracks. (B). Gene Ontology over-representation analysis showing the genes up-regulated in *Ccna2 fl/fl* mutant mice compared to controls. The top 20 of Gene Ontology terms (Biological Process) are shown here. The p-values have been corrected for multiple testing by the Benjamini-Hochberg method. In this dot plot, the color represents the adjusted p-values and the dot size represents the number of genes for each term. The gene ratio is shown on the x-axis. (C). Alterations in the double-strand break KEGG pathway in cyclin A2 deficient CEC. Genes up-regulated in *VilCreCcna2fl/fl* mice samples are in red, whereas downregulated genes are in blue. The scale indicated on the figure represent the log2 Fold change. In grey are the genes absent from our data. For all analyses, only p-values <0.05 were considered as statistically significant. FC: Fold change; DSB: Double-strand break.



Supplemental Figure 3: Increased proliferation of colonic epithelial cells from cyclin A2- deficient mice. (A, B, C). Quantification of Ki67 expression by IHC of the different parts of crypts from the distal and proximal part of the colon from control (n= 66 crypts analyzed from 3 different mice) and constitutive cyclin A2-deficient mice (A, B) and proximal part of the colon from induced knockout mice at day 8 following inactivation compared to controls (n=120 from 3 different mice) (C). Mean values ±SEM are provided, \* p<0,05, \*\* p<0.01 and \*\*\* p<0,001; two-tailed unpaired t-test.

#### Supplemental Figure 4 CD44v6

**Ki67** 

#### CD44v6Ki67 DAPI









Supplemental Figure 4: Ki67 positive cells express CD44v6. Representative immunostainings for Ki67 (green) and CD44v6 (red). DAPI (blue) was used for nuclei detection on colons of Ccna2fl/fl and VilCreCcna2fl/fl mice, respectively. Please note the elevated intensity of Ki-67 staining in cyclin A2-deficient colons. Scale bars: 100µm.



**Supplemental Figure 5: Increased nuclear size of colonic epithelial cells in cyclin A2-deficient mice**. Distribution curve representing the nuclear size of *Ccna2fl/fl* colonic epithelial cells (white, n=398 for the left panel and 578 for the right panel from 3 mice), *VilCreCcna2fl/fl* (black, left panel, n=400 from 3 mice, p<1.10e-16) and *VilCreERT2Ccna2fl/fl* (black, right panel, n=566, p<1.10e-16) colonic epithelial cells; p-values were determined using Kolmogorov-Smirnov test.





**Supplemental Figure 6: Examples of mitoses in colons of cyclin A2-deficient mice**. (A). Immunofluorescence analysis of mitosis (indicated by red circles) using an anti- $\alpha$ -tubulin antibody (green) to stain for the mitotic spindle in combination with  $\gamma$ -tubulin (centrosome in red) and DAPI for DNA in a colon of *VilCreERT2Ccna2fl/fl* mice at day 8 following inactivation (right panel) by comparison to controls (left panel). Scale bar: 100µm. (B). The upper image shows normal mitosis, the lower panel several examples of abnormal mitoses observed in a *Ccna2*-deficient colon. Blow-up: 2.5x.



Supplemental Figure 7: Increased mitoses, DNA damage and Mre11 foci formation is already detectable at day2 following cyclin A2 inactivation. (A) Representative images of  $\gamma$ H2AX staining in *VilCreERT2Ccna2fl/fl* (day 2 and 4) colon and controls (*Ccna2fl/fl*). Red arrows indicate  $\gamma$ H2AX staining. Scale bar: 100µm. (B) Representative HE staining showing the increased proportion of mitoses in *VilCreERT2Ccna2fl/fl* colons (at day 2 and 4). Red arrows indicate mitosis. The panel on the right shows the corresponding quantification in colons of *Ccna2fl/fl* (n=9),

*VilCreERT2Ccna2fl/fl* (day 2, n=5) and *VilCreERT2Ccna2fl/fl* (day 4, n=5) mice. Values are expressed as mean  $\pm$ SEM. \*\*\*p<0.001, two-tailed unpaired t-test). Blow-up: 2x. Scale bar: 100µm (C) Left panel: Representative image of Mre11 staining (red) and DAPI (blue) on colons of *Ccna2fl/fl* and *VilCreERT2Ccna2fl/fl* (day 8) mice. Blow-up: 3x. Scale bar: 100µm. Right panel: quantification of Mre11 foci formation in colons of *Ccna2fl/fl* (n=4045 from 3 mice), *VilCreERT2Ccna2fl/fl* day 2 (n=1747 from 3 mice), day 4 (n=709 from 3 mice) and day 8 (n=1167 from 2 mice) mice

*VilCreERT2Ccna2fl/fl* day 2 (n=1747 from 3 mice), day 4 (n=709 from 3 mice) and day 8 (n=1167 from 2 mice) mice expressed as intensity of Mre11 staining per surface of nuclei (mean ±SEM, \*\*\*\*p<0.0001; Mann-Whitney test).

γH2AX

**Ki67** γ H2AX DAPI



Supplemental Figure 8:  $\gamma$ H2AX positive cells do not express Ki67 and localize at the top of the crypts. Immunofluorescence analysis was performed using an anti-Ki67 (red) and  $\gamma$ H2AX (green) antibody. DAPI (blue) was used for nuclei detection on colons of *Ccna2fl/fl* and *VilCreCcna2fl/fl* mice. Crypts are depicted in white. Representative images are shown. Blow-up: 2x; white arrows indicate  $\gamma$ H2AX positive cells. Scale bars: 100µm.

Ki67 active β-catenin DAPI



Supplemental Figure 9: Active  $\beta$ -catenin positive cells do not express Ki67 and localize at the bottom of the crypts. Immunofluorescence analysis for-Ki67 (green), active  $\beta$ -catenin (red) and DAPI (blue) for nuclei detection on colons of *Ccna2fl/fl* and *VilCreCcna2fl/fl* mice. Representative images are shown. White arrows indicate nuclear active  $\beta$ -catenin staining. Blow-up: 2.5x. Scale bars: 50 µm.



**Supplemental Figure 10: Protocol and weight monitoring of the mice during colitis associated carcinogenesis**. (A). Schematic representation of the modified AOM/DSS protocol applied to *VilCreCcna2fl/fl* (n=7) and control mice (n=6) (see Figs 7 and 8). (B). Monitoring of the relative weight (expressed as percentage relative to the weight at the beginning of the protocol) of *VilCreCcna2fl/fl* and control mice during the AOM/DSS protocol.



Supplemental Figure 11: Cyclin A2 expression at the mRNA and protein level in CRC patients. (A). Relapse free survival (RFS) curve of the overall patients analyzed for cyclin A2 mRNA expression levels. (B). Metagene-based prediction score of outcome (using Student t-test and expressed as mean  $\pm$ SD) of the *CCNA2*high samples compared to those of *CCNA2*non-high samples in the learning set (left) and in the independent validation set (right). (C). Volcano plot showing the 92 genes differentially expressed in the learning set (TCGA). Genes up-regulated in the *CCNA2*high samples are colored in red and genes down-regulated in green.



**Supplemental Figure 12: Cyclin A2 protein expression in CRC tumor samples from different stages.** (A). Cyclin A2 expression analyzed on the same TMA shown in Figure 10, but using a different anti-cyclin A2 antibody from Novo-castra. (Mean values ±SEM, p<0.05 for the analysis between stage I and II-MSS, p<0.01 for comparison between stage I and stage III, p<0.001 for stage I to IV, p<0.01 for stage II-MSI to stage IV, two-tailed unpaired t-test). (B). Representative immunostaining of stage I, II-MSS, II-MSI, III and IV tumor samples. Scale bar: 100μm



Supplemental Figure 13: Ccna2 gene expression signature in colons of cyclin A2 deficient mice is enriched with genes of the CMS4 subtype. (A) Number of differential and common genes between CCNA2 signatures and CMS classification. (B) Fisher's exact test evaluating the significance of the enrichement. (ns = non significant). (C) List of the 25 genes shared with the CMS4 class. (D) Major associated functions covered by these 25 genes.

| Severity | Extent               | Score 1 | Epithelial<br>changes | Mucosal<br>architecture                                            | Score 2 |
|----------|----------------------|---------|-----------------------|--------------------------------------------------------------------|---------|
| Mild     | Mucosa               | 1       | Focal<br>erosions     |                                                                    | 1       |
| Moderate | Mucosa and submucosa | 2       | Erosions              | focal<br>ulcerations                                               | 2       |
| Marked   | Transmural           | 3       |                       | Extended<br>ulcerations±<br>granulation<br>tissue±<br>pseudopolyps | 3       |

**Supplemental Table 3.** Histological scoring for colitis (sum of scores 1 and 2) according to (40).

| Variable              | Value (%)                         |  |
|-----------------------|-----------------------------------|--|
| Age at diagnosis (yr) |                                   |  |
| Median                | 66.26                             |  |
| Range                 | 21-89                             |  |
| Gender                |                                   |  |
| Male                  | 34 (52.3)                         |  |
| Female                | 31 (47.7)                         |  |
| Tumor Location        |                                   |  |
| Colon                 | 65 (100)                          |  |
| Tumor Stage           |                                   |  |
| Ι                     | 13(20), n=23 tissue samples       |  |
| II                    | 23 (35.4), n=48 tissue samples    |  |
| III                   | 15 (23.1)/5, n=30 tissue samples  |  |
| IV                    | 14 (21.5)/10, n=26 tissue samples |  |

Supplemental Table 6. Patients and tumor characteristics of the TMA cohort (n = 65).VariableValue (%)

### Supplemental Table 9

| Target                      | Primer | Sequence (5'-3')         |
|-----------------------------|--------|--------------------------|
| Ccna <sup>flox allele</sup> | 5'     | CGCAGCAGAAGCTCAAGACTCGAC |
|                             | 3'     | TCTACATCCTAATGCAATGCCTGG |
| Ccna $\Delta$               | 5'     | CGCAGCAGAAGCTCAAGACTCGAC |
|                             | 3'     | CACTCACACACTTAGTGTCTCTGG |
| Cre                         | 5'     | CAAGCCTGGCTCGACGGCC      |
|                             | 3'     | CGCGAACATCTTCAGGTTCT     |
|                             |        |                          |

| Antibody for IHC                  | company                                       | clone          | Dilution | Antigen retrieval                        |
|-----------------------------------|-----------------------------------------------|----------------|----------|------------------------------------------|
| Cyclin A2                         | Abcam, Cambridge, UK                          | ab181591       | 1 :1000  | Tris 10mM EDTA 1mM<br>pH9                |
| Cyclin A2                         | Novocastra, Newcastle                         | NCL-           | 1:500    | Citrate pH6                              |
| V:C7                              | upon Tyne, UK                                 | CYCLINA        | 1.200    | C'instantia                              |
| Ki67                              | Abcam, Cambridge, UK                          | ab16667        | 1:200    | Citrate pH6                              |
| Ki67                              | ThermoFisher Scientific,<br>Waltham, USA      | SolA15         | 1 :1000  | Citrate pH6                              |
| F4/80                             | Hycult biotech, Uden,<br>Netherland           | HM1066         | 1 :800   | Citrate pH6                              |
| YM1                               | R&D system,<br>Minneapolis, USA               |                | 1:100    | Citrate pH6                              |
| TGF-β                             | Abcam, Cambridge, UK                          | ab215715       | 1:250    | Tris 10mM EDTA 1mM<br>pH9                |
| non-phospho (Active)<br>β-catenin | Cell signaling, Danvers,<br>USA               | #8814          | 1 :1000  | Citrate pH6                              |
| anti-yH2AX                        | Abcam, Cambridge, UK                          | ab11174        | 1:500    | Citrate pH6                              |
| anti-IL-6                         | Novus Biological,<br>Centennial, USA          | IL-6/1270      | 1:100    | Tris 10mM EDTA 1mM<br>pH9 or Citrate pH6 |
| anti-TAZ                          | Novus Biologicals,<br>Centennial, USA         | NBP1-<br>85067 | 1:100    | Citrate pH6                              |
| anti-CD44v6                       | ThermoFisher, Waltham,<br>USA                 | clone 9A4      | 1:100    | Citrate pH6                              |
| BrdU                              | Biolegend, San Diego,<br>USA                  |                | 1:100    | Citrate pH6                              |
| Antibodies for IF                 |                                               |                |          |                                          |
| Mre11                             | Novus Biologicals,<br>Centennial, USA         | NB-100-<br>142 | 1:500    | Citrate pH6                              |
| alpha-tubulin                     | Novus Biological,<br>Centennial, USA s        | NB-600-<br>506 | 1:1000   | 1 mM EDTA                                |
| Gamma-tubulin                     | Sigma, Saint Louis, USA                       | T3320          | 1:1000   | 1 mM EDTA                                |
| Antibodies for WB                 |                                               | 10020          | 1.1000   |                                          |
| Cyclin A2                         | Abcam, Cambridge, UK                          | ab181591       | 1 :1000  |                                          |
| NF-kB p65                         | Cell signaling<br>Technology, Danvers,<br>USA | #8242          | 1:1000   |                                          |
| non-phospho (Active)<br>β-catenin | Cell signaling<br>Technology, Danvers,<br>USA | #8814          | 1:1000   |                                          |
| TFIIB                             | Biolegend, San Diego,<br>USA                  |                | 1:2000   |                                          |
| Histone H3                        | Abcam, Cambridge, UK                          | ab1791         | 1:1000   |                                          |
| β-actin                           | Sigma, Saint Louis, USA                       |                | 1:5000   |                                          |
| Antibodies for<br>FACS            |                                               |                |          |                                          |
| EpCAM-APC                         | Biolegend                                     | 118213         | 1:50     |                                          |
| CD45-PE                           | Biolegend                                     | 103105         | 1:100    |                                          |
| CD90.2-FITC                       | Becton Dickinson,<br>Franklin Lakes, USA      | 553013         | 1:50     |                                          |

Supplemental Table 10: origin and dilution of the antibodies used in the study

| Supplemental Table 11                |                        |            |             |
|--------------------------------------|------------------------|------------|-------------|
|                                      | Product provider       | WENR       | ENR         |
| Growth factors and supplements       |                        | concentrat | concentrati |
|                                      |                        | ions       | ons         |
| DMEM/F12                             | Life technologies,     |            |             |
|                                      | Carlsbad, USA          |            |             |
| Glutamax (100x)                      | Life technologies      | 1x         | 1x          |
| Hepes                                | Life technologies      | 10mM       | 10mM        |
| Penicillin/Streptomycin              | Life technologies      | 1x         | 1x          |
| B27 (50x)                            | Life technologies      | 1x         | 1x          |
| N2 (100x)                            | Life technologies      | 1x         | 1x          |
| N-acetyl-cystein                     | Sigma, Saint Louis,    | 1mM        | 1mM         |
|                                      | USA                    |            |             |
| Mouse EGF                            | Peprotech, Neuilly sur | 50ng/ml    | 50ng/ml     |
|                                      | Seine, France          |            |             |
| Mouse Noggin                         | Peprotech              | 100ng/ml   | 100ng/ml    |
| Human R-spondin-1                    | Peprotech              | 500ng/ml   | 500ng/ml    |
| Mouse WNt3a                          | Peprotech              | 100ng/ml   |             |
| Rock Inhibitor (Y27632) only for Day | Sigma                  | 10nM       |             |
| 0 and 1 of culture                   |                        |            |             |
| CHIR-99021(only for day 0 and        | Peprotech              | 3 nM       |             |
| passaging)                           |                        |            |             |

Full unedited gel for Figure 5B upper part: membrane 1

|                     | Ccna2fl/fl |   |  |
|---------------------|------------|---|--|
| active<br>β-catenin |            |   |  |
| CyclinA2            |            | - |  |
| TFIIB               |            |   |  |
| NFkB                |            |   |  |
| Histone H3          |            |   |  |



# Full unedited gel for Figure 5B lower part: membrane 2



## $NF\kappa B$





# Full unedited gel for Figure 5B Day2





Full unedited gel for figure5B Day 4 upper: membrane 1









Full unedited gel for figure5B Day 4 : membrane 2



# NFκB



