Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Inhibiting the coregulator CoREST impairs Foxp3+ Treg function and promotes antitumor immunity
Yan Xiong, … , Philip A. Cole, Wayne W. Hancock
Yan Xiong, … , Philip A. Cole, Wayne W. Hancock
Published January 9, 2020
Citation Information: J Clin Invest. 2020;130(4):1830-1842. https://doi.org/10.1172/JCI131375.
View: Text | PDF
Research Article Immunology Oncology

Inhibiting the coregulator CoREST impairs Foxp3+ Treg function and promotes antitumor immunity

  • Text
  • PDF
Abstract

Foxp3+ Tregs are key to immune homeostasis, but the contributions of various large, multiprotein complexes that regulate gene expression remain unexplored. We analyzed the role in Tregs of the evolutionarily conserved CoREST complex, consisting of a scaffolding protein, Rcor1 or Rcor2, plus Hdac1 or Hdac2 and Lsd1 enzymes. Rcor1, Rcor2, and Lsd1 were physically associated with Foxp3, and mice with conditional deletion of Rcor1 in Foxp3+ Tregs had decreased proportions of Tregs in peripheral lymphoid tissues and increased Treg expression of IL-2 and IFN-γ compared with what was found in WT cells. Mice with conditional deletion of the gene encoding Rcor1 in their Tregs had reduced suppression of homeostatic proliferation, inability to maintain long-term allograft survival despite costimulation blockade, and enhanced antitumor immunity in syngeneic models. Comparable findings were seen in WT mice treated with CoREST complex bivalent inhibitors, which also altered the phenotype of human Tregs and impaired their suppressive function. Our data point to the potential for therapeutic modulation of Treg functions by pharmacologic targeting of enzymatic components of the CoREST complex and contribute to an understanding of the biochemical and molecular mechanisms by which Foxp3 represses large gene sets and maintains the unique properties of this key immune cell.

Authors

Yan Xiong, Liqing Wang, Eros Di Giorgio, Tatiana Akimova, Ulf H. Beier, Rongxiang Han, Matteo Trevisanut, Jay H. Kalin, Philip A. Cole, Wayne W. Hancock

×

Figure 5

Rcor1 deletion affects the functions of the CoREST complex in Tregs.

Options: View larger image (or click on image) Download as PowerPoint
Rcor1 deletion affects the functions of the CoREST complex in Tregs.
(A)...
(A) Localization of Rcor1 and Foxp3 in Tregs. Representative of 3 independent experiments. Original magnification, ×400. Scale bars: 10 μm. (B) Representative bands (left) and statistical analysis (right) of Western blotting for HDAC1/2/LSD1 in Rcor1–/– versus WT Tregs (β-actin loading control). (C) Western blot of H3K4Me2 and H3K9Ac level in Rcor1–/– versus WT Tregs (total histone 3 as loading control) (left), and statistical analysis of Western blotting (right). (D) Western blot results of H3K4Me2 and H3K9Ac levels in 293T cell line after overexpression of Rcor1 compared with EV (β-actin loading control) (left) and statistical analysis of Western blotting (right). Data are shown as mean ± SD, 4–6 samples/group. Student’s t test for unpaired data. *P < 0.05; **P < 0.01; ***P < 0.001 vs. WT control.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts